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It was a great pleasure to welcome you to the First International Symposium of 
The International Gravity Field Service (IGFS), to be held August 28 - September 1, 
2006 in Istanbul / Turkey. 

This was the first symposium of the International Gravity Field Service (IGFS) of 
the International Association of Geodesy (IAG), and it continues the series of 
symposia of the former International Gravity and Geoid Commission.  

IGFS is a new unified "umbrella" IAG service, which will coordinate collection, 
validation, archiving and dissemination of gravity field related data, exchange of 
software of relevance for gravity field activities, and courses, information materials 
and general public outreach relating to the earth's gravity field. 

 
The overall goal of IGFS is to coordinate the servicing of the geodetic and 
geophysical community with gravity field-related data, software and information. The 
combined data of the IGFS entities data will include both satellite-derived global 
models, terrestrial, airborne, satellite and marine gravity observations, earth tide data, 
GPS leveling data, digital models of terrain and bathymetry, as well as ocean gravity 
field and geoid from satellite altimetry. Both the static and the temporal variations of 
the gravity field will be covered by the IGFS. 

  
IGFS is not handling gravity field data distribution directly - IGFS will function as a 
unifying service for the following gravity-field related IAG services - "IGFS Centres": 
 
BGI (International Gravity Bureau - collection, archiving and distribution of gravity 
data), IGeS (International Geoid Service - collection and distribution of geoid models, 
geoid schools, ICET (International Center for Earth Tides - collection and archiving of 
global earth tide data), ICGEM (International Centre for Global Earth Models - 
distribution of satellite and surface spherical harmonic models), IDEMS (International 
DEM Service - Global Digital Terrain Models). 

 
The symposium mainly aimed to to bring together geoscientists working in general 

areas of modeling the Earth’s gravity field. Major scientific themes considered for the 
1st International Symposium of the IGFS include;  
 

• Gravity field modeling from combinations of local and satellite data 
• Regional geoid projects 
• Vertical datum and height systems 
• New Earth Geopotential Models (EGM05) 



• Satellite Gravity Missions 
• Satellite Altimetry 
• Airborne Gravity 
• Global terrain models for physical geodesy 
• Absolute Gravity and gravimetric networks 
• Geodynamics and gravity change 

We decided to publish the papers presented in the symposium, and selected a 
Turkish Journal that is dedicated to geodesy and photogrammetry.   

A total of 78 papers have been submitted to appear in this symposium 
proceedings. All of the papers were peer reviewed by conveners and selected 
referees.  

Such scientific assemblies are held every two years, but in separate locations. 
Hence this symposium of the IGFS offered opportunities to present and discuss 
earth’s gravity field related research and applications. 

First International Symposium of The International Gravity Field Service (IGFS) 
took place in Istanbul. Although thousands of years have passed, Istanbul still 
maintains its geographical importance. Today Istanbul is a huge metropolis 
connecting continents, cultures, religions, and being home to eleven million people 
and one of the greatest business and cultural center of the region. 

The venue for the Scientific Assembly was The Cultural Center of Military 
Museum, Harbiye, Istanbul. The Cultural Center within the constitution of the Military 
Museum is fully equipped to serve as a venue for cultural, scientific and arts 
activities. All sort of activities such as scientific sessions, special meetings of work 
groups, exhibitions and so on were held within the Cultural Center’s meeting rooms 
and exhibition halls during IGFS 2006.  

We would like to thank Turkish National Union of Geodesy and Geophysics 
(TNUGG), International National Union of Geodesy and Geophysics (IUGG), 
International Association of Geodesy (IAG), Turkish National Research Council 
(TUBITAK) and International Gravity Field Service (IGFS) for their valuable efforts 
and contributions for this symposium. 

We also would like to thank, in particular, Maj.Gen.Necdet Soyer (President of 
TNUGG),  Michael Sideris (Vice-President of IAG), Rene Forsberg (President of 
IGFS), Local Organizing Committee (Ali Kılıçoğlu, Ugur Şanlı, Orhan Fırat, Bihter 
Erol, Onur Yılmaz, Tevfik Özlüdemir), Conveners (Carl-Heinz Ilk, Urs Marti, Ali 
Kılıçoğlu, Jaako Makinen, Nikolaos K. Pavlis, Steve Kenyon, Nico Sneeuw , Mahmut 
O.Karsllıoğlu Wolfgang Bosch, Ugur Şanlı, Christopher Jekeli, Michael Kuhn, Olivier 
Francis, Herbert Wilmes, Martin Vermeer) and Mehmet Emin Ayhan (Chief Editor of 
Harita Dergisi (Journal of Mapping)). 
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Abstract. The satellite gravity field mission GOCE 
will deliver data and products such as orbit tracking 
data, observations of the second order derivatives of 
the gravitational potential and global gravity field 
models. The space-wise approach will produce 
filtered versions of these observations, as well as a 
gravity field model.  

Local geoid determination is traditionally made 
using gravity anomaly data and a global gravity field 
model as reference, according to the remove-restore 
technique. Therefore the contribution of the GOCE 
mission to such a computation can be the global 
model that is expected to be of high quality. Apart 
from that, the filtered observations from the space-
wise approach can be used as an additional data set. 

These expected contributions are evaluated here 
via simulations. Geoid heights and gravity anomalies 
are simulated in the Piemonte area in north-western 
Italy and solutions by least squares collocation are 
obtained. It is found that using a GOCE reference 
model with very accurate low degree coefficients 
leads to better results with respect to older models of 
lower long wavelength accuracy. When filtered 
second radial derivatives of the potential coming 
from the space-wise approach are additionally 
included it is seen that results improve even more.  
 
Keywords. GOCE mission, space-wise approach, 
collocation, local geoid. 
 
 
1 Introduction 
 
GOCE (Gravity field and steady-state Ocean 
Circulation Explorer) is a satellite mission (ESA, 
1999) designed by ESA (European Space Agency), 
which will be launched in 2007. The goal of this 
mission is the determination of the stationary part of 
the gravity field to a high degree of accuracy and 
spatial resolution. The main instrument on board the 
satellite will be the “gradiometer” that is composed 
by six accelerometers and will measure the second 

derivatives of the potential (the full tensor) along the 
satellite orbit (the so-called gradients). Additional 
information on the gravity field will be derived from 
the tracking of the satellite orbit by means of a GPS 
receiver, in combination with measurements of the 
non-gravitational forces by the accelerometers.  

Three different approaches will be applied for the 
estimation of a global gravity field model (Rummel 
et al., 2004) from GOCE observations: the direct 
approach (Bruinsma et al., 2004), the time-wise 
approach (Pail et al., 2005) and the space-wise 
approach (Migliaccio et al., 2004) that is realized by 
the Politecnico di Milano and the University of 
Copenhagen.  

According to the space-wise approach, at the first 
step, the gravitational potential is directly estimated 
along the orbit using the orbit tracking data, via the 
energy conservation method (Jekeli, 1999; Visser et. 
al., 2003). These estimates together with the 
gradiometric observations are transformed to the 
frequency domain and filtered by a Wiener filter 
along the orbit (Albertella et al., 2004; Migliaccio et 
al., 2005). The filtered data, transformed back to the 
time domain, are interpolated on a spherical grid 
with radius equal to the mean satellite altitude by 
least squares collocation. Using these gridded values 
a spherical harmonic model of the gravitational 
potential is computed by integration (Migliaccio and 
Sansò, 1989). Iterations are made to recover any 
signal loss due to the initial filtering.  

The purpose of this paper is to investigate the 
significance of the contribution of the GOCE 
mission and the space-wise approach to local geoid 
determination by least squares collocation. In 
particular, this study deals with three outputs of the 
space-wise approach: 1) the gravity field model, 
that, along with error covariances, represents the 
main product of GOCE, whether it comes from the 
space-wise approach or not, 2) the along track 
filtered gradients and 3) the gridded gradients. The 
investigation will be made with simulations. No 
topographic information will be used, even though 



 

 

 

 

this is possible with real data (Arabelos and 
Tscherning 1990). 

 
2  A GOCE simulation solution 
 
In the framework of the EGG-C (European GOCE 
Gravity Consortium) (Balmino, 2001) activities for 
the preparation of the actual GOCE mission, full 
simulation solutions are computed (Migliaccio et al, 
2005), so that method and software efficiency are 
tested and ultimately ensured. The latest simulated 
data set used by EGG-C includes: 60 days of 
observations at 1Hz sampling rate, gradients and 
orbit based on the EGM96 model (Lemoine et al, 
1998), non-gravitational effects, satellite and 
instrument orientation parameters and realistic noise. 
In order to obtain the results presented in this paper, 
the space-wise approach has been applied to this 
GOCE data set. 

The noise of the measured gradients is of several 
tens of Eötvös (table 1). After the Wiener filter 
along the orbit and three iterations the noise 
decreases to a few milli-Eötvös (table 2). Note that 
the gradients are measured in the gradiometer 
reference frame (x,y,z) but through the filtering the 
observations are transformed into the Local Orbital 
Reference Frame (ξ,η,r) (LORF), where ξ is almost 
along-track, η cross-track and r radial. 

Table 1. The error standard deviation of the observed 
gradients along the orbit, in Eötvös (10-9s-2). 

Txx  Txy Txz Tyy  Tyz Tzz

109 115 31 61 331 66 

Table 2. The error standard deviation of the filtered gradients 
along the orbit, in milli-Eötvös (10-12s-2). 

Tξξ  Tξη Tξr Tηη  Tηr Trr

2.3 11.0 2.5 3.5 23.0 3.2 

Using the four most accurate filtered gradients a 
global spherical grid of second order radial 
derivatives (Trr) is predicted. The error standard 
deviation is below the milli-Eötvös level, apart from 
the polar caps that are not covered with observations 
because of the GOCE orbit inclination (i = 96.5°). 

The final gravity field model is produced from the 
combination of the above grid of radial derivatives 

and a spherical grid of potential values. The 
coefficients are calculated by numerical integration. 
The quality of the model is very high, its error 
degree variances are smaller (up to degree 200) than 
the nominal error degree variances of EGM96 (Fig. 
1). Such an accuracy is like the one expected from 
GOCE, regardless of the approach used for the data 
analysis. The error degree variances are smaller than 
the degree variances of the field generated as the 
difference between EGM96 and EIGEN_cg03c 
(Reigber et al., 2006). This does not imply a 
judgement by the authors about the quality of these 
models. However these large differences are similar 
to the nominal EGM96 errors and this is useful to 
perform simulations where models with significant 
long wavelength errors are used as reference. 
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Fig. 1 Signal and error degree variances. 

3  Local geoid determination 
 
3.1  Collocation with ground gravity data 
 
A local geoid determination is often made using the 
well-known method of least squares collocation 
(Moritz, 1980). The covariance and cross covariance 
functions of the gravity anomaly Δg and the 
potential T (that depend on the spherical distance ψ  
and radii of points) are required: 
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where ψcos=t ,  are Legendre polynomials of 
degree ,  is the mean earth radius,  are the 
radii of the points 

( )tPl
l R QP rr  ,

P  and , Q μ  is the gravitational 

constant times the earth mass, 2~
lσ  are some adapted 

signal degree variances and ( 1−= ll )α . A vector of 
predicted geoid undulation is made by: 
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where  is the vector of observed gravity 
anomalies,  is a matrix computed from the Δg 
covariances,  is a matrix computed from the Δg 
and T cross covariances and  describes the Δg 
noise. If white noise is considered, this matrix equals 
the identity matrix times the noise variance, i.e.: 
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The value γ  is the mean normal gravity used 
throughout the simulations. 

The prediction error covariance matrix is 
computed by the least squares collocation estimation 
error formula: 
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sTTTe CCCCCC 1

2

1 −+−=
γ

),     (8) 

 
where the matrix  is computed from the 
potential covariance function. 

TTC

In order to make comparisons with the actual 
prediction errors computed from simulations, the 
point-wise standard deviation is used: 
 

( )iiei ,C=σ .                    (9) 
 
3.2  Utilization of GOCE data 

 
To use the filtered or gridded second radial 
derivatives from the space-wise approach, the 
following functions are also needed: the covariance 
function of Trr and their cross covariance functions 
with T and Δg. 
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where ( )( )21 ++= lllβ  and lll βαδ = .  

The covariance functions needed to combine the 
second radial derivatives are easy to compute and 
implement because the radial direction of LORF 
coincides with the up direction of a East-North-Up 
(ENU) frame. If other derivatives along directions 
not coinciding with ENU were to be used then all 
the covariance functions would have to be computed 
and linear combinations would have to be made, 
according to the rotations between the used 
directions and the ENU (Tscherning, 1993). This 
procedure is made inside the space-wise approach, 
because the other two directions of LORF differ 
from the East and North. However the filtered and 
gridded second radial derivatives produced from the 
space-wise approach are easy to handle in data 
combinations via collocation. 

The matrices and vectors in the equations (4) and 
(8) change: the vector  now includes, in addition 
to the gravity anomalies, the along track filtered or 
gridded radial derivatives. Besides, the signal and 
error matrices include the covariances of T

y

rr and 
their cross covariances with T and Δg, i.e.: 
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To compute the Trr noise matrix elements an error 

function, predicted inside the space-wise procedure, 
is used. For the case of along track filtered data it is 
a function of time, while for the case of the gridded 
data it is a function of spherical distance.  



 

 

 

 

3.3  A simulation of geoid prediction 
 

The local geoid prediction is made over the 
Piemonte area in northern Italy. The data are 
simulated from EGM96 up to degree and order 360 
and GPM98 (Wenzel, 1998) from degree 361 to 720 
and order 0 to 720, so that high frequencies are 
added. 2400 observations of gravity anomaly are 
generated on a spherical grid with coordinates 
43<φ<47 degrees, 6<λ<10 degrees and with 5 mGal 
of white noise. The geoid is predicted on a regular 
spherical grid with latitude 44<φ<46 and longitude 
7<λ<9 with spacing of 0.1 degrees. 

In the GOCE filtered gradients and gridded data 
GPM98 is added from harmonic degree 361 to 720. 
For the along track filtered gradients the orbit is 
prolonged to a time span of 6 months and the errors 
after filtering are reproduced spectrally. From these 
gradients 1939 values inside the area 41<φ<49, 
4<λ<12 (4 times wider than the ground data area) 
are selected after an under-sampling of 1 to 5. This 
procedure has been applied because the spatial 
coverage is much better with 6 months of data and 
under-sampling than with 60 days and less or no 
under-sampling. The GOCE mission will deliver 1 
year of data at least. For the same area 1600 gridded 
second order radial derivatives were selected. 

The gravity anomaly covariance function is 
locally fitted to the gravity anomaly data. The degree 
variances  that describe the true signal (after the 
removal of a reference model) are transformed into 
the values 

2
lσ

2~
lσ , so that the correlation length of the 

covariance function either increases (eq. 16) or 
decreases (eq. 17) and the variance is scaled to fit 
the empirical function: 
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The “sensitivity parameter” a is fixed to the value 
0.1, and the parameter  and the “scale factor” 

 are determined empirically. The limits 
Nn∈

2
0σ 2min =l , 

and  are used. The fitted function is 
propagated to the potential and the second radial 
derivatives and it is compared to the empirical ones 
(since this is a simulation an empirical function of 
the potential is computed from the known true 
values). The case when a GOCE model up to degree 
and order 200 has been used as reference is 
presented in figure 2. The propagation from the 

covariance estimated from Δg to that of T is of good 
quality but the propagation to the covariance of T

720max =l

rr 
is poor. This is found to hold also when different 
reference models are used, although the case 
presented is that of the poorest propagation to the 
covariance of Trr. This is because, as further 
experiments have shown, the upward continued 
covariance is quite sensitive when the covariance 
function has been fitted to ground data by a simple 
model like (eq. 16) and (eq. 17). The same effect 
occurs if the degree variances are fitted to the Trr, 
i.e. the propagation to the Δg and the T variance is 
of bad quality. The results show that it is better to 
use the degree variances of the Δg data, even when 
only the Trr data are used for the geoid prediction. 
This may happen because the Δg data have a more 
local character and are closer (in altitude) to the 
points where the geoid is predicted and is also due 
to the well-known instability of the downward 
continuation operator. A possible solution could be 
to perform a simultaneous fit to Trr and Δg (Knudsen 
1987). Fortunately the collocation results are robust 
to some variations of the covariance function (Sansò 
et al, 1999). 
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Fig. 2 Empirical (gray), fitted (dotted black) and propagated 

(black) covariance functions. 

The EIGEN model up to degree and order 360 
can be used too as reference model; its differences 
to EGM96 (Fig. 1) can be regarded, for the scope of 
this simulation, as long wavelength errors. The 
actual residual geoid heights when the GOCE model 
up to degree and order 200 is used as reference have 



 

 

 

 

a much smaller mean value (table 3). This is due to 
the quality of the low degree coefficients that 
represent longer wavelengths of the signal. On the 
other hand the standard deviation is larger, i.e. more 
signal remains, due to the smaller maximum degree.  

When a GOCE model is subtracted the residual 
signal may be correlated with the errors of the 
gridded data. This is ignored in the formulation of 
the prediction procedure for the sake of simplicity. 

Table 3.  Reference model with maximum degree, mean and 
standard deviation of the residual geoid heights (N) in cm. 

model max degree mean N std N 
EIGEN 360 –103 34 
GOCE 200 5 64 

The residual geoid is now predicted with the 
gravity anomaly data only. It can be seen that the 
GOCE model leads to superior results (table 4, cases 
a and b). The local gravity data cannot compensate 
the long wavelength information that is missing 
from the “less accurate” reference model (case a).  

If then the along track Trr data are combined the 
results are even better. In fact, the case when the less 
accurate reference model is used (case c) is now 
closer to the other case (case d), i.e. the Trr data can 
account for the long wavelength information that is 
missing from the less accurate model. Note that in 
the case a, edge effects are present. These effects 
vanish in all other cases, depicting in another way 
the significance of long wavelength information. 

If the gridded Trr are used then the solution 
improves more (case e). This was expected, since in 
this case the gridded Trr data have better accuracy 
than the along track filtered data. Note also that the 
collocation with the gridded Trr data only (case f) 
improves the solution, i.e. the standard deviation of 
the residual geoid goes down from 64 cm (table 3) to 
14.3 cm (table 4). This shows that there is “GOCE 
information” beyond degree and order 200.  

The good fit to the gravity anomaly covariance 
and the reasonable propagation to the potential 
covariance ensures a good error prediction to 
evaluate, in a true case, the significance of any data 
set used (e.g. GOCE Trr data). Here the predicted 
error (table 4) is computed as the mean of all 
predicted point-wise standard deviations.  

Even though a covariance function that is not in 
agreement with the empirical covariance function of 
Trr is used, the prediction of the geoid with this data 

set is quite good. The predicted error is also very 
close to the empirical one. This can be explained by 
considering that (see Fig. 2) the covariance of Δg 
propagated to Trr at satellite altitude is mostly a 
scaled version of the empirical one, as if the signal 
Trr itself were multiplied by a factor. Now if the 
collocation prediction and error equations are seen: 
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we immediately see that such formulas are invariant 
under a multiplication of Trr (but not of T) by a scale 
factor. This might be a mechanism through which 
part of the inconsistency is absorbed.  

Table 4.  The reference model, the data used, the empirical 
standard deviation with respect to the “true geoid” (emp.) and 

the predicted error (pred.) of every simulation case in cm .  

case model data used emp. pred. 
a EIGEN Δg 11.6 10.1 
b GOCE Δg 2.7 2.9 
c EIGEN Δg + Trr 2.9 3.8 
d GOCE Δg + Trr 2.4 2.3 
e GOCE Δg + grid Trr 1.7 1.7 
f GOCE grid Trr 14.3 19.4 

4  Conclusions  
 
The GOCE gravity field model is expected to have 
high quality. The very good long wavelength 
information will be very useful for local gravity 
field modelling. The results presented in this paper 
show that the processed data coming from the 
space-wise approach will also be useful for local 
applications. Error propagation is essential to assess 
the significance of combining these data.  

The along track filtered values of the potential 
and the gradients (apart from the second radial 
derivatives) coming from the space-wise approach 
have not been used. This may be done in the future. 
However this is not expected to improve the results 
significantly with respect to the results presented 
here; the information coming from the potential is 
probably fully included in the reference model of 



 

 

 

 

degree and order 200 and the information from the 
gradients is included into the gridded data via the 
gridding procedure by collocation (Reguzzoni et al, 
2006). This grid seems to have a higher frequency 
information content that can be used to improve 
local geoid computations beyond the remove restore 
procedure with a model up to degree 200.  
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Abstract: GPS data, gravimetric data and digital 
elevation models have been used for the 
determination of quasigeoid by solving the 
second (Neumann) geodetic boundary value 
problem (GBVP). Measured point gravity values 
and mean Bouguer gravity anomalies have been 
transformed into gravity disturbances using the 
ellipsoidal heights obtained from digital 
elevation models DMR50 (local digital elevation 
model for Slovakia, 100 m x 100 m grid), 
GTOPO30 and SRTM3 (global digital elevation 
models) combined with EGG97 quasigeoidal 
heights. In this paper we present our computation 
process starting from input data compilation and 
transformation, then describing the numerical 
solution to the second GBVP and finally testing 
and discussing the obtained results. 
 
Keywords: second boundary value problem, 
gravity disturbance, quasigeoid 
 
1 Introduction 
 
The solution to the third geodetic boundary value 
problem (GBVP) for quasigeoid determination 
formulated by Molodensky et al. (1962) is based 
on free-air gravity anomalies known on the Earth 
surface. In order to obtain the surface gravity 
anomaly, one needs to measure horizontal 
position (ϕ,λ), the height above sea level H and 
gravity g. The second GBVP, based on gravity 
disturbances, enables to determine the quasigeoid 
using gravity, GPS observations data and terrain 
elevation with no need of levelling. Therefore, it 
is possible to expect higher accuracy in 
quasigeoid determination because of better 
consistency of the used reference systems. 
    Nowadays, there exist a lot of modifications of 
third GBVP solutions that are verified in many 
practical experiments (see, e.g., Sansó et al. 
1994, Vaníček and Christou 1994, Mojzeš et al. 
2006, Osada et al. 2005). The solution of the 
second GBVP is based on gravity disturbances, 
that are defined in the entire Euclidian space R3 
formulas follows 
 

 
 

( ) ( ) ( )g P g P Pδ γ= −
rr r ,  (1) 

 
where ( )g Pr  is the gravity vector and ( )Pγr  is 
the normal gravity vector. Providing that the 
angle between those vectors is sufficiently small, 
one can rewrite eq. (1) in a scalar form 
 

( ) ( ) ( )g P g P Pδ γ= − .  (2) 
 
    The value ( )g P  is obtained by gravimetric 

measurement and ( )Pγ  can be calculated. In 
order to get the gravity disturbance at point P we 
need to determine the value of g at P and  
position of P in terms of ellipsoidal coordinates. 
   The basic mathematical model of quasigeoid 
determined from gravity disturbances is known 
and it has been presented in many publications 
(see, e.g., Hotine 1969, Fei and Sideris 2000, 
Wellenhof and Moritz 2005). 
     The solution of the second GBVP is derived 
from the Molodensky concept (Molodensky et al. 
1962). Let P be the point on the Earth surface S 
where we wish to determine the height 
anomalyζ. According to Runge’s theorem 
(Moritz 1980), there exists a spherical or 
ellipsoidal surface passing through point P on 
which there is a disturbing potential T , which 
obeys the following conditions (Fei and Sideris 
2000): 
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where gδ  is the gravity disturbance on the 
reference surface. The relation between the 
gravity disturbance and the disturbing potential 
for spherical approximation is as follows:  
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2 Mathematical model 
 
The difference between the gδ  on the earth 
surface S and gδ  on the reference surface is 
defined as follows (Moritz, 1980): 
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where h stands for ellipsoidal height. From the 
first and second condition in eq. (3), it is possible 
to write the following formula for height 
anomaly: 
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where ( , )P QH ψ  is the Hotine function defined 
by following formula: 
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where ,P Qψ  is the spherical distance between the 
points P and Q. If in eq. (6) we replace the 
gravity disturbance on the reference surface by 
 

( ) ( ) (1 )g Q g Q g Qδ δ δ= + ,  (8) 
 
then we can compute the height anomaly using 
 

( ) ( ) ( )
1g gP Pδ δζ ζ ζ= + P ,  (9) 

 
where 
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with 1gδ - the terrain correction of gravity 
disturbance and 

1gδζ - the terrain correction of 
the Hotine formula.  
     Equations (10) and (11) serve for the 
computation of height anomaly on S including, 
approximately, the terrain effect.  
 
3 Remove-restore technique 
 
To solve (6) one needs to know the gravity 
disturbances all over the Earth with an optimal 
density. Nowadays there are some areas with 
sufficiently dense gravity data coverage while 
others are not. To overcome that difficulty we 
use a global geopotential model. The idea is 
based on the remove-restore technique. The first 
step of the remove-restore technique is to divide 
the gravity disturbance into three components: 
 

1( ) ( ) ( ) ( )m resg P g P g P g Pδ δ δ δ= + +  ,   (12) 
 
where 
 

1( ) ( ) ( ) ( )res mg P g P g P g Pδ δ δ δ= − − ,    (13) 
 
where gδ  is determined by direct gravimetric 
and GPS measurements. The long wavelength 
(model) component in spherical approximation 
can be computed from the global geopotential 
model, by formula (see, e.g. Wenzell, 2005), 
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where , ,P P Pr ϕ λ  are spherical coordinates of 
point P, GM is geocentric gravitational constant 
a is major semi axis of reference ellipsoid, and 

, ,
ell

n m n m n mC C CΔ = − ,  for , 0m = ,n m n mC CΔ = ,  and 

,n m n mS SΔ = ,  for 0m ≠ are fully normalized 

spherical harmonic coefficients, ,n mP  are fully 
normalized associated Legendre functions of 1st 
kind, n is degree and  m is order.                  



Knowing gδ  and ,mgδ  we can compute 
approximate residual gravity disturbances 
 

( ) ( ) ( )' ,res mg P g P g Pδ δ δ= −   (15) 
 

which we can then use for the computation of  
1gδ : 
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    The final height anomaly at point P can be 
computed from 
 

( ) ( ) ( ) ( )
1m res gP P P δζ ζ ζ ζ= + + P ,     (17) 
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4 Input data 
 
4.1 Compilation of the free-air gravity 
anomaly 20″×30″ grid 
 
The free-air gravity anomaly grid has been 
compiled using two different sources of data. 
The first source was the detailed gravity 
measurements of Slovakia – over 200 000 point 
gravity data (Kubeš et al., 2001), in terms of 
refined Bouguer gravity anomalies, enriched by 
approximately 600 point gravity data from 
Poland and about 150 new gravity measurements 
from extremely rough terrain in High Tatra 
Mountains. The second source was the mean 
Bouguer gravity anomalies on a 5′×7.5′ 
geographic grid - more than 20 000 mean gravity 
data within the area bounded by 44° < ϕ < 55° 
and 12° < λ < 30°. All gravity data have been 
computed in, or transferred to, the gravimetric 

reference system GrS-95, which is based on 16 
absolute gravity points (Klobušiak and Pecár, 
2004) and the GRS-80 normal gravity field 
(Moritz, 1992). The refined Bouguer gravity 
anomalies originated from the first source have 
been compiled using the following equation 
(Kubeš et al., 2001): 
 

0B FA BS t ag g g g g gγ δ δ δ δΔ = − + − + + ,   (20) 
 
where g is measured gravity, γ0 is normal gravity 
at the GRS-80 ellipsoid computed according to 
Somigliana (1929) with the use of the formula 
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gδ BS is the gravity effect of the radius of 166.7 

km, computed according to the formula of 
Cassinis et al. (1937). The last two terms in (20) 
are the terrain correction computed up to 166.7 
km using DMR50 digital terrain model (see 
Kubeš et al.,2001; Grand et al.,2004) and the 

agδ is the atmospheric reduction computed 
according to formula (Torge,1989) 
 

5 90.874 9.9 10 3.56 10a
2g H Hδ − − −= − ⋅ + ⋅ .  (22) 

  
    In the Somigliana’s formula, a and b are the 
major and minor semi-axis of the reference 
ellipsoid, γa and γb are the normal gravity at the 
equator and the pole, and ϕ is ellipsoidal latitude. 
The second term in equation (20) FAgδ  is the 
free-air reduction of normal gravity computed 
from (Torge, 1989) 
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where H is the Molodensky normal height 
obtained by levelling and gravimetry.  
    Unfortunately, the mathematical procedure 
used to produce the mean Bouguer gravity 
anomalies in the second source is not exactly 
known. The refined Bouguer gravity anomalies 
coming from both mentioned sources have been 
merged into one file in such a way that the mean 
data do not overlap with point data, and were 
subsequently interpolated into a 20″×30″ 
geographic grid. The method used for 
interpolation was Kriging with the linear 
variogram assuming anisotropy coming from the 



convergence of meridians. Finally, the grid of 
refined Bouguer gravity anomalies ,B GRIDgΔ  has 
been converted into free-air gravity anomalies 
grid of the same spacing according to the 
following formula: 
 

, , , ,FA GRID B GRID BS GRID t GRIDg g g gδ δΔ = Δ + − .   (24) 
 
    Heights necessary for computation of 

,BS GRIDgδ  were obtained from the GTOPO30 
digital elevation model (edcdaac.usgs.gov/ 
gtopo30/gtopo30.html).  
    There are several approaches for computation 
of ,t GRIDgδ  in eq. (24), i.e., the terrain correction 
in the geographic grid. It is important that terrain 
corrections in eq. (20) and (24) are compatible.  
In our solution this term was computed using an 
approach developed at the University of New 
Brunswick and improved at the Slovak 
University of Technology (see Janák et al., 
2006). Heights necessary for computation of 

,t GRIDgδ  have been obtained from the STRM3 
digital elevation model. 
 
4.2 Transformation of gravity anomaly to 
gravity disturbance 
 
The free-air gravity anomalies have been 
transformed into gravity disturbances according 
to the relation 
 

( ) ( ) 97FA EGGg P g P
h
γδ ζ∂

= Δ −
∂

,           (25) 

 
where 0.3086hγ∂ ∂ = −  mGal/m  and 97EGGζ  
have been interpolated from the quasigeoid 
model EGG97 (Denker et al., 1997). 
 
5 Practical solution 
 
The EGM96 global geopotential model to degree 
and order 360 (Lemoine at al, 1996) and the 
GRS-80 normal gravity field (Moritz, 1988) were 
chosen for the computation. The model 
component of the quasigeoid computed 
according to eq. (18) is plotted in Fig. 1. The 
residual component of the quasigeoid has been 
computed according to eq. (19) in the area 47.5° 
≤ ϕ ≤ 50.0° and 16.7° ≤ λ ≤ 23.0° by using the 
1D-FFT method (Fig. 2. The terrain correction of 
the Hotine formula has been computed according 
to eq. (11) in the same area (Fig. 3). The residual 

components resζ and 
1gδζ have been integrated up 

to radius of one degree. The final quasigeoid 
computed with eq. (17) is plotted in Fig. 4. 
 

 
 

Fig.1. Model component of the quasigeoid (m) 
 

 
 

Fig.2. Residual component of the quasigeoid (m) 
 

 
 

Fig.  3. Terrain correction (m) 
 

 
 

Fig.  4. Final quasigeoid (m) 
 
 
 



 
 
6 Testing of final gravimetric 
quasigeoid  
 
The final gravimetric quasigeoid, determined by 
the second GBVP solution was tested by use of 
61 discrete GPS points linked by precise 
levelling with, which where connected on the 
Reference Levelling Network 1957 of Slovak 
Republic  using precise spirit levelling. The 
statistics of the differences between gravimetric 
and GPS/levelling quasigeoid are shown in Table 
1. 
 
Table 1. Statistics of comparison to GPS/levelling  
_________________________________ 
Parameter    Value (m) 
Mean value of differences  0.534 
Difference between min and max 0.366 
Standard deviation   0.070 
 
Differences between the gravimetric and 
GPS/levelling quasigeoid are depicted in Fig. 5. 
 

 
 

Fig.  5. Differences between gravimetric and 
GPS/levelling quasigeoid 

 
7 Conclusion 
 
The use of gravity disturbance in computing a 
gravimetric quasigeoid has been investigated in 
this paper. The gravimetric quasigeoid has been 
computed solving the second geodetic boundary 
value problem. The computations were based on 
the available gravity data in Slovakia. The 
computed quasigeoid has been compared with 
GPS/levelling data. The standard deviation of the 
differences is 0.070 m.  
    Finally, it should be noted that the distribution 
of the GPS stations in Slovakia is different in 
western, central and eastern parts. For better 
testing of the gravimetric quasigeoid we need a 
uniform distribution of GPS stations.  
 

   The use of gravity disturbances for determining 
the gravimetric quasigeoid has the following 
advantages: 

• the gravity disturbances are determined 
from GPS and gravimetric 
measurements are computed by a 
simple formula; 

• the source of systematic errors, caused 
by inconsistence of vertical reference 
systems is eliminated; 

• for the computation of the topographic 
correction of the gravity disturbance the 
ellipsoidal heights are used; and 

• zero-tide model is applied only for 
gravity and GPS measurements. 

   For achieving higher accuracy in the future, we 
need: 

• to homogenize the reduction of 
gravimetric and GPS measurements in 
the zero-tide reference system in 
agreement with the IAG Resolution Nr. 
16 from 1983; 

• to study the influence of the topographic 
effects on the quasigeoid determination; 

• to use new models from satellite gravity 
gradiometry (e.g. GOCE) for the 
determination of the quasigeoid;  

• to perform densification of the 
gravimetric and GPS measurements in 
high mountains. 

 
Acknowledgement. This investigation was 
supported by the Grant Agency VEGA of Slovak 
Republic, Project No. 1/1433/04. 
 
References 
 
Cassinis G, Dore P, Ballarin S (1937) Tavole fondamentali 

per la riduzione dei valori osservati della gravitá. 
Tipografia legatoria Mario Ponzio, Pavia. 

Denker H, Torge W (1998) The European gravimetric 
quasigeoid EGG97, IAG Symposia 119:249-254, 
Spreinger Verlag. 

Fei, ZL, Sideris, MG (2000) GPS Levelling and the Second 
Geodetic Boundary Value Problem. IAG Symposia 
Proceed. of Gravity, Geoid and Geodynamics 2000, pp 
341-346, Springer  2001, vol 123, Banff, Alberta, Canada. 

Grand T, Pašteka R, Šefara J, (2004) New version of terrain 
corrections in the Slovak regional gravity database. 
Contributions to Geophysics and Geodesy, 34/4, pp. 315-
337. 

Hotine M (1969) Mathematical geodesy. ESSA Monograph 
2, Washington D.C. 

Janák J, Pašteka R, Zahorec P, Loviška Z (2006) Terrain 
correction in extremely disturbed terrain. Contributions to 
Geophysics and Geodesy, 36, pp. 41-52. 

Klobušiak M, Pecár J (2004) Model and algorithm of 
effective processing of gravity measurements realized with 
a group of both of absolute and relative gravimeters. 



Geodetic and Cartographic Horizon, 50/92, pp. 99-110. (in 
Slovak). 

Kubeš P, Grand T, Šefara J, Pašteka R, Bielik M, Daniel S, 
(2001) Atlas of geophysical maps and profiles. Final 
report of geological project 0801840301/180. Ministerstvo 
životného prostredia SR a Štátny geologický ústav 
Dionýza Štúra, Bratislava. (in Slovak). 

Lemoine FG et al. (1998) The Development of the joint 
NASA GSFC and the National Imagery and Mapping 
Agency (NIMA) geopotential model EGM96 NASA/TP – 
1998 – 206861, Maryland. 

Mojzeš M, Janák J, Papčo J (2006) Improvement of the 
gravimetric model of quasigeoid in Slovakia. Newton´s 
Bulletin N. 3. Politecnico di Milano. (Available online) 

Molodensky MS, Yeremeev VF,Yurkina MI (1962) Methods 
for study of external gravitational field and figure of the 
earth. Jerusalem. Israel Programme for Scientific 
Translation, 1962. 

Moritz H (1980) Advanced Physical Geodesy. Herbert 
Wichmann Verlag, Karlsruhe. 

Moritz H (1992) Geodetic Reference System 1980. Bulletin 
Géodésique, 66, pp. 187-192. 

Osada E, Krynski J, Owczarek M (2005) A robust method of 
quasigeoid modelling in Poland based on GPS/levelling 
data with support of gravity data. Geodesy and 
Cartography, Vol. 54, No 3, pp. 99-117. 

Somigliana C. (1929) Teoria generale del campo 
gravitazionale dell’ellisoide di rotazione. Mem. Della Soc. 
Astron. Ital., IV, Milano. 

Sansó F, Brovelli MA, Migliaccio F, Vajani C (1994) 
International School for the Determination and Use of the 
Geoid. Lecture Notes. International Geoid service. 
D.I.I.A.R.- Politecnico di Milano. 

Torge W (1989) Gravimetry. De Gruyter, Berlin. 
Vaníček P, Christou NT (1994) Geoid and its Geophysical 

Interpretations. CRC Press. 
Wellenhof BH, Moritz H (2005) Physical Geodesy. Springer 

Verlag, Wien. 
Wenzel G (2005) Global Models of the Gravity Field of High 

and Ultra-high Resolution. Lecture Notes on Global 
Geopotential Models. International School for the 
Determination and use of the Geoid. International Geoid 
Service D.I.I.A.R. - Politecnico di Milano. 

 



OCTAS with a focus on the importance of a high accuracy geoid

O. C. D. Omang, D. Solheim, A. Hunegnaw
Geodetic Division, NMA, Kartverksveien 21, N-3511 Hønefoss, Norway; e-mail:ove.omang@statkart.no

D.I. Lysaker
Department of Mathematical Sciences and Technology, UMB, POBox 5003, N-1432 Ås, Norway
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Abstract. The OCTAS project is a multidisciplinary
approach to determine the mean dynamic sea surface
topography (MDT) in the Fram Strait and adjacent
seas. This will serve as input to ocean circulation
and transport studies in the polar region. Improved
determination of MDT will allow assessment of its
impact on circulation studies and associated climate
modeling.

To achieve this objective high accuracy gravimet-
ric geoid and mean sea surface models are required,
and these will be derived as part of the project.

New airborne gravity data has been obtained. All
gravity data has been error screened and quality as-
sured by removing dubious data and adjusting ma-
rine gravity data when necessary, in order to derive
a regional high accuracy gravimetric geoid. Mean
sea surfaces from satellite altimetry and mean dy-
namic topography from climatology and hydrogra-
phy are under development. A preliminary assess-
ment of these data sets have been made and tech-
niques are being developed to optimally estimate the
different quantities in an integrated approach.

Keywords. OCTAS – MDT – MSSH – Adjusted Ma-
rine Gravity Data – New Airborne Gravity Data

1 Introduction

The Norwegian OCTAS Project running from 2003
to 2007 focuses on the ocean circulation in the Fram
Strait and adjacent sea with the main objective to
improve sea surface topography determination and
to study the impact on ocean modelling, see Fig. 1.
A central quantity for studying and understanding
the ocean circulation is the Mean Dynamic Topog-
raphy (MDT), which is the difference between the
mean sea surface heights (MSSH) and the geoid. The
MDT provides the absolute reference surface for the
ocean circulation and is, in particular, expected to im-
prove the determination of the mean ocean circula-

tion. This, in turn, will advance the understanding
of the role of the ocean mass and heat transport in
climate change.

Up to the expected launch of GOCE the gravimet-
ric geoid is not known with sufficient accuracy to
allow full use of the massive sea surface height in-
formation, which several satellite altimetry missions
have regularly provided since the early 90-ies, in global
analysis of the ocean circulation. However, in a few
marine regions in the world sufficient in-situ infor-
mation about the Earth’s gravity field exists to com-
pute a more accurate geoid. The region covering the
Northern North Atlantic and the Nordic seas between
Greenland, Iceland, Norway and the UK, including
the Fram Strait is one of those regions. One goal of
the OCTAS project is therefore to determine an ac-
curate geoid in the Fram Strait and the adjacent seas.

New airborne gravity measurements have been car-
ried out. The marine gravity data have been adjusted
and error screened with the help of the new airborne
gravity data. Both new airborne gravity data and the
adjusted marine gravity data will improve the qual-
ity of the gravimetric geoid. The new geoid is used
together with an accurate MSSH to determine the
MDT.

2 Airborne Gravity Survey

In a joint cooperation between Geoid and Ocean Cir-
culation in the North Atlantic (GOCINA) and Ocean
Circulation and Transport Between North Atlantic and
the Arctic Sea (OCTAS) new airborne gravity data
was collected during summer 2003 in the Northern
North Atlantic. In Fig. 2 the OCTAS part of the air-
borne measurement campaign is visible. For infor-
mation about the airborne gravity data collected by
GOCINA, see e.g. Forsberg et al. (2004).

The airborne survey was carried out with an air-
craft equipped with GPS receivers, laser altimetry,
Inertial Navigation Systems (INS), and a modern La-
Coste & Romberg marine gravimeter. The measure-



Fig. 1. OCTAS study area

ment was done around Greenland, Svalbard, Jan Mayen
and along the Norwegian coast. This additional sur-
vey (including the GOCINA measurement along a
band of Greenland over Iceland and Faeroe-Shetland
to Norway) were particularly important since it ties
in as many possible different marine surveys; to check
data and allow improvements by cross-over adjust-
ment as well as filling in some major area data voids.

A total of 9222 measurements divided into 35 pro-
files of airborne gravity tracks have been processed.
An internal cross over computation (airborne gravity
data only) show an RMS of 1.6 mGal, while com-
pared to the marine data give an RMS of 4.51 mGal,
see Table 1.

N Mean Min Max RMS

Internal 15 0.71 -2.87 3.79 1.58
Marine 548 0.44 -27.44 20.54 4.51

Table 1. Statistics of the cross over computations with marine
gravity data and with itself. Values in mGal

3 Marine Gravity Data

The main marine gravity data set used in this study
has been acquired from BGI, NGDC, Norwegian Map-
ping Agency (NMA), and from international and na-
tional oil companies. The data set was recently im-
proved with a major airborne gravity survey cam-
paign held in 2003 under the scope of the GOCINA
and OCTAS project, see Sect. 2.

Marine gravity measurements are, in principle, very
precise – military trials of a type of gravity sensor
now commercially available achieved RMS cross-over
errors of only±0.38 mGal (Bell and Watts, 1989) us-

Fig. 2. New airborne gravity data measured by OCTAS during
2003

ing BGM-3 sea gravimeter. For a variety of reasons,
the accuracy of marine gravity anomalies does not
match this precision. Some relate to measuring grav-
ity on an imperfectly stabilised platform, with oth-
ers due to systematic instrument errors, loosing refer-
ence to an absolute gravity datum and uncertainties in
the navigation system, in terms of course, speed, and
position errors, affect the Eötvös correction. Wessel
and Watts (1988) review these problems in depth and
see also Torge (1989).

Our strategy involves pre-processing the raw grav-
ity data followed by network adjustment. Pre-processing
aims to reduce the dynamical errors associated with
courses changes, smooth out high-frequency noise,
and remove spikes and gross blunders. Network ad-
justment aims to remove the systematic effects of da-
tum offsets, different gravity reference systems and
drift in the gravity meter zero.

The basic component of our pre-processing algo-
rithm is the line-segment. A line-segment is a com-
ponent of a survey where the ship’s course is ade-
quately straight. Point-to-point vectors are compared
with chosen criteria for breaking surveys into line-
segments: a break can be triggered by a large change
in course azimuth or an excessive gap between points.
For each line-segment, we represent the long-track
free-air anomaly as well as the eastings and northings
defining the ship’s position, by a continuous func-
tion. Chebyshev polynomials represent our best esti-
mate for the true shape of the gravity anomaly profile
and smooth out point-to-point noise. Statistics de-
rived from the residuals between the fitted curve and
the point data are used to estimate the stationary ran-
dom component of the data errors. The subsequent



Fig. 3. KMS02 free-air anomalies minus marine gravity data

network adjustment is to suppress the remaining sys-
tematic errors.

The network adjustment model fit an independent
datum shift parameter to each survey or survey leg.
For any survey with sufficient number of crossing
points to remain stable with a second free param-
eter, the model will include drift rate. The adjust-
ment estimated these model parameters by minimiz-
ing the cross over errors, weighting the observed free
air anomaly at the crossing according to the standard
deviation of the polynomial curve fit for that line-
segment in the least square sense.

For the approximately 45000 cross-over points in
the northern Atlantic Ocean, network adjustment re-
duces the standard deviation of the cross-over errors
from 4.13 mGal to 1.64 mGal. Similarly the differ-
ence between KMS02 altimetry anomalies and ship-
borne and airborne data improved, with the adjust-
ment reducing the standard deviation of the differ-
ences from 8.15 to 6.07 mGal. The difference be-
tween KMS02 based free-air anomalies and marine
free-air anomalies before and after adjustment are
shown in Fig. 3 and Fig. 3 respectively. The dif-
ference shows that the network adjustment has con-
tributed in the adjustment of a number of surveys that
have a datum shift due to a bad harbour ties.

4 Computational Methods

In OCTAS we have looked into different ways of
computing the MDT. One method is to compute the
gravimetric geoid, and by combining this geoid with
a MSSH yields a MDT.

MDT = MSSH −Geoid (1)

Fig. 4. KMS02 free-air anomalies minus adjusted marine gravity
data

Secondly, the MDT may be computed directly from
different types of observation data using estimations
techniques such as least squares collocation (LSC).

4.1 Geoid determination

Gravity data used in the geoid computation are a com-
bination of adjusted marine data, new and old air-
borne measurements, land data in Scandinavia and
data from the Arctic Gravity Project (ArcGP). Voids
in the data distribution were patched with satellite al-
timetry gravity data (KMS02).

The combined gravity data set is build up of Bouguer
anomalies on land and free-air anomalies at sea. We
are using the remove-restore technique in combina-
tion with the residual terrain model (RTM) method
Forsberg (1984).

The reduced anomalies are obtained using a Bouguer
plate approximation

∆gred = ∆g + 2πGρhref −∆gggm, (2)

where href is a smooth reference surface of resolution
approx. 50 km and ∆gggm is the global geopoten-
tial model. The reduced gravity data ∆gred is grid-
ded and Faye anomalies, ∆gfaye, are obtained after
restoring the RTM terrain effect 2πGρ(h−href). The
residual quasigeoid is estimated using multi-band spher-
ical 2D-FFT (Forsberg and Sideris, 1993)

ζres = F−1[F (∆gfaye)F (Sτ (ψ))] (3)

where F and F−1 are the Fourier and the inverse
Fourier transform, respectively.
Sτ (ψ) is the Wong-Gore modified Stokes’ func-

tion with truncation degree τ given as (Wong and



Gore, 1969)

Sτ (ψ) =
∞∑

n=τ

2n+ 1
n− 1

Pn(cosψ) (4)

where Pn is Legendre polynomials. As Eq. (4) in-
dicates the Wong-Gore modification gives a kernel
function taking summation only from τ to infinity.
The long wavelength part of the signal is thereby re-
moved, and the changing of τ compares to some de-
gree to the selection of different capsizes.

Restoring the global geopotential model (GGM)
gives the quasigeoid,

ζ = ζres + ζggm (5)

Over sea, or where height equals zero, the quasigeoid
ζ equals the geoid, N .

5 LSC

Considering only geodetic measurements, MDT is
simply given by subtracting MSSH and the geoid.

MDT = MSSH −N + ε (6)

where ε is noise. The data coverage however, espe-
cially gravity data, is not complete, so more advanced
combination methods may be needed.

LSC is a well known technique to combine differ-
ent geodetic measurements, e.g. gravity anomalies,
the geoid and altimetry sea surface heights. The mea-
surements are associated with the anomalous gravity
potential T of the Earth through linear functionals.

∆g = L∆g(T ) =
∂T

∂r
− 2

T

r
(7)

N = LN (T ) =
T

γ
(8)

The signal x (e.g. the geoid) is given by the for-
mula

x = CT
x (C +D)−1y (9)

where Cx is the covariance function between the ob-
servations and the signal, C is the covariance func-
tion between the observations and D is the covari-
ance function for the measurement noise. The a pos-
teriori error covariance between two estimated quan-
tities is given by

ˆcxx′ = cxx′ − CT
x (C +D)−1Cx (10)

5.1 Covariance functions

The covariances are obtained using kernel functions.
The kernel associated with the gravity field is de-
rived using the spherical harmonic expansion of T
(the anomalous gravity field) and some a priori vari-
ances. The covariance between T in the points P
andQ depend only on the spherical distance between
them, and are thus independent of location and az-
imuth (i.e. a homogeneous and isotropic kernel). More
details in Moritz (1980). Applying the linear func-
tionals yield the expressions of the covariances

CNN =
∞∑

i=2

(
1
γ

)2

σTT
i Pi(cos Ψ) (11)

C∆g∆g =
∞∑

i=2

(
i− 1
R

)2

σTT
i Pi(cos Ψ) (12)

CN∆g =
∞∑

i=2

(
i− 1
Rγ

)
σTT

i Pi(cos Ψ) (13)

The covariance function of the MDT is expressed,
similar to the gravity field, as

Cζζ =
∞∑

i=1

σζζ
i Pi(cos Ψ) (14)

5.2 Covariance function modelling

In LSC it is very important to take the full signal/error
content into account. This means that the covariance
function models should agree with the empirically
determined characteristics in the local area, such as
the variance and the correlation length.

The covariance functions for gravity anomalies and
geoid heights are modelled using a Tscherning/Rapp
degree variance model (Tscherning and Rapp, 1974)

σTT
i =


εGRACE
i i=2,. . . 90
εEGM96
i i=90,. . . 360

A
(i−1)(i−2)(i+4)

(
R2

B

R2

)i+1

i=360,. . .

(15)
The model is fitted to local empirical covariance

values calculated from reduced marine, land and air-
borne gravity data in a least squares iterative inver-
sion technique (Knudsen, 1987). More details in e.g.
Knudsen and Vest (2005).



Fig. 5. The OCTAS06 v1 mean sea surface model

The covariance functions for MDT are modelled
with Knudsen degree variance model (Knudsen and
Vest, 2005)

σζζ
i = b

(
k3
2

k3
2 + i3

− k3
1

k3
1 + i3

)
si+1 (16)

The spectrum of the MDT is assumed to have a de-
cay similar to the geoid. The model is fitted to em-
pirical covariance values determined from synthetic
data (MSSH - Geoid).

By assuming no correlations between the compo-
nents in Eq. (6) the covariance function for MSSH is
given by

CMSSH = CN + CMDT (17)

Dε =
∑

i

Di (18)

where Di are the covariance values associated with
the different error components in ε. The assumption
of no correlation between the gravity field and sea
surface heights may not be correct (Knudsen, 1991).

6 OCTAS MSSH

In deriving the first version of the MSSH model for
the OCTAS study area, ENVISAT (cycles 11-35) and
ERS-2 (cycles 1-85) data are used. These data have
been extracted from altimetry data base (Stack File)
at the Ohio State University. The ENVISAT and ERS-
2 satellite should give slightly different sea surface
height signal, therefore, a bias of approximately 36
cm to the ENVISAT data is adjusted for. This model,
OCTAS06 v1, is illustrated in Figure 5. The resolu-
tion of OCTAS06 v1 model is 3 minutes in latitude
and 6 minutes in longitudes.

Fig. 6. An MDT derived from OCTAS06 v1 MSSH and a geoid
model based on adjusted marine gravity data. MDT is low-pass
filtered

7 Results

In Fig. 6 a synthetic MDT, derived from a geoid and
the OCTAS06 v1 MSSH model, is illustrated. The
gravimetric geoid was estimated following Sect. 4.1,
using, as input data, the adjusted marine gravity mea-
surements, land data, and KMS02 satellite altimetry
data (fill gaps in the marine gravity data set). The
geoid and MSSH model was combined [Eq. (1)] and
then low-pass filtered.

The MDT may be estimated directly using LSC,
see Sect. 5. The LSC method is quite computer de-
manding due to matrix inversion, so a smaller area
with fewer measurement was selected. The com-
puted MDT, in Fig. 7, is derived from marine, air-
borne, land gravity data and KMS04 MSSH.

The two estimated MDTs, Figs. 6 and 7, show
similar major oceanographic features as the OCCAM
MDT in Fig. 8. Excluding the areas around the Green-
land coast and north of Svalbard, a comparison to
OCCAM MDT gives a standard deviation of approxi-
mately 10 cm and 15 cm for synthetic MDT and LSC
based MDT, respectively.

8 Conclusions

The marine gravity data in the Northern North At-
lantic has been error screened and adjusted using new
airborne gravity data.. The standard deviation of the
cross-over errors for the marine gravity data was re-
duced from 4.1 mGal to 1.6 mGal.

Based on adjusted gravity data new geoid model
was computed and combined with the first OCTAS



Fig. 7. MDT derived from a combination of gravity and MSSH
data using least square collocation. MDT is low-pass filtered

MSSH model a synthetic MDT was computed. Both
the synthetic and the LSC based MDTs give an over-
all good representation of the major oceanographic
features in the Northern North Atlantic, when com-
pared to the OCCAM MDT.
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Abstract. A modified Stokes’ function with dif-
ferent maximum integration radii is applied to syn-
thetic gravity data for quasigeoid solutions. The
spectral combination method is used. The synthetic
environment comprises a geopotential model and re-
gional terrestrial gravity data, both including (uncor-
related and correlated) noise, and permits a closed-
loop validation in all points. Due to the enhanced
synthetic data set including noise, the computation
results are closer to reality than simulations neglect-
ing noise. The closed-loop differences meet the er-
ror estimates from error assessment based on degree
variances. Main objective of the investigations is the
study of the effect of varying integration cap sizes on
the quasigeoid heights. Based on the same modified
kernel function, the 1st and 2nd zero-crossing are cho-
sen as constant cut-off distance, moreover a Meissl
modified kernel is used based on a cut-off at the 1st

minimum of the kernel and finally a fixed integration
area with varying cut-off radii is used. The cut-off
at the 2nd zero-crossing and the integration using a
fixed input area show the best results. In the synthetic
environment a quasigeoid can be derived with an ac-
curacy of 1 cm and 13 cm (resolution about 15 km)
based on regional gravity data with 1 mgal uncorre-
lated and 5 mgal correlated noise, respectively, and a
high-resolution GPM (GRACE model, EGM96).

Keywords. geoid computation, spectral combina-
tion, synthetic data

1 Introduction

For an optimal geoid computation, data from a
geopotential model (GPM) and terrestrial gravity
data (as well as terrain data) are combined. A spectral
combination of the source data can be achieved using
integral formulas with modified kernel functions. In

regional computations, the results of integral meth-
ods are affected by a more or less favourable cut-off
point of the kernel function. The minimization of the
resulting omission error is therefore often one aim
of kernel modifications (Meissl, 1971; Molodenskii
et al., 1962; Vaní̌cek and Kleusberg, 1987; Vaníček
and Featherstone, 1998). In this paper the effect of
the kernel cut-off is investigated using synthetic data
in a closed-loop procedure. Synthetic data are advan-
tageous for evaluating a computation method as the
results can be validated with exact reference values,
see also (Ågren, 2004). Furthermore, the closed-loop
differences are compared with results from error as-
sessment based on signal and error degree variances.

2 Computation Method

Molodenskii’s formula as basic formula for quasi-
geoid computation by integration of terrestrial grav-
ity anomalies∆gT reads neglecting the Molodenskii
correction (Heiskanen and Moritz, 1967)

ζ(θP , λP , rP ) =
R

4πγP

∫∫
σ

S(ψ, rP , R)∆gTQdσ (1)

with the coordinates(θP , λP , rP ) of the computation
point P . The spherical distanceψ between pointP
and the source pointsQ is used as well as the ex-
tended (Pizetti-) Stokes’ functionS(ψ, rP , R) and
the normal gravityγP in point P . The integration
surfaceσ is the unit sphere. The formula, as used
here, is based on spherical approximations: 1) The
relation between the disturbing potentialT and the
gravity anomaly is simply approximated by

∆g = −
(
∂T

∂r

)
− 2

r
T . (2)

2) The telluroid, on which (2) holds, is approximated
by a sphere, neglecting the Molodenskii correction.
All gravity anomalies are assumed to be located on a
sphere with radius R.



The first approximation causes an error in the order
of the flattening of the ellipsoid (approx.0.3%). This
error can be accepted if the gravity anomalies∆gT

are referenced to a high resolution GPM. Apply-
ing the remove-restore procedure the residual gravity
anomaly

∆g′ = ∆gT − ∆gM (3)

is used in (1), which results in the residual height
anomalyζ ′; ζ has to be restored by

ζ = ζ′ + ζM . (4)

The functionals∆gM andζM are based on the GPM,
∆gM is computed using ellipsoidal approximations
given in (Wenzel, 1985). The error induced by the
second approximation can be reduced to 1 cm by a
residual terrain model reduction of∆g′ (Denker and
Tziavos, 1999). As the synthetic data are generated
on the ellipsoid, this is neglected in the present study.

Due to the limited terrestrial gravity data, the inte-
gration (1) can only be evaluated regionally. Cutting-
off the kernel functionS at a distanceψc < π results
in an omission error (e. g. Heiskanen and Moritz,
1967). The omission error can be reduced by modi-
fying the integral kernelS.

Starting from a constant cut-off distanceψc

(Meissl, 1971) proposed the modification

SM (ψ, rP , R)= S(ψ, rP , R)−S(ψc, rP , R) (5)

to force a zero-crossing of the kernel function atψc.
(Sjöberg, 1981) and (Wenzel, 1982) suggested an op-
timal combination of terrestrial and GPM data by in-
troducing the spectral weights

w` =
σ2
` (ε∆gM )

σ2
` (ε∆gM ) + σ2

` (ε∆gT )
(6)

for ` > 1 with the error degree variancesσ2
` (ε∆gM )

of the GPM and the error degree variancesσ2
` (ε∆gT )

of the terrestrial gravity data. The modified kernel
reads

SW (ψ, rP , R)=

∞∑
`=2

2`+ 1

`− 1

(
R

rP

)̀+1

w`P`(cosψ) (7)

with the Legendre polynomialsP`. Due to larger
long wavelength errors in∆gT than in ∆gM , the
weightsw` of the terrestrial gravity data are close
to zero for small degrees̀. Missing the long wave-
length part, the modified kernelSW has a steeper de-
scent to zero than the unmodified kernelS. Thus,
the omission error is implicitly reduced by this mod-
ification. In the numerical experiment the modified
kernel (7) is used. Furthermore - motivated by a
proposal of (Heck and Grüninger, 1987) based on
Meissl’s modification and a modification of (Wong
and Gore, 1969) - Meissl’s method (5) is applied

on the modified kernel (7) when cutting-off the ker-
nel at its 1st local minimum. Meissl’s modification
can also be formulated using spectral weights (Heck
and Grüninger, 1987), the weights for the combined
modification read therewith:

wM` =


rP
R
SW (ψc, rP , R) ` = 0

0 ` = 1

w` ` > 1 .

(8)

The zero degree term has then to be added in (7).

3 Error Assessment

The closed-loop results are validated by a compar-
ison with results from an error assessment based
on signal and error degree variances of the gravity
anomalies. The formulas for the error estimation are
presented very briefly, a report in more detail will fol-
low in near future. The formulas can also be derived
from (Heck and Grüninger, 1987). The variancem2

δζ
of the quasigeoid can be estimated by

m2
δζ =

R2

4γ2

[ nmax∑
n=2

(Q̄1−w`
n +Q1

n)2σ2
n(ε∆gM )+

∞∑
n=2

(Q̄w`
n )2σ2

n(ε∆gT ) +

∞∑
n=nmax+1

(Qw`
n )2σ2

n(∆g)
]
. (9)

The Molodenskii coefficientsQn, cf. (Molodenskii
et al., 1962), applied to the kernelSW (ψ, rP , R) read

Qw`
n (ψc) =

π∫
ψ=ψc

SW(ψ, rP , R)Pn(cosψ) sinψdψ . (10)

Equation (10) is evaluated numerically by the aid
of recursion formulas (Paul, 1973). The spectral
weightsw` enter the computation ofSW (ψ, rP , R),
see (7). ForQ1

n, used in (9), the weightsw` are set to
1.0 for all `. In addition the relation

Q̄w`
n (ψc) =

ψc∫
ψ=0

SW (ψ, rP , R)Pn(cosψ) sinψdψ

=
2

n− 1

(
R

rP

)n+1

wn −Qw`
n (ψc) (11)

holds, correspondingly for̄Q1−w`
n by replacingw`

with 1− w` andwn with 1− wn, respectively.
The error degree variancesσ2

` (ε∆gM ), used in (6)
and (9), are derived from the standard deviations of
the spherical harmonic coefficients (σ2

C̄`m
, σ2

S̄`m
) of

the GPM:
σ2
` (ε∆gM ) =(

GM

R

)2 ( a
R

)2`
(
`− 1

R

)2 ∑̀
m=0

(σ2
C̄`m

+ σ2
S̄`m

) . (12)

The signal degree variancesσ2
` (∆g) are based on

the signal degree variance model by (Tscherning and
Rapp, 1974) with global parameters.



The error degree variancesσ2
` (ε∆gT ) related to the

terrestrial gravity anomalies are derived from the data
noise, i. e., for uncorrelated or correlated noise.

Uncorrelated Noise. Error degree variances are
derived as band-limited white noise by distributing
the noiseε∆g equally over a spectral rangèrange,
which is chosen depending on the resolution of the
terrestrial input data:

σ2
` (ε

UC
∆gT ) =

ε2∆g
`range

. (13)

Strictly uncorrelated noise may not be realistic but is
often assumed in practice due to the lack of informa-
tion about the true correlation behaviour.

Correlated Noise. Error degree variances are de-
rived by a Legendre transformation of the error co-
variance function, cf. (Wenzel and Arabelos, 1981):

σ2
` (ε

C
∆gT ) =

2`+ 1

2

π∫
ψ=0

E∆g(ψ)P`(cosψ) sinψdψ . (14)

For the error covariancesE∆g, the following model,
based on (Weber and Wenzel, 1983), is chosen:

E∆g(ψ) = ε2∆ge
−4.0·ψ[◦] . (15)

Correlated noise is considered only in a few other
error studies, e. g. (Ågren, 2004).

4 Synthetic Data

Synthetic data sets are produced for a closed-loop
computation. For this purpose, a blended geopoten-
tial model (GPM1300S) is created by combining the
coefficients from an actual GRACE(01S) GPM (` =
0...89, GFZ, 2003), EGM96 (̀= 90...360, Lemoine
et al., 1998), and GPM98C (` = 361...1300, Wen-
zel, 1999), cf. (Wolf and Denker, 2005). From this
ground-truth model, the following input data sets are
derived:

A. Two GPM to degreè max = 360, serving as
reference models in the remove-restore proce-
dure, are derived from GPM1300S. The first
model, GPM360S (without noise), simply con-
sists of the GPM1300S coefficients up to degree
`max = 360, while for the second (clone) model,
GPM360I, noise is added according to the stan-
dard deviations of the coefficients.

B. Three sets of gravity anomalies on the ellipsoid
are derived: The first data set∆g1300S (without
noise) is based on the GPM1300S up to degree
`max = 1300. The second data set∆gT (with
noise) is created from∆g1300Sby adding noise
ε∆g. Finally, the third data set∆gM is com-
puted from GPM360I.

Table 1. Statistics of the synthetic gravity anomalies and
quasigeoid heights in mgal and m, respectively.

Data set Mean Std Min Max
∆g1300S 10.283 34.097 -174.228 271.359
∆gM 10.298 32.465 -145.932 145.334
∆g1300S−M -0.006 12.492 -46.461 53.394
ζ1300S 43.316 8.226 15.841 59.502
ζM 43.317 8.237 16.499 59.440
ζ1300S−M -0.001 0.429 -1.549 2.108

C. Quasigeoid heightsζ1300S are computed from
GPM1300S on the ellipsoid, serving as ground-
truth data. For the restore stepζM based on
GPM360I are generated.

The synthetic∆gT simulate gravity anomalies
which are reduced by residual terrain effects. There-
fore, the limit `max = 1300 of the signal spectrum
was considered as sufficient.

The data sets are computed on a0.1◦ geographical
grid within a test area, limited by36.5◦ ≤ ϕ ≤ 58.5◦

and−7.0◦ ≤ λ ≤ 27.0◦. The statistics of the data
sets are listed in Table 1. The residual gravity anoma-
lies ∆g′ are computed according to (3) using∆gT

and∆gM as decribed above.
The noiseε∆g for the terrestrial gravity data is sim-

ulated as uncorrelated (UC) and correlated (C) ver-
sion with two noise levels (1 mgal and 5 mgal) re-
sulting in four different scenarios labelled with 1UC,
1C, 5UC and 5C. The uncorrelated noise is gener-
ated based on independent normal distributed ran-
dom numbers, the correlated noise with a space do-
main approach by multiplying a vector of uncorre-
lated values with the Cholesky factor of the error co-
variance matrix, cf. (Wolf, 2006). A frequency do-
main approach can be found in (Ågren, 2004).

5 Numerical Experiments

Closed-loop computations are performed based on
the four scenarios 1UC, 1C, 5UC and 5C. The spec-
tral weightsw` are derived according to (6) using
the error degree variances (12) for∆gM together
with (13) and (14) for uncorrelated and correlated
noise, respectively. The resulting spectral weights
are shown in Fig. 1, the modified kernel functions (7)
for the different scenarios are given in Fig. 2. Based
on these kernels five scenarios with different max-
imum integration radii are selected: First and 2nd

zero-crossing, as well as the 1st local minimum of
the kernel function are chosen as constant cut-off dis-
tance, see Table 2. The integration area is a moving
spherical cap. Meissl’s modification (8) is applied
with a cut-off at the 1st local minimum. Finally, the



Fig. 1. Spectral weightsw` according to (6) for the four
scenarios 1UC (—), 1C (- - -), 5UC (-·-), 5C(···).

Fig. 2. Kernel functions modified with spectral weights (6)
for the scenarios 1UC (—), 1C (- - -), 5UC (-·-), 5C(···).

whole test area is used for all computation points, the
cut-off radii vary.

Residual quasigeoid heightsζ ′ are computed by
evaluating (1), applying the 1D FFT approach of
(Haagmans et al., 1993). The modified kernelSW

and the residual gravity anomalies∆g′ are used. The
final quasigeoid heightsζ are restored by (4).

The synthetic data is then exploited by comput-
ing closed-loop differences for all data points using
ζ1300S as exact reference. Keeping always a con-
stant cut-off distanceψc in the integration, quasi-
geoid heights can only be computed in an smaller
inner area of the test area. For a fair comparison

Table 2. Cut-off distancesψc in the different noise sce-
narios, units degree.

ψc 1UC 1C 5UC 5C
1st zero-crossing (1ZC) 1.2 1.1 0.9 0.8

1st local minimum (1MIN) 2.1 2.0 1.5 1.4
2nd zero-crossing (2ZC) 4.4 4.1 3.3 3.1

Table 3. Statistics of the closed-loop resultsζ1300S− ζ
for the different scenarios (Sc.), units cm. The abbre-
viations mean different cut-off distances of the kernel:
1/2ZC:= 1st/2nd zero-crossing, 1MIN:= 1st local mini-
mum, Meissl:= Meissl’s modification based on 1MIN,
Area...:= fixed integration area with varying cut-off dis-
tances (statistics refer to the same computation results but
to different evaluation areas depending on the border size
for comparison with the 1ZC, 1MIN and 2ZC scenario, see
Fig. 3).

Sc. ψc Mean Std Min Max
1UC 1ZC -0.07 3.75 -13.61 14.09

1MIN -0.21 4.21 -17.61 22.30
2ZC -0.16 1.54 -5.73 6.54
Meissl -0.13 1.75 -7.30 7.15
Area1ZC -0.09 1.70 -7.25 7.57
Area1MIN -0.14 1.36 -5.70 6.01
Area2ZC -0.19 1.21 -5.70 4.91

1C 1ZC 0.07 4.94 -19.72 18.54
1MIN -0.22 5.28 -23.33 24.20
2ZC 0.02 3.39 -9.19 14.17
Meissl -0.07 3.50 -13.72 11.49
Area1ZC -0.08 3.46 -12.03 14.10
Area1MIN -0.23 3.27 -12.03 11.99
Area2ZC -0.02 3.24 -9.29 11.99

5UC 1ZC -0.12 8.19 -29.48 32.69
1MIN -0.28 8.44 -31.18 37.81
2ZC -0.08 4.81 -19.59 18.90
Meissl -0.35 5.54 -22.91 23.19
Area1ZC -0.03 4.68 -19.66 21.67
Area1MIN -0.13 4.55 -19.66 17.63
Area2ZC -0.23 4.41 -17.50 17.07

5C 1ZC 0.49 14.13 -51.71 50.59
1MIN 0.09 14.11 -53.85 50.98
2ZC -0.28 13.00 -44.29 47.60
Meissl 0.40 13.55 -46.26 48.64
Area1ZC 0.06 12.78 -49.28 41.74
Area1MIN -0.11 12.86 -49.28 41.74
Area2ZC -0.39 12.79 -44.69 41.46

the same border size is left out for the results based
on a fixed integration area with varying cut-off radii.
Close to the border, edge effects causes strong er-
rors which are excluded in this way. For eachψc (1st

and 2nd zero-crossing, 1st local minimum, cf. Table
2) an appropriate border size is chosen (Fig. 3), con-
sidering the meridian convergence for the borders in
east-west direction. Thus, the statistics of the closed-
loop differences based on the fixed integration area
with varying cut-off radii - named with ”Area...” in
Table 3 - refer to the same computation results but to
different evaluation areas.

The standard deviations based on the closed-loop
differences in Table 3 range from1.2 cm (1UC) to
14.1 cm (5C). The results of the cut-off at the 1st

zero-crossing are not promising. Although the kernel



Fig. 3. Closed-loop differences for scenario 1UC using the
whole area as fixed input for integration. A border is left
out in the size ofψc of 1ZC, cf. Table 2. Borderlines 1MIN
(dashed) and 2ZC (solid) are indicated.

function is zero at the cut-off, it is too abrupt and pro-
duces an inhomogeneous error behaviour. Cutting-
off the kernel function at the 1st local minimum gives
the worst results, the jump from the kernel’s mini-
mum to zero is very unfavourable. Meissl’s modifi-
cation can improve the results by a factor of1.5 . . . 2
for the scenarios 1UC, 1C and 5UC. Cutting-off the
kernel at the 2nd zero-crossing leads to similar results
as if using always the whole area for integration. In
the latter case the best results are achieved in all noise
scenarios. The closed-loop differences for the sce-
nario 1UC are shown in Fig. 3. One can see that the
differences increase near the borders, a distance from
the edges of the input area according to the 2nd zero-
crossing ofSW yields better results.

An improvement for too short or unfavourable
constant cut-off distances may be achieved by ap-
plying the kernel modification proposed by (Sjöberg,
1991) which optimizes not only in view of the errors
of the GPM and the terrestrial gravity data (as in (6))
but also minimizes the omission error, see (Ågren,
2004). But the determination of the spectral weights
is then more complex and can lead to a numerical
instable equation system, why it is not used in the
present study.

Concerning the computation time of the actual
MATLAB implementation, the integration over the
whole data area is about ten times more time con-
suming than the integration over the limited moving

Table 4. Statistics of the statistical error assessment, units
cm. The abbreviations indicate the different summation
parts in formula (9) coming fromM := σ2

n(ε∆gM ), T :=
σ2
n(ε∆gT ) andO:= σ2

n(∆g).

Sc. ψc M T O mδζ

1UC 1ZC 3.83 2.06 0.30 4.36
1MIN 4.09 1.96 1.17 4.69
2ZC 1.25 2.00 0.07 2.36
Meissl 1.62 2.37 0.02 2.87
180◦ 0.79 1.99 0.00 2.14

1C 1ZC 4.41 2.78 0.37 5.23
1MIN 4.55 2.79 1.10 5.45
2ZC 1.45 2.90 0.07 3.24
Meissl 2.04 3.08 0.02 3.69
180◦ 1.00 2.92 0.00 3.08

5UC 1ZC 7.75 8.52 0.42 11.53
1MIN 8.02 8.11 1.23 11.47
2ZC 4.08 8.33 0.11 9.27
Meissl 4.65 9.81 0.10 10.86
180◦ 3.08 8.31 0.00 8.86

5C 1ZC 9.73 10.93 0.34 14.64
1MIN 9.74 10.90 1.26 14.67
2ZC 6.24 11.49 0.08 13.08
Meissl 6.75 12.35 0.20 14.08
180◦ 5.26 11.62 0.00 12.75

spherical caps. But as the absolute computation time
amounts only to some minutes on a standard pc this
is not regarded as an essential disadvantage.

Results of the statistical error estimation based on
signal and error degree variances are shown in Ta-
ble 4. The three different summation parts of the to-
tal variancem2

δζ according to (9) are listed. For the
scenarios based on input data with correlated noise,
the error predictions fit very well with the closed-
loop differences within6 mm comparing the stan-
dard deviations. For the uncorrelated scenarios, the
error assessment looks much more pessimistic (up to
a factor of 2). This is caused by the modelling tech-
nique of the error degree variancesσ2

` (εUC
∆gT ), where

correlation remains, as noted earlier (Wolf, 2006).
The error assessment based on Meissl’s modification
confirms the closed-loop results. The omission er-
ror is reduced by a factor up to 50 using Meissl’s
modification for the cut-off at the 1st local minimum.
The closed-loop differences of the scenario using the
whole input data area are comparable with results of
the error assessment without cutting-off the kernel.
The error estimates agree with the closed-loop results
within 2 mm for the correlated scenarios and within
1 cm and4.5 cm for the 1UC and the 5UC scenario,
respectively.



6 Conclusions

Errors for regional quasigeoid computation were
studied. Regional gravity anomaly data were spec-
trally combined with data from actual GPM. The ef-
fect of cutting-off the integration kernel was investi-
gated. Closed-loop differences were computed using
synthetic data sets including correlated and uncorre-
lated noise for the terrestrial data as well as noise
for the GPM. Therefore, the closed-loop differences
reflect the final quasigeoid errors better than using
noise-free simulation data. Of course, real data sets
differ from the used synthetic data concerning, e. g.,
maximum frequencies of the signal and uncertain or
inhomogeneous quality. The closed-loop differences
in this study were confirmed by statistical error es-
timation. The best and most homogeneous results
were achieved integrating for all points over a fixed
area with varying cut-off radii. When using a con-
stant cut-off distance, the 2nd zero-crossing or the 1st

local minimum including the modification of Meissl
should be chosen.

A spectrally combined quasigeoid was derived
with an accuracy of 1.2 cm and 12.8 cm (resolu-
tion about 15 km) based on (synthetic) regional grav-
ity data with 1 mgal uncorrelated and 5 mgal corre-
lated noise, respectively, and a high-resolution GPM
(GRACE models augmented by EGM96).
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Abstract. Gravity field studies today develop under 
an unprecedented progress in measuring techniques. 
These advances open problems of theoretical and 
practical nature. The purpose of this paper is to 
show a spectral and a space domain interpretation 
of an optimization concept in combining terrestrial 
and satellite gravity field data and especially to 
study the numerical treatment of this concept. 
Because the problems under study are overdeter-
mined by nature, methods typical for the solution of 
boundary-value problems are applied together with 
an optimization approach. In addition to the results 
reached in the spectral domain the use of series 
summation techniques is investigated in order to 
find their interpretation in terms of Green’s func-
tions related to the particular combination scheme. 
This makes it also possible to show the tie between 
the global and the local modelling of the gravity 
field. 

Keywords.  Modelling of the Earth’s gravity field, 
geodetic boundary-value problems, overdetermined 
problems, terrestrial and satellite data, optimization 

   
 
1 Introduction 
One of the challenges in gravity field modelling 
today is the combination of heterogeneous gravity 
data. Because excess data appear in a number of 
typical cases, overdetermined problems have to be 
solved. Two cases are discussed in this paper, i.e. 
the combination of terrestrial gravity measurements 
with satellite-only models of the Earth’s gravity 
field and with data coming from satellite missions 
like e.g. GOCE [ treated within the so-called space-
wise approach, see e.g. Migliaccio et al. (2004) ]. 
Still other mixed problems are considered in Holota 
(1995, 2007) and Holota and Kern (2005). 
 In the sequel Ω  means a domain bounded by 
two surfaces. With some simplification we can even 

suppose that Ω  is bounded by two spheres of 
radius iR  and eR , respectively, assuming i eR R< . 
 
2 Gravimetry and a satellite-only model 
In this case we will consider the following problem 

 0T∆ =    in   Ω  (1) 

 2

i

T T g
r R

∆∂
+ = −

∂
   for   ir R=  (2) 

 T t=    for   er R=  (3) 

Here ∆  is Laplace’s operator, g∆  the usual gravity 
anomaly and t  means the input obtained from an 
available satellite-only gravity field model. 
 The domain Ω  is bounded. Therefore, when 
using the apparatus of spherical harmonics, we look 
for the solution ( , , )T T r ϕ λ=  in the form 
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where ( )i
nT  and ( )e

nT  are the respective Laplace 
surface spherical harmonics, cf. Grafarend and Sansò 
(1984). Inserting then into Eqs. (2) and (3), we 
obtain for any individual n  the following system 

 ( ) ( )( 1) ( 2)i n e
n n i nn T n q T R g∆− − + =  (5) 

 1 ( ) ( )n i e
n n nq T T t+ + =  (6) 

where i eq R R= , while ng∆  and nt  are Laplace’s 
surface spherical harmonics in the expansions of 
g∆  and t , respectively, i.e. in  

 0( , ) ( , )nng g∆ ϕ λ ∆ ϕ λ∞
== ∑  (7) 

and 
 0( , ) ( , )nnt tϕ λ ϕ λ∞

== ∑  (8) 

The regularity of the system has to be discussed 
first. The determinant is 2 1( 2)(1 ) 3n

nD n q += + + − . 
Thus we have to examine the equation 0nD = . It 
defines q  as a function of  n .  Confining ourselves 



 

to real functions, we obtain 

 [ ]1/ (2 1)( ) 1 3 ( 2) n
nq q n n += = − − +  (9) 

which yields 0 0.5q = , 1 0q = , 2 0.758q −� , 
3 0.877q −� , . . . , 10 0.986q −�  and, obviously, 

lim 1nq = −  as n→∞ . Recalling in addition that 
in our applications i eq R R=  is positive and 
definitely greater than 0.5  , we can conclude that 
the system given by Eqs. (5) and (6) is regular in 
our studies. Hence for the individual n  we have 

 ( ) [ ( 2) ]i n
n i n n nT R g n q t D∆= + +  (10) 

and 
 ( ) 1[ ( 1) ]e n

n i n n nT R q g n t D∆+= − − −  (11) 

Remark 1. It is also clear that the use of a satellite-
only model (within the concept as above) results in 
a modification of the Stokes like problem and has a 
beneficial effect on the uniqueness of the solution. 
 
3 Gravimetry and gradiometry 
The solvability problems seem to be less compli-
cated when combining satellite gravity gradiometry 
and terrestrial gravimetry data. Confining ourselves 
to radial gravity gradients only, we can consider the 
following problem 

 0T∆ =    in   Ω  (12) 

 2

i

T T g
r R

∆∂
+ = −

∂
   for   ir R=  (13) 
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2
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   for   er R=  (14) 

The input from satellite gradiometry is symbolized by 

 0( , ) ( , )nnG Gϕ λ ϕ λ∞
== ∑  (15) 

where again nG  are the respective surface spherical 
harmonics. Hence, for T  as in Eq. (4) the following 
system can be deduced for any individual n   

              ( ) ( )( 1) ( 2)i n e
n n i nn T n q T R g∆− − + =  (16) 

   1 ( ) ( ) 2( 1)( 2) ( 1)n i e
n n e nn n q T n n T R G++ + + − =  (17) 

in view of the orthogonality of spherical harmonics. 
Clearly, 2 2 2 1( 1) ( 1)( 2)g n

nD n n n n q += − + + +  is the 
determinant of the system and it always differs from 
zero, when 0q >  (which is our case). Thus 

  ( ) 2[ ( 1) ( 2) ]i n g
n i n e n nT R n n g R n q G D∆= − + +  (18) 

and 
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A note analogous to Remark 1 may be added also 
here, but with the difference that another kind of 
input data is used for er R= . 
 
4 Optimization 
In both the cases we found a solution T  which is 
harmonic in the bounded domain Ω . The problem, 
however, is that in general the continuation of T  
for er R>  need not be regular at infinity, i.e., it is 
not guaranteed that for r→∞  the continuation 
decreases as /c r  ( c  is a constant) or faster. This 
can be considered a consequence of a contamination 
of the input data by measurement errors. Clearly, 
the data given for ir R=  are enough to determine a 
harmonic function in 3{ ; }ext ir RΩ ≡ ∈ >x R  and 
thus in extΩ Ω⊂ . The data for er R=  have the 
nature of excess data and give rise to (“internal”) 
terms ( )( / )n e

e nr R T  that are not regular at infinity. 
The problem has been treated in literature as an 
overdetermined problem, see e.g. Sacerdote and 
Sansò (1985) and Rummel et al. (1989). Here we 
approach it through an analytical regularization. 
 In solving this overdetermined problem, we will 
look for a harmonic function f  which is regular at 
infinity and minimizes the following functional 

 2( ) ( )f f T d
Ω

Φ = −∫ x  (20) 

In particular, we will suppose that 2 ( )extf H Ω∈ , 
where 2 ( )extH Ω  is the space of harmonic functions 
endowed with inner product 

 2( , ) ( / )
ext

f g f g r d
Ω

= ∫ x  (21) 

 The functional Φ  is coercive and attains its 
minimum in 2 ( )extH Ω , see Holota and Kern 
(2005), Holota (2007) and also Nečas and Hlaváček 
(1981). Hence, assuming that at a point 

2 ( )extf H Ω∈  the functional Φ  has its local 
minimum, we know that its Gateaux’s differential 
equals zero at the point f . This immediately yields 

 fv d Tv d
Ω Ω

=∫ ∫x x  (22) 

for all 2 ( )extv H Ω∈ . Note that Eq. (22) represents 
Euler’s necessary condition for Φ  to have a 
minimum at the point f . 
 The integral identity given by Eq. (22) is a 
natural starting point for a numerical solution. First, 
however, we put for the indices 0,1,2,n = …  and 

, 1, , 1, 0,1, , 1,m n n n n= − − + − −… …  

 | |
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where  | |n mP    is  the   usual   (associated)  Legendre  
function. Then 1( / ) ( , )n

nm i nmv R r Y ϕ λ+=  are the 
solid spherical harmonics and in general 

 0
m n

nm nmn m nf f v∞ =
= =−= ∑ ∑  (24) 

where nmf  are scalar coefficients. In consequence, 
using the orthogonality of spherical harmonics, 
Eq. (22) transforms into the following system for 
the coefficients nmf  

 2
nm nm nmf v d Tv d

Ω Ω
=∫ ∫x x  (25) 

Here 

 
3 2 1

2 2(1 ) ( , )
2 1

n
i

nm nm
R qv d Y d

nΩ σ
ϕ λ σ
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where dσ  is the surface element of the unit sphere 
σ . As to the integral on the right hand side of 
Eq. (25), we recall that in general 

 ( ) ( ) ( )( , ) ( , )m ni i i
n n nm nmm mT T a Yϕ λ ϕ λ=

=−= = ∑  (27) 
and 
 ( ) ( ) ( )( , ) ( , )m ne e e

n n nm nmm mT T a Yϕ λ ϕ λ=
=−= = ∑  (28) 

where ( )i
nma  and ( )e

nma  are scalar coefficients. Thus, 
after some algebra, ( ) ( )i e

nm nm n nmf a aα= + ,  where 
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Hence, inserting into Eq. (24), we get 
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In particular, 0 (1 ) / 2q qα = +  and lim 0nα =  as 
n→∞ . Other values of nα  are in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Values of nα  for 6378iR km=  and two cases  
of eR : 250e iR R km= +  and 400e iR R km= + , i.e., for 

0.96228q =  and 0.94099q = , respectively. 
 

5 Optimized solution 
In order to apply our optimization to the problems 
in Sections 2 and 3 we still have to return to surface 
spherical harmonics  ( )i

nT   and  ( )e
nT  ,  as they  were 

derived in these particular cases.  
 For the problem in Section 2 ( )i

nT  and ( )e
nT  are 

given by Eqs. (10) and (11). Thus, in view of 
Eq. (30), the optimization leads to 
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with 
 ( ) 1( 1)(1 )i n

n n nA n q Dα += − −  (32) 

 ( ) [( 2) ( 1)]e n
n n nA n q n Dα= + + −  (33) 

Note that for 1n =  
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which is close to zero. The values of the coefficients 
( )i
nA  and ( )e

nA  can be seen from Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The coefficients ( )i

nA  and ( )e
nA  for 0.96228q =  

and 0.94099q =  ( 250e iR R km= +  and 400e iR R km= + ) 
in case of gravimetry and a satellite-only model. 
 
Similarly, in case of the problem in Section 3 the 
optimization leads to 
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with 

 ( ) 11 ( 1) ( 1)( 2)i n
n ng

n
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D
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Note as above that for 1n =  we have 
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The values of the coefficients ( )i
nA  and ( )e

nA  are 
then illustrated in Fig. 3. 
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Figure 3. The coefficients ( )i
nA  and ( )e

nA  for 0.96228q =  
and 0.94099q =  ( 250e iR R km= +  and 400e iR R km= + ) 
in case of gravimetry and gradiometry. 
 
From Figs. 2 and 3 one can see how the input data 
are combined in the spectral domain. Both the fig-
ures show that the optimization applied offers a 
natural concept for weighting the input data. In 
addition in Fig. 3 one can see a relatively slow decay 
of ( )e

nA  with degree n  for a low altitude ( 250km ), 
compared to ( )e

nA  related to the contribution of the 
satellite-only model, cf. Fig. 2. This also shows 
advantages of satellite gradiometry at low altitudes. 
 
6 Spectrum and the integral kernel 
Our aim is now to make an attempt to sum the 
terrestrial term 
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in our two cases, i.e. in Eq. (31) and Eq. (35). In the 
first case ( )i

nA  is given by Eq. (32), so that after 
some manipulation we have 

2 3

0 12 2

*

1 2 (1 )
2(2 1) 6

( , ) (40)
4

i i
terr

i

R Rq q qf g g
r q r q
R

S r g d
σ

∆ ∆

ψ ∆ σ
π

− − +
= − ⋅ + ⋅ +

−

+ ∫
 

where 

 
1

* ( )

2

2 1( , ) (cos )
1

n
i i
n n

n

RnS r A P
n r

ψ ψ
+∞

=

+ ⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑  (41) 

Similarly, in the second case ( )i
nA  is given by 

Eq. (36) and we have 
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where the kernel function *( , )S r ψ  appears again, 
but stress that now with ( )i

nA  given by Eq. (36). 

 It is thus clear that for a space domain interpre-
tation of the contribution of terrestrial data the key 
problem is to find explicitly how the function 

*( , )S r ψ  depends on the angle ψ  in our two cases. 
 For ir R=  an immediate summation of about 300 
or 450 first terms, in dependence of the two values 
of q  considered (and the relative accuracy 1610− , 
the so-called “machine ε ” in the IEEE754 floating-
point arithmetic), yields the following Figs. 4  
and 5, where also the classical Stokes function 

( , ) ( )iS R Sψ ψ=  has been drawn for comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Problem in Sect. 2: the kernel function * ( , )iS R ψ  
for 0.96228q =  and 0.94099q = . Approximate values of 
the kernel function * ( , )iS R ψ  for 0.94099q = . 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Problem in Sect. 3: the kernel function * ( , )iS R ψ  
for 0.96228q =  and 0.94099q = . 
 
From the figures it is also clear that in terrf  given 
by Eq. (40) or (42) the influence of distant zones is 
considerably suppressed. This is an important fea-
ture which gives a possibility to reduce the need for a 
global coverage with gravity data and also to put the 
concepts outlined in this paper in the right context. 
Remark 2. We also tried to sum the series giving 

*( , )S r ψ  analytically. Various functions have been 
used to approximate the coefficient ( )i

nA . First a fit 
by means of rational functions has been tested. 
Especially those rational functions have been used, 
which allow a decomposed into partial fractions 
related to simple real roots, since this gives more 
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chance to manage the summation. Nevertheless,  the 
summation was rather complex anyhow and we, 
therefore, looked for another solution. In particular 
for the problem in Section 2 we found that a good 
approximation of ( )i

nA  can be achieved by means of 
1( ) 1 nA n ak += −  where a  and k  are suitably cho-

sen parameters such that 0a >  and 0 1k< < . We 
can then put with some approximation ( ) ( )i

nA A n≈ . 
Hence, substituting into Eq. (41), we have 

*( , ) ( , ) ( , )S r S x aS kxψ ψ ψ≈ − , where ( / )ix R r=  
and ( , )S x ψ  is the famous (extended) Stokes func-
tion. Its closed form may be found, e.g., in 
Heiskanen and Moritz (1967) or Pick et al. (1973). 
In numerical experiments done for the problem in 
Section 2 and 0.94099q =  a good fit has been 
reached for 1.1a =  and 0.938k = . For 1x = , i.e., 

ir R= , the approximate values of *( , )iS R ψ  given 
by (1, ) 1.1 (0.938, )S Sψ ψ−  can be seen from Fig. 4, 
but were not used in the computations. 
 

7 Numerical test of the procedure and 
final comments 

In order to check the efficiency of the procedure 
discussed in this paper, we tested the whole 
approach numerically by means of simulated input 
data. For this purpose we used the potential W  of 
the gravity field model EGM96 and the potential U  
of the Somigliana-Pizzetti normal gravity field with 
parameters given in GRS1980, see Lemoine et al., 
(1998) and Moritz (1980).  
 The anomaly g∆  was simulated in a “regular” 
grid on the sphere of radius 6378iR km= . The grid 
is given by the 10th level of the refinement of an 
initial icosahedron, which implies more than 
10 000 000  data points. The hierarchically created 
grids were also efficiently exploited for Romberg’s 
integration method in calculating the surface inte-
gral in Eqs. (40) and (42), cf. Nesvadba et al. (2007). 
[Note that the method was used in a somewhat gen-
eralized form compared to a one-dimensional case 
discussed, e.g., in Press et al. (1992).] In contrast, t  
and G  were simulated by means of the harmonic 
coefficients in nt  and nG , respectively, taken from 
the expansions of the disturbing potential 
T W U= −  and its second radial derivatives 
restricted to the sphere of radius 250e iR R km= + . 
 In the sequel the problem in Section 2, i.e. the 
combination of gravimetry and a satellite-only 
model, is treated first: terrf  given by Eq. (40) and  
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with ( )e
nA  given by Eq. (33) were computed for 

ir R=  and 0.96228q = , i.e., 250e iR R km= + . 
The composition terr satf f f= +  shown in Fig. 6 
then yields the optimized solution.  
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                                                                        fterr 
 
 
 
 
 
                                                                f  = fterr +  fsat 
 
 
 
 
 
 
 
 
Figure 6. The composition terr satf f f= +  for ir R=  in 
case of the problem in Sect. 2, i.e. the combination of 
gravimetry and a satellite-only model ( 6378iR km=  and 

250e iR R km= + ,  i.e. 0.96228q = ). 
 

A similar illustration is in Fig. 7. It concerns the 
problem considered in Section 3, i.e. the combina-
tion of gravimetry and gradiometry. The terrestrial 
part terrf  given by Eq. (42) and  
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with the coefficients ( )e
nA  given by Eq. (37) were 

computed for ir R=  and 0.96228q = , i.e., 
250e iR R km= + , similarly as above.   

 In both the cases the compositions f  shown in 
Figs. 6 and 7 were compared with T  restricted to 

ir R= , as obtain directly from W  and U , see 
Fig. 8. The results of the comparison are nearly the 
same in both the cases considered. Globally the 
RMS of the differences expressed in GeoPotential 
Units ( 2 21GPU 1m s−≡ ) does not exceed 0.06 GPU 
(max. difference smaller than 0.9 GPU) and is well 
within an apriori estimate of the error, as derived 
from Romberg’s integration method. This supports 
our conviction that the method discussed in this 
contribution is capable to provide useful results. It 
will be further developed a next paper on this topic. 
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                                                              f  = fterr +  fsat 
 
 
 
 
 
 
 
 
Figure 7. The composition terr satf f f= +  for ir R=  in 
case of the problem in Sect. 3, i.e. the combination of 
gravimetry and satellite gradiometry ( 6378iR km=  and 

250e iR R km= + ,  i.e. 0.96228q = ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. (Above) Error of the result, i.e., f – T = f – (W – U). 
(Below) An apriori estimate of the error as obtained from 
Romberg’s integration method. 
 
Note finally that the stochastic nature of the 
terrestrial and the satellite input data give rise to a 
stochastic process in the 3-dimensional domain Ω . 
The process is not specially discussed in this paper 
and it is also not explicitly reflected in the structure 
of the functional Φ , see Eq. (20). Nevertheless, 
preparatory steps for the respective studies and the 
use of noisy data were made in Holota (2007), 
where together with Φ  also functionals of different 
structure have been discussed. 
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Abstract 
We explore methods to assess the precision of 
gravity vector components estimated from a ground 
vehicle INS/GPS system.  Tests of the system were 
conducted in western Montana with repeated 
traverses along several highways.  The gravity 
estimates were obtained through a series of 
processing steps that included B-spline smoothing, 
a Kalman filter, wavelet de-noising, wave-number 
correlation filtering, and correction for bias and 
scale factor errors.  The results showed significant 
repeatability in the vertical and horizontal gravity 
components estimated independently from 
duplicated traverses.  While the estimated vertical 
components also agree well with existing control 
data (2mgal; s.d.) and in some cases had internal 
consistency better than 1 mgal (s.d.), the estimated 
horizontal components are much less coherent 
between repeated track s.  However, after removing 
a scale factor error they exhibit clear correlation at 
all frequencies with repeatability of 1 mgal to 6 
mgal (s.d.), depending on the test traverse and the 
horizontal component.  Comparison to DEFLEC99 
control data (whose validity remains in question) 
indicates differences up to 9 mgal (s.d.), or more.   
 
Keywords. Vector Gravimetry, Wavelet de-noising, 
Wave-Number Correlation, Inertial Navigation 
System (INS), GPS. 
 
 
1 Introduction 
 
For an airborne INS/GPS vector gravimetric system, 
Kwon and Jekeli (2001) developed a unique 
Kalman filter and obtained gravity disturbance 
estimates with precision better than 3± mGal in the 
down component, and 6± to 8±  mGal in the 
horizontal components.  These estimates formally 
are derived directly from the Kalman filter residuals 
by assuming no particular gravity disturbance 
model in the state space.  Although a lack of 
theoretical completeness with this approach has 
been argued by Schaffrin et al. (2002), who 
advocate modeling the gravity disturbance as a state 
either deterministically or stochastically, we have 

found similarly good results using the same Kalman 
filter for a ground -vehicle based INS/GPS vector 
gravimetric system (see below).  Furthermore, we 
applied additional data processing techniques, such 
as wavelet de-noising, to better isolate the gravity 
anomalies from the adjusted system noise in the 
observation residuals. 
 This paper briefly describes these techniques and 
the results of gravity disturbance vector estimation 
from such a system operated in western Montana in 
April and June 2005.  The INS was a Honeywell 
H764 model and the vehicle carried a number of 
GPS receivers (Trimble 5700 and Novatel, among 
others).  Several highways were traversed at least 
twice, including interstate I90 between Butte and 
Missoula and state route 43 eastward from Chief 
Joseph Pass.  More details of the data collection is 
given by Jekeli and Li (2006).  Section 2 introduces 
the wavelet de-noising approach.  Wave-correlation 
techniques, described in Section 3, were also 
applied to take advantage of the repeated traverses.  
The final estimates of the horizontal components 
were corrected for a bias and scale factor error.  
They were analyzed in the frequency domain 
(Section 4) in order to discern their most accurate 
spectral window.  Finally, Section 5 summarizes the 
analysis of the ground-vehicle based vector 
gravimetric system. 
 
2 Wavelet De-Noising 
 
Based on previous studies by Jekeli (2000) and 
Kwon and Jekeli (2001), a preliminary gravity 

disturbance estimate, Z
r

∆ , is given by the following 
equation for the Kalman filter residual at time or 
space point, k: 
 

 i i i
k k k b aZ g x C∆ δ δ ε= + −

v rv v&&  (1) 
 

where ix&&vδ is the GPS acceleration error and aε is the 

accelerometer processing error.  Equation (1) 
clearly shows that the gravity disturbances are co-
mingled with the GPS acceleration errors and the 
accelerometer processing errors.  To identify better 
the gravity signal, g

r
δ , within the observation 



 

residual, Z
r

∆ , at any frequency and at any time, the 
wavelet de-noising method is used due to its 
property of no spectral leakage (Li et al. (2004)), 
among other advantages (Donoho and Johnstone, 
1994, 1995). 
 From the wavelet domain point of view, each 

component of Z
r

∆ in equation (1) can be written as 
follows: 
 

 )()()( kNkgkZ +=∆ δ  (2) 
 

where ( )N k  is the combination of GPS 

acceleration error and accelerometer processing 
error at point, k.  We expect N to be approximately 
white noise if the INS/GPS error dynamics model 
was correct and the Kalman filter was successful in 
estimating the systematic errors.  To recover the 
gravity disturbances, first, Z∆ is transformed from 
the time or space domain into the wavelet domain 
by a linear forward wavelet transform as follows: 
 

 )( ZwY ∆=  (3) 
 

where Y is the wavelet coefficient and )(•w denotes 
the forward wavelet transform operator.  Then the 
wavelet coefficients are processed by the following 
equations: 
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 )(Yd=λ  (5) 
 

where ),( λ•D  denotes the de-noising operator with 
soft threshold λ , and d(Y) is a data-adaptive 
threshold (Hybrid SureShrink criterion; see Donoho 
and Johnstone, 1994, 1995) that depends on the 
level of decomposition and on the wavelet 
coefficient Y (Taswell, 2000).  Finally, the 
estimation of the gravity disturbance is obtained by 
transforming the processed wavelet coefficients 
back into the original domain with the same wavelet 
bases as used in equation (3): 
 

 )'()( 1 Ywkg −=)δ  (6) 
 

where )(1 •−w  denotes the inverse wavelet transform 
operator. 
 
3 Wave-Number Correlation 

 
If the INS/GPS system has been operated repeatedly 
along the same traverse, the wave-number 
correlation method (Kwon, 2000) can be used to 
isolate the correlations of the duplicated estimates 

of the gravity vectors.  These correlations are 
expected to indicate the gravitational signal, but  
would also include existing repeated system errors. 
 Suppose there are two traverses along the same 
road.  After wavelet de-noising we obtain two 
gravity disturbance estimates, 1g

)
δ  and 2g

)
δ , 

respectively.  From their Fourier transforms, 
)( 11 gFG n

)δ=  and )( 22 gFG n

)δ= , where n is the 
wave number, the correlation coefficient is given by  
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Then, the signal is filtered in the frequency domain 
according to the following equation: 
 

 




<
≥

=
tolif

tolifG
G

k

kn
n σ

σ
0

2,1
2,1  (8) 

 

where tol  is a specified tolerance, e.g., 0.5.  Finally, 
the new estimates in the space domain are: 
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4 Data Processing and Results  
 
The preliminary estimates of the gravity 
disturbances were reported by Jekeli and Li (2006).  
They resulted from an initial B-spline smoothing 
with a 180-second averaging window and a Kalman 
filter that estimated bias and scale factor errors in 
the inertial measurement units.  Interpolated gravity 
disturbances from an NGA data base and 
deflections of the vertical from DEFLEC99 (NGS) 
served as a “control” for comparison purposes.  
 The down component estimates are generally 
better than the horizontal estimates both in system 
repeatability and in system accuracy compared to 
the control data.  Table 1 lists the mean and 
standard deviations of estimate differences along 
the first 60 km on SR43 eastward from Chief 
Joseph Pass.  Table 2 shows the same statistics for 
differences between points 45 km and 95 km 
eastward from Missoula on I90.  Both tables show 
that the stand-alone Kalman filter works well at 
least for this component. 
 

Table1: SR43 down gravity difference statistics. 
SR43 Down (mGal) Mean STD 
Traverse 1 – Traverse 2 
Traverse 1 – Control 
Traverse 2 – Control 

-3.58    
32.94    
36.52   

2.05 
2.23   
2.71 

 



 

Table 2: I90 down gravity difference statistics. 
I90 Down (mGal) Mean STD 
Traverse 2 – Traverse 3 
Traverse 2 – Traverse 4 
Traverse 3 – Traverse 4 
Traverse 2 – Control 
Traverse 3 – Control 
Traverse 4 – Control 

  3.31  
-5.28 
-8.59 
50.22  
46.91  
55.50  

2.05 
0.72 
2.49 
3.19 
2.86 
3.33 

 
 Wavelet de-noising and wave-number correlation 
filter (WCF) methods were used to remove any 
remaining filter errors, i

kxδ v&&  and a
i
bC ε , in equation 

(1), from the gravity disturbance components.  
Figures 1-6 show the final gravity disturbances 
estimates on SR43 and I90 after applying these two 
filters.  The de-noised results are not substantially 
different than the unprocessed Kalman filter 
residuals, but some very high-frequency variations 
have been smoothed out, as expected. 
 

 
Figure 1: SR43 north gravity disturbance estimates after 
applying de-noising and wave-number correlation filters. 
 

 
Figure 2: SR43 east gravity disturbance estimates after 
applying de-noising and wave-number correlation filters. 
 

 
Figure 3: SR43 down gravity disturbance estimates after 
applying de-noising and wave-number correlation filters. 
 

 
Figure 4: I90 north gravity disturbance estimates after 
applying de-noising and wave-number correlation filters. 
 

 
Figure 5: I90 east gravity disturbance estimates after 
applying de-noising and wave-number correlation filters. 
 



 
Figure 6: I90 down gravity disturbance estimates after 
applying de-noising and wave-number correlation filters. 
 
 The corresponding statistics for the down 
component estimates on these two road segments 
are shown in Tables 3 and 4, respectively.  Table 3 
indicates a slight improvement (5.4%) in the 
standard deviation of system repeatability on SR43 
after wavelet de-noising (first line in the table) and 
a total improvement (in standard deviation) relative 
to NGA control of about 3% - 20% after further 
applying the wave-number correlation filter (last 
line in the table).  On I90, somewhat greater 
improvement was obtained in system repeatability 
(11%) after de-noising, but the WCF yielded the 
same improvement in standard deviation relative to 
NGA control (5% - 15%). 
 
Table3: SR43 down gravity component statistics for Figure 3.  

SR43 Down (mGal) Mean STD 
Traverse 1 – Traverse 2 
Traverse 1 – Control 
Traverse 2 – Control 
WCF – Control 

-3.58 
32.94  
36.52   
34.73    

1.94 
2.19 
2.57 
2.16 

 
Table 4: I90 down gravity component statistics for Figure 6. 

I90 Down (mGal) Mean STD 
Traverse 2 – Traverse 3 
Traverse 2 – Traverse 4 
Traverse 3 – Traverse 4 
Traverse 2 – Control 
Traverse 3 – Control 
Traverse 4 – Control 
WCF(2,3) – Control 

  3.31   
-5.28 
-8.59  
50.22 
46.91 
55.50 
48.57  

1.67 
0.64 
2.11 
3.08 
2.60 
3.22 
2.72 

 
 Both the wavelet de-noising and the wave-
number correlation could not remove satisfactorily 
the system errors in the horizontal estimates.  
However, ther e are clear correlations in the repeated 
traverses as shown in Figures 1, 2, 4, and 5.  The 
repeatability can be analyzed in the frequency 
domain by using Parseval’s Theorem.  Accordingly, 
the standard deviation (STD) of the differences of 
the duplicated gravity disturbance estimates is given 
by 
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where T  is the total length of the traverse, t∆ is the 
sampling interval, 2N  is the total number of the 
sampling points, and 
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is the bias-free Fourier transfor m of the estimate 
difference.  Then the STD in the frequency band 
[F1, F2] is given by: 
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where tNFm ∆= 2*11 and tNFm ∆= 2*22 . These 
spectral analyses of the gravity disturbance 
estimates on SR 43 and I90 are given in Tables 5 
and 6, respectively.  The Nyquist frequency, Nf , 
corresponds to the 1 Hz GPS sampling interval 
(vehicle velocity of about 22 m/s).  We note a clear 
band of higher correlation (3-6 km wavelengths) in 
the repeated traverses on SR43.  On I90, the 
correlations (or lack thereof) are fairly evenly 
distributed over all frequency bands. 
 With respect to the control data there is a severe 
(and repeated) scale factor discrepancy in the 
horizontal gravity estimates.  Although the scale 
error in the control data is not yet known (the 
DEFLEC99 data are scheduled to be independently 
validated by astrogeodetic meas urements), it is 
more likely that the INS has a systematic scale error 
that repeats even after separate initializations.  To 
determine the scale error, as well as a possible bias, 
we fitted the horizontal estimates to the DEFLEC99 
data using the following model: 
 

 , , , ,ˆ99 *n e n e n e n eDEFLEC B gρ δ= +  (13) 
 

The bias, B, and the scale factor, ρ , were solved by 

simple least squares for each horizontal component 
and for each traverse.  Applying the estimated bias 
and scale factor, the modified horizontal estimates 
are shown in Figure 7-10. 
 



Table 5: Gravity estimation repeatability per spectral band on 
SR43.  

Lower 
bound 
(Cycle/km) 

Upper 
bound 
(Cycle/km) 

North 
(mGal) 

East 
(mGal) 

Down 
(mGal) 

0.00 
0.017 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

0.017 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

Nf  

 0.00 
20.36   
21.12 
  7.14 
13.39   
19.06   
26.16   
17.25   
12.53   
  4.78    
  4.66    
  6.36    
  2.60    
  3.36    
  3.80    
  4.82    
12.66 

  0.00    
24.52    
26.79    
11.76    
10.93    
15.02    
17.75    
12.15    
10.46    
  2.34    
  6.51    
  9.42    
  5.48    
  4.98    
  2.66    
  5.18    
15.03    

0.00 
0.67 
0.72 
0.39 
0.35 
0.83 
0.85 
0.21 
0.27 
0.32 
0.29 
0.44 
0.21 
0.13 
0.13 
0.10 
0.73 

0 
Nf  53.79 53.15 1.94 

 
Table 6: Gravity estimation repeatability per spectral band 
(Traverses 2 & 4) on I90.  

Lower 
bound 
(Cycle/km) 

Upper 
bound 
(Cycle/km) 

North 
(mGal) 

East 
(mGal) 

Down 
(mGal) 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

Nf  

0.00    
4.33    
5.11    
3.77    
6.34    
7.03   
6.91    
5.71    
2.69    
4.13    
3.88    
2.25    
1.89    
2.57    
2.56    
2.99    

0.00    
1.55    
3.72    
3.60    
4.22    
5.58    
3.98    
1.46    
1.96    
2.74    
2.22    
1.55   
1.50    
1.44    
1.65    
2.76    

0.00 
0.04 
0.08 
0.26 
0.29 
0.34 
0.31 
0.07 
0.07 
0.05 
0.05 
0.03 
0.05 
0.06 
0.03 
0.08 

0 
Nf  17.29   11.38    0.64 

 
 

 
Figure 7: SR43 North gravity disturbance estimates after 
applying de-noising and bias and scale factor corrections. 
 

 
Figure 8: SR43 East gravity disturbance estimates after 
applying de-noising and bias and scale factor corrections. 
 

 
Figure 9: I90 North gravity disturbance estimates after 
applying de-noising and bias and scale factor corrections. 
 

 
Figure 10: I90 East gravity disturbance estimates after 
applying de-noising and ias and scale factor corrections. 
 
Frequency -domain analyses of the differences 
(Tables 7 and 8) now show that in all cases the 
correlations are well distributed across all bands.  
But, more important the overall repeatability is at 
the level of 1-1.5 mgal on the I90 segment and 2-6 
mgal on the SR43 segment. 
 



Table 7: Gravity estimation repeatability per spectral band on 
SR43.  

Lower 
bound 
(Cycle/km) 

Upper 
bound 
(Cycle/km) 

North 
(mGal) 

East 
(mGal) 

0.00 
0.017 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

0.017 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

Nf  

 0.00 
0.82    
0.89    
0.41    
0.33    
0.35    
0.60    
0.29    
0.37    
0.41   
0.41    
0.71    
0.48    
0.34    
0.13   
0.34    
0.73    

  0.00    
1.52 
2.17 
1.67 
0.84 
1.61 
2.58 
2.13 
1.79 
0.62 
1.12 
1.65 
0.45 
0.41 
0.16 
0.32 
1.94 

0 
Nf  2.07    6.01 

 
Table 8: Gravity estimation repeatability per spectral band 
(Traverses 2 & 4) on I90.  

Lower 
bound 
(Cycle/km) 

Upper 
bound 
(Cycle/km) 

North 
(mGal) 

East 
(mGal) 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

Nf  

0.00    
0.46    
0.51    
0.31    
0.54    
0.59    
0.53    
0.46    
0.24    
0.25    
0.27    
0.19    
0.13    
0.18    
0.17    
0.20    

0.00 
0.12 
0.26 
0.36 
0.39 
0.59 
0.52 
0.11 
0.14 
0.24 
0.22 
0.12 
0.14 
0.14 
0.11 
0.13    

0 
Nf  1.43    1.10   

 
5 Summary and Conclusions 
 
To assess the precision of the ground-vehicle 
INS/GPS vector gravimetric system, several 
repeated traverses were carried out in western 
Montana on different dates.  The estimates were 
obtained through a series of processing steps that 
included B -spline smoothing, a Kalman filter, 
wavelet de-noising, wave-number correlation 
filtering, and correction for bias and scale factor 
errors.  The analyses led to the following 
conclusions: 

1. The gravity disturbance estimates show 
significant repeatability in the vertical and 
horizontal components from independently repeated 
traverses. 
2. The estimates of the down component agree well 
(2-3mgal STD ) with the interpolated ground control 
data.  Repeatability was as good as 1mgal (STD ). 
3. The Kalman filter estimates of the repeated 
horizontal components show clear correlation but 
also large scale factor errors with respect to the 
control data.  Removing this error (and a bias) 
yields repeatability of better than 2 mgal (STD) on 
one traverse and 2-6 mgal (STD ) on another. 
4. Further enhancement of horizontal gravity data 
processing is indicated to estimate the scale factor 
error, which appears to reside in the INS. 
5. There remain significant differences between the 
final horizontal estimates and the DEFLEC99 
control data (up to 9 mgal (s.d.), or more).  Final 
assessment of these estimates awaits an independent 
determination of control using astrogeodetic 
observations along the surveyed roads. 
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Abstract. Geodetic, gravimetric, astronomical, 
geological and satellite data acquired within the 
cooperation of national and foreign research centres 
have been qualitatively analysed in 2002-2005. 
They have been transformed to unified reference 
systems in accordance with recent standards, and 
archived in the databases. The analysis of the 
existing data have been supported with control 
surveys. Precisely determined heights of 868 km 
GPS/levelling traverse consisting of 190 stations 
provided quality control of astro-geodetic, 
gravimetric, GPS/levelling, integrated as well as 
best fitted to the POLREF sites quasigeoid models 
developed. Major research concerned analysis of 
digital terrain models, technology of the terrain 
correction computation, methodology of mean 
gravity anomaly determination, and the choice of 
global geopotential model best suited for quasigeoid 
modelling in Poland. Quasigeoid models in Poland 
developed exhibit very high quality. Model of 
quasigeoid best fitted to the POLREF sites, of 
accuracy of 2 cm, should replace the quasigeoid 
model recently used in surveying practice in 
Poland. Quality of heights of the sites of the 
POLREF network, that results from surveying 
strategy and technology used was found insufficient 
as the basis for best fitted quasigeoid model for 
levelling with GPS in Poland. 
 
Keywords. Quasigeoid modelling, geopotential 
models, gravity data, GPS/levelling data, digital 
terrain models, terrain corrections, mean gravity 
anomalies 
_________________________________________ 
 
1. Introduction 
An increase of coverage land areas with deflections 
of the vertical and with gravity data in the first 
decades of 20th century resulted in developing 

regional geoid models (e.g. Hirvonen, 1934; Tanni, 
1948). The first gravimetric geoid model for the 
region of Central Europe, including Poland, was 
computed by Tanni (1949). Its accuracy can be 
estimated as about 3 m.  

The first regional astro-gravimetric geoid model 
for Poland of accuracy of ~60 cm was developed at 
the Institute of Geodesy and Cartography, Warsaw, 
in 1961 (Bokun, 1961) from about a hundred of 
astro-geodetic deflections of the vertical and gravity 
obtained from the gravity maps. That model was 
refined in 1970 with the use of more data and more 
detail gravity maps. Its accuracy is about 30 cm.  

Precise modelling of regional geoid became one 
of the major tasks of numerous research groups and 
surveying and mapping agencies in the last decades. 
The release of gravity data in Poland in early 1990s 
resulted in further advance in geoid modelling in 
Poland. The first gravimetric quasigeoid model for 
Poland of accuracy of ~10 cm was calculated at the 
Space Research Centre of the Polish Academy of 
Sciences, Warsaw, in 1993, using the LS 
collocation combined with the integral method 
(Łyszkowicz, 1993). It was followed by the 
quasi97b gravimetric quasigeoid model of 5 cm 
accuracy, developed with the FFT technique using 
substantially extended gravity data coverage 
(Lyszkowicz, 1998).  

Access to raw gravity data, development of high-
resolution digital terrain models and densification 
of precise GPS/levelling heights stimulated towards 
undertaking an extensive research on modelling a 
precise quasigeoid in Poland. The team of 
researchers of different disciplines of Earth 
sciences, under the leadership of the Institute of 
Geodesy and Cartography, Warsaw, has conducted 
in 2002-2005 an advanced research on modelling a 
centimetre quasigeoid in Poland with the use of 
geodetic, gravimetric, astronomic, geological and 
satellite data (Krynski, 2005).  

 



2. Data used 
Gravity data available at the area of interest is not 
uniform both in terms of quality and coverage.  

Terrestrial gravity data acquired within last 50 
years consists of 1 089 062 point gravity data (σ = 
0.075 mGal) almost uniformly distributed over 
Poland, as well as point and mean gravity anomalies 
(σ = 1.0 mGal) of different spatial resolution from 
neighbouring countries. Marine gravity data from 
four geophysical marine missions from 1971 to 
2000 cover Southern Baltic Sea (σ = 0.5-2.6 mGal). 
Airborne gravity data (σ = 1.5 mGal) from the 
Baltic Sea acquired in 1999 by KMS, Copenhagen. 
Also 2' × 2' mean gravity anomalies (σ = 4.0 mGal) 
derived at the KMS from the Geosat and ERS-1 
altimetry data were used. All gravity data have been 
transformed to ETRS89 and to POGK-99 gravity 
system (an official gravity system in Poland) 
(Krynski, 2006; Krynski and Lyszkowicz, 2006b). 

GPS/levelling data used consisted of heights of 
over 900 POLREF (σ = 2 cm), EUVN (σ = 2 cm) 
and WSSG (Military Satellite Geodetic Network) (σ 
= 3.5 cm) sites (Krynski, 2006). 

The set of deflections of the vertical consists of 
165 astro-geodetic deflections from 1952-1975 (σ = 
0.5") and 370 astro-gravimetric deflections of the 
vertical determined in 1960s (σ = 0.7") (Rogowski 
et al., 2005). Additional astronomical observations 
at 29 points were performed with circumzenithal in 
2003-2004 with standard error σ = 0.3"-0.5". 

Three digital terrain models: DTED2, SRTM3 
and SRTM30 were used. Vertical accuracy of the 
DTED2 of resolution 1" × 1" (49º–50ºN) and 1" × 
2" (50º–55ºN) varies from 2 m to 7 m, while its 

horizontal accuracy equals to 15 m (Krynski et al., 
2005). The SRTM3 and SRTM30 are based on 
Shuttle Radar Topography Mission data. Absolute 
vertical and horizontal accuracy of the SRTM3 of 
3" × 3" resolution, is specified as 16 m and 20 m, 
respectively (JPL, 2004). The SRTM30 of 30" × 
30" resolution is a generalization of the SRTM3. 

 
3 Search for most suitable GGM 
Six different GGMs were considered. Two kinds of 
numerical tests with the use of terrestrial gravity 
data and GPS/levelling height anomalies were 
conducted. Firstly, height anomalies at 
GPS/levelling POLREF and EUVN sites were 
compared with the corresponding ones computed 
from various GGMs. Secondly, the terrestrial 
gravity anomalies were compared with 
corresponding gravity anomalies computed from 
GGMs. Statistics for both tests are presented in 
Table 1 (Krynski and Lyszkowicz, 2005, 2006a).  

The quasigeoid models obtained with the use of 
different GGMs were verified against 
corresponding height anomalies at GPS/levelling 
sites. High-resolution GGM02S/EGM96, derived as 
a combination of GRACE-based data with the 
EGM96 model (the coefficients up to degree and 
order 90 of GGM02S/EGM96 correspond to those 
of GGM02S including the C20, and from degree and 
order 100 to the ones of EGM96; the transition 
coefficients – of degree 90 to 100 – were obtained 
using linear blending), fits best to height anomalies 
at POLREF and EUVN sites and also to terrestrial 
gravity data (Krynski and Łyszkowicz, 2005). 

Table 1. Statistics of residuals in height anomaly and gravity anomaly obtained for different GGMs  

Residuals in height anomaly [m] Residuals in gravity anomaly [mGal] Model Degree Mean Std dev. Min Max Mean Std dev. Min Max 
EGM96 360 -0.53 0.19 -1.03 0.08 -0.18   9.39 -112.01 137.34 

EIGEN-CH03S 140 -0.33 0.76 -2.22 1.06  0.00 17.30 -111.42 182.54 
GGM01S 120 -0.36 0.46 -1.70 1.05  0.26 15.37 -109.94 166.07 

GGM02S (140) 160 -0.34 0.47 -1.53 1.23 -0.14 14.81 -111.89 157.57 
GGM02C 200 -0.35 0.26 -1.09 0.49 -0.20 12.44 -115.57 153.86 

GGM02S/EGM96 360 -0.37 0.13 -0.79 0.05 -0.30   9.31 -115.56 135.44 
 

4 Terrain corrections 
The prism method was used for the determination 
of terrain corrections. The size of the area covered 
by height data used for computing the terrain 
corrections, i.e. the radius d of integration of 
prisms, depends on required accuracy. Numerical 
experiments with computing the terrain corrections 

with the use of high resolution DTMs enabled to 
precisely determine the optimum maximum radius d 
of integration of prisms for a required accuracy of 
the solution (Table 2). Practical method for 
determining d considering roughness of topography 
∆h and required accuracy of terrain corrections was 
developed (Grzyb et al., 2006).  

 



The “2005” terrain correction set has been 
calculated for 1 078 046 gravity stations with the 
use of DTED2, SRTM3 and SRTM30 data and with 
d = 200 km. Maximum terrain correction in Poland 
– excluding the region of Tatra Mountains with no 
gravity stations – reaches 22.3 mGal. Only 10% of 
all calculated terrain corrections exceed 0.5 mGal, 
and 3% are larger than 1 mGal.  

 
Table 2. The optimum maximum d [km] for different 
distortions ∆h of the terrain elevation 

 

Distortion ∆h of terrain elevation  
relative to a gravity station  

Accuracy of 
the terrain 
correction 

[mGal] 
∆h = 15 m 

(flat) 
∆h = 50 m 

(hilly) 
∆h = 300 m 

(mountainous) 
0.1 14.9 205 280 
0.2    0.22 118 265 
0.3    0.06   33 249 

 
Height data available in Poland seem sufficient 

in terms of resolution for computing the terrain 
corrections in most areas (over 80%) with an 
accuracy required for a centimetre quasigeoid 
modelling. For flat terrain, a DTM of resolution 100 
m × 100 m seems quite sufficient to ensure 
accuracy better than 0.1 mGal while in hilly regions 
the DTED2 model is needed. To reach, however 
such accuracy in mountainous regions a DTM of 
higher resolution is required (Grzyb et al., 2006).  
 
5 Mean gravity anomalies 
1' × 1' mean Faye anomalies for Poland were 
generated using Bouguer anomalies (Kryński et al., 
2005b). They were calculated starting from point 
gravity data (1-6 gravity data per km2 in Poland) 
according to the following algorithm. Point Faye 
anomalies calculated with the use of surveyed 
heights of gravity stations and terrain corrections 
were transformed into point Bouguer anomalies 
using density of 2.67 g/cm3 that were further 
interpolated together with heights from DTED2 and 
computed on a dense grid used as basis for 
generating mean Bouguer anomalies and mean 
heights in 1' × 1' blocks. Mean Bouguer anomalies 
and mean heights were finally used for calculating 
1' × 1' mean Faye anomalies (Krynski, 2006).  
 
6 GPS/levelling control traverse 
For verification of quasigeoid models as well as for 
estimation of their accuracy and evaluation of 
interpolation algorithms for GPS/levelling 
quasigeoid, a GPS/levelling control traverse has 

been established across Poland (Krynski, 2006). 
The traverse of 868 km surveyed in 2003-2004 
consists of 190 stations (1/4.6 km) of precisely 
determined ellipsoidal and normal heights. 

Observation strategy developed and processing 
methodology applied ensure accuracy of quasigeoid 
heights at traverse points at a centimetre level. 49 
stations of the traverse considered as the 1st order 
control were surveyed in one or two 24h sessions. 
The remaining 141 stations were surveyed in 4h 
sessions. The coordinates of 1st order control were 
determined using the EUREF Permanent GPS 
Network (EPN) strategy with the Bernese v.4.2. 
Accuracy of the coordinates determined is at the 
level of single millimetres. The coordinates of 141 
points were calculated using the Pinnacle program 
with the 1st order control as reference (Cisak and 
Figurski, 2005). Deviation of height anomalies of 
the GPS/levelling control traverse from those 
computed from the GUGiK 2001 quasigeoid model 
(recently official in Poland gravimetric quasigeoid 
fitted to the POLREF sites) are shown in Figure 1. 

 

 
Fig. 1. Fit of heights of GPS/levelling control traverse to the 
GUGiK 2001 quasigeoid 

 
7 Quasigeoid models developed 
The astro-gravimetric quasigeoid model was 
calculated using the principle of astronomical 
levelling. The network of 384 astro-gravimetric 
deflections of the vertical was fitted to the network 
spanned on 197 astro-geodetic deflections. Standard 
deviation of adjusted quasigeoid heights does not 
exceed 0.225 m while average standard deviation 
equals to 0.065 m.  

Gravimetric quasigeiod models were calculated 
using the remove-restore strategy. Height anomaly ζ 
is expressed as a sum of three components that 
represent global, regional and local effects, 
respectively. The first component is calculated 
directly from the GGM, the second one – using 
mean Faye anomalies, and the third one – using 
topography (Forsberg, 2005). The integral 
representing the second component was evaluated 
in the frequency domain by the multi-band fast 
Fourier Transform (Krynski and Lyszkowicz, 



2006a). The consecutive models of gravimetric 
quasigeoid (Table 3) were calculated with the use of 
different GGMs and six gravity data sets being 
improved in the process of conducting the project 
(Krynski and Lyszkowicz, 2006b). 

 
Table 3. Gravimetric quasigeoid models computed 

Quasigeoid model Data set GGM 
quasi97b 1 EGM96 
quasi04a 2 EGM96 
quasi04b 2 GGM02S 
quasi04c 2 GGM02S/EGM96 
quasi04d 3 GGM02C 
quasi05a 4 EGM96 
quasi05b 5 EGM96 
quasi05c 5 GGM02S/EGM96 
quasi06a 6 GGM02S/EGM96 

 
Height anomalies of the POLREF sites were 

used for estimating the external accuracy of 
computed gravimetric quasigeoid models. On the 
other hand gravimetric quasigeoid models were 
used for evaluating quality of height anomalies at 
the POLREF sites (Table 4) (Krynski and 
Lyszkowicz, 2006b).  
 
Table 4. Statistics of differences between the heights of 
quasigeoid models and the POLREF sites (Min and Max 
after removing the bias, i.e. with the mean = 0) [cm] 

Model Bias Std dev. Min Max 
quasi97b -30.0 3.4   -9.2 12.4 
quasi04a -30.4 3.2   -8.4 10.1 
quasi04b -29.6 4.1 -12.0 10.8 
quasi04c -31.3 3.9 -10.2 11.4 
quasi04d -32.4 3.6 -10.5 10.9 
quasi05a -12.5 3.6   -9.2   9.0 
quasi05b -13.0 3.6   -9.2   9.0 
quasi05c -13.2 3.7 -10.1 9.7 
quasi06a -12.7 3.8 -10.3 10.1 

 
For all quasigeoid models developed, standard 

deviation of their fit to the POLREF data remains at 
the same level; it slightly varies within the range 
3.2-4.1 cm, and does not indicate any improvement 
due to refining gravity data. The bias, however, gets 
significantly reduced from -30 cm to -13 cm after 
using refined gravity data. The results obtained 
indicate that the quality of heights of the POLREF 
sites is not any longer sufficient to evaluate quality 
of high precision gravimetric quasigeoid models for 
Poland (Krynski and Figurski, 2006). 

A pure numerical GPS/levelling quasigeoid 
model spanned on quasigeoid heights of the 
POLREF sites were developed (Krynski et al, 
2005d). It applies the “kriging” model that is based 
on LS collocation with 4-order polynomial trend 
and a signal. Statistics of the fit of that mode  to the 
EUVN and WSSG sites are given in Table 5.

l
 

Table 5. Statistics of the fit of GPS/levelling quasigeoid 
model („kriging”) to the EUVN and WSSG sites [cm] 

 Mean Std dev. Min Max 
ζmodel – ζEUVN -3.4 4.8 -21.3 10.3 
ζmodel – ζWSSG -3.1 5.4 -16.7 21.6 

 
Another GPS/levelling quasigeoid model 

spanned on quasigeoid heights at the POLREF sites 
was developed with support of mean 1' × 1' gravity 
anomalies (Krynski et al, 2005d). Statistics of its fit 
to the EUVN and WSSG sites are given in Table 6. 

 
Table 6. Statistics of the fit of GPS/levelling gravity 
quasigeoid model with support of gravity data to the EUVN 
and WSSG sites [cm] 

 Mean Std dev. Min Max 
ζmodel – ζEUVN -3.1 2.9 -12.4   2.1 
ζmodel – ζWSSG -3.2 5.5 -25.9 43.8 

 
GPS/levelling quasigeoid models spanned on 

quasigeoid heights at the POLREF sites exhibit 
almost the same bias of 3 cm. Adding gravity data 
substantially improves GPS/levelling quasigeoid 
model with respect to the heights of the EUVN 
sites. Evaluation of the effect of adding gravity data 
on GPS/levelling quasigeoid model, with respect to 
the heights of the WSSG sites is not representative 
due to varying outliers eliminated. 

An integrated GPS/levelling/gravity/topography 
model of quasigeoid was developed (Osada et al., 
2005). It uses the LS collocation for fitting the 
quasigeoid model to height anomalies at 
GPS/levelling sites with simultaneous determina-
tion of model parameters. The model was evaluated 
at the POLREF, EUVN and WSSG sites (Table 7).  
Table 7. Statistics of the fit of the integrated 
GPS/levelling/gravity/topography quasigeoid model to the 
POLREF EUVN and WSSG sites [cm] 

 Mean Std dev. Min Max 
ζmodel - ζPOLREF  0.5 0.7   -1.3   3.0 
ζmodel - ζEUVN -0.5 0.6   -2.3   1.2 
ζmodel - ζWSSG -1.5 4.0 -24.3 38.9 
The fit of the integrated quasigeoid model to the 

POLREF EUVN and WSSG sites corresponds to a 



priori variances used for height anomalies at those 
sites. 

Gravimetric quasigeoid model best fitted to 
GPS/levelling at the POLREF sites was developed 
(Krynski and Lyszkowicz, 2006a). The difference 
between the GPS/levelling height anomaly and 
gravimetric quasigeoid height is expressed in terms 
of trend modelled by 3-parameter datum shift. After 
computing the trend parameters, an empirical 
covariance function of the de-trended residuals was 
calculated and modelled by a simple mathematical 
function (Krynski and Lyszkowicz, 2006a; 2006b). 
Based upon the computed set of 330 height 
anomaly differences, datum shift components ∆X = 
-30.1 cm, ∆Y = -27.5 cm, and ∆Z = 12.8 cm were 
determined by using the LS method, and the mean 
measure of the fit equals to 1 cm. 
 
8 Quality of quasigeoid models 
developed 
The integrated, best-fitted and gravimetric 
quasigeoid models developed were mutually 
compared and the residual height anomalies were 

analysed (Krynski, 2006). The accuracy of the 
models was also evaluated with the use of height 
anomalies of the POLREF sites as well as in some 
cases of the EUVN and WSSG sites. Independent 
assessment of the accuracy of quasigeoid models 
was done with use of height anomalies at the sites 
of a precise GPS/levelling control traverse (Fig. 2, 
Table 8).  

 

 
Fig. 2. The fit of quasigeoid models to the sites of 
GPS/levelling control traverse [cm] 

 

 

Table 8. Statistics of the fit of representative quasigeoid models to the sites of the GPS/levelling control traverse and the inclination of 
the models with respect to the control traverse in N-E direction [cm] 

Quasigeoid model Mean Std dev. Min Max N-E incl. 
astro-gravimetric    8 21 -40  65 -0.15" 

gravimetric (quasi05b) -15     2.1 -20 -11 ~0 
gravimetric (quasi05c) -16     2.3 -21 -11 ~0 
gravimetric-best-fitted       -2.7     2.0     -7.4      2.0  0.004" 

integrated („2005”)      -0.7     1.8     -4.7      5.4 -0.004" 
 

Quality of astro-gravimetric quasigeoid is 
substantially lower than the quality of remaining 
quasigeod models developed. It might be improved 
by some densification of astronomic deflections of 
the vertical and generating a high resolution new set 
of gravimetric deflections of the vertical using the 
available unified gravity data.  

Heights of the GPS/levelling control traverse 
sites, as much more precisely determined then the 
ones of the POLREF network, are more suitable for 
evaluation of accuracy of gravimetric quasigeoid 
models. Standard deviations of fitting quasigeoid 
models to the control traverse sites are at the level 
of 2 cm, while when fitting to the POLREF sites 
they are hardly below 4 cm (see Table 4).  

Quality of best-fitted gravimetric quasigeoid as 
well as the integrated quasigeoid in Poland seems at 

the moment mainly limited by the quality of the 
GPS/levelling heights. 
 
Summary and conclusions 
All available data has been gathered, extensively 
qualitatively and quantitatively analysed, verified, 
and unified. Particularly, the extensive research was 
done on over a million of gravity data, acquired 
within last 50 years, that have became for the first 
time available for gravity field modelling.  

Precise terrain corrections were calculated for all 
gravity data within the radius of 200 km using high-
resolution digital terrain model DTED2. A new set 
of 1' × 1' mean Faye anomalies for Poland was 
generated. 

A GPS/levelling control traverse established 
across Poland proved to be a powerful tool for 

 



 

quality control of precise quasigeoid models in 
Poland.  

Quality of heights of the POLREF sites does not 
correspond to the accuracy of below 2 cm claimed 
in the documentation. It is not sufficient for quality 
control of precise quasigeoid models in Poland. 

New models of astro-gravimetric, gravimetric as 
well as best fitted quasigeoid model and integrated 
quasigeoid model based on gravity, GPS/levelling 
and topographic data were developed. Accuracy of 
the developed quasigeoid models has been 
evaluated by comparing quasigeoid heights with the 
respective ones on the sites of the GPS/levelling 
control traverse: 21 cm for the astro-gravimetric 
quasigeoid, 2.2 cm for the gravimetric quasigeoid, 
2.0 cm for the gravimetric best-fitted quasigeoid, 
and 1.8 cm for the integrated quasigeoid. 

Developed methods and computing strategies as 
well as experience gained reflect high potentiality 
for further research on developing precise 
quasigeoid models in Poland. 
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Integral 
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Abstract. A computational scheme using the 
wavelet transform is employed to evaluate the 
terrain correction integral. The efficiency of the 
wavelet multiresolution analysis as an alternative 
approach to the well-established Fast Fourier 
Transform (FFT) is studied. The integral is 
approximated in finite multiresolution analysis 
subspaces, using a two-dimensional wavelet 
algorithm. An orthogonal wavelet base function is 
used to build the wavelet algorithm. The 
characteristics of the base function and its effect on 
the results are investigated. This algorithm solves 
the problem in a point-wise procedure. The role of 
the kernel singularity in the wavelet multiresolution 
analysis is studied. Wavelet thresholding is used for 
the compression of the kernel, and hard and soft 
thresholding are tested. Global thresholding is 
compared to level direction-wise thresholding. 
Because of the fast decreasing kernel, high 
compression levels are achieved without loss of 
accuracy. A numerical example is given to clarify 
the use of this procedure in the numerical 
evaluation of the terrain correction integral. 
Conclusions and recommendations are given with 
respect to the suitability, accuracy, and efficiency of 
this method. 

 
Keywords. Wavelet multiresolution analysis, hard 
thresholding, level direction-wise thresholding, 
terrain corrections. 
  

1 Introduction 

Wavelet analysis is a comparatively young branch 
in signal processing. Wavelet expansions allow 
better local description and decomposition of signal 
characteristics [Burrus et al., 1998]. For many 
years, the evaluation of geodetic integrals in 
physical geodesy has been governed by the theory 
of Fourier transformation. This classical approach is 
based on the Fast Fourier Transform (FFT) [Sideris 

and Li, 1993]. This approach is well established and 
is now a standard geodetic tool. 
Sideris (1984) first evaluated the terrain correction 
integral using Fast Fourier Transform (FFT) for 
dense grids. Sideris and Li (1993) introduced zero 
padding to the solution of gravity field convolutions 
without windowing, using FFT.  Li et al. (2000) 
developed a unified set of formulas for the 
computations of the topographic effects in 
terrestrial and airborne gravimetry.  
Wavelet transformation has proved to be an 
efficient tool for many problems related to the 
analysis and processing of signals with complex 
structures. Its efficiency comes from its localization 
properties, data compression, and ability to deal 
with stationary and non-stationary noise in the 
wavelet domain [El-Habiby and Sideris, 2006].  
It is therefore a very powerful tool for evaluating 
geodetic integrals because of its localization power 
in the space and frequency domain. The wavelet 
transform of singular kernels leads to a significant 
number of small value coefficients, thus achieving 
high compression levels of the kernels. In this 
paper, the terrain correction integral is evaluated by 
treating it as a direct convolution problem. 
The main objective of this study is the verification 
of the efficiency of the wavelet transform approach 
as an alternative to the FFT to evaluate the terrain 
correction integral. 

2 Wavelets as a Filtering Tool 

The discrete wavelet transform (DWT) coefficients 

k,jω  of a signal or a function are computed 
by the following inner product: 

)t(f

k,jk,j ),t(f ψω =                 (1) 

where k,jψ are the wavelet base functions, and j 
and k are integer indices for the scale and 
translation of the wavelet function, respectively. 
The inverse wavelet transform is used for the 



reconstruction of the signal from the wavelet 
coefficients k,jω  by 

∑∑=
j k

kjkj ttf )()( ,, ψω   (2) 

Equations (1) and (2) are called “analysis” and 
“synthesis,” respectively. The dyadic wavelet 
algorithm developed by Daubechies is used here 
[Daubechies, 1992].  k,jψ  is a shifted version of 

the scaling function k,jϕ  into other V 
(approximation) and W (detail) spaces. These 
subspaces are based on the concept of 
multiresolution analysis  (MRA). 

The multiresolution analysis (MRA) is used for the 
fast decomposition of a signal into independent 
frequency bands through a nested sequence. 

A number of scaling coefficients )(Lh 2k ℜ∈  
represent the scaling function, which is the base of 
space : 0V

∑ −=
∈Zk

k )kx2(h2)x( ϕϕ   (3) 

The base of is represented by the detailing 

function 
0W

k,jψ  

where 

∑ −=
∈Zk

k )kx2(g2)x( ϕψ   (4) 

ψ  is the wavelet function that is generated from 

the original mother wavelet function and  are 
the detail coefficients. 

kg

The relation between the scaling coefficients and 
the detail coefficients is 

k1
k

k h)1(g −−=    (5) 

For the 2-D wavelet transform, the Mallat 
algorithms utilize a tensor product of two different 
directional one-dimensional wavelet transforms 
[Chui et al., 1994; Mallat, 1997]: 

)y(.)x()y,x(.app ϕϕϕ =   (6) 

)y(.)x()y,x(.Horiz ϕψψ =   (7) 

)y(.)x()y,x(.Vert ψϕψ =   (8) 

)y(.)x()y,x(.Diag ψψψ =   (9) 

where equations (6) to (9) are the two dimensional 
wavelet decompositions representing the 
approximation, horizontal, vertical, and diagonal 
sets of wavelet coefficients, respectively. 
Daubechies (db) wavelets with four vanishing 
moments are used in this case study (Figure 1). 
Daubechies wavelets have energy concentrated in 
timed, continuous, null moments, and decrease 
quickly towards zero as the input tends to infinity. 
Daubechies wavelets have no explicit expression 
except for db1 (Haar wavelet) [Keller, 2004].  

 
Fig. 1 Daubechies with four vanishing moments:  
scaling function to the left and wavelet function to the 
right  

2.1 Wavelet thresholding 

Wavelet thresholding is a technique used to 
compress the wavelet coefficients matrix 
representing the geodetic integral kernel. Wavelet 
coefficients (absolute) larger than the certain 
specified threshold δ are the ones that should be 
included in the reconstruction. The reconstructed 
function is as follows [Ogden, 1997]: 

{ } )()(ˆ
,,

,
tItf kjkj

j k
kj

ψω
δω∑∑ >

=  (10) 

where { δω >kj
I

, } is the indicator function of this set. 

The problem is always in making the decision about 
the thresholding value. The thresholding value can 
be obtained as follows: 

median ( detail wav. coef. at level 1 )δ =  (11) 

If it is equal to zero, then an alternative choice is 

0.05 max( detail wav. coef. at level 1 )δ = × (12). 



For more detail, see Donoho and Johnstone, (1994). 
Soft thresholding and hard thresholding were tested. 
Both gave similar results, although soft thresholding 
scales the wavelet coefficients, while hard 
thresholding just cuts the coefficients below a 
certain value without any distortions. Consequently, 
hard thresholding is preferred in this paper, as 
defined by the following expression: 

⎪⎩

⎪
⎨
⎧ ≥

=
otherwise,0

if,
ˆ k,jk,j

k,j
δωω

ω   (13) 

2.2 Terrain correction integral in the 
wavelet frame 

The terrain correction integral was evaluated using 
the wavelet technique. The equation for the terrain 
correction integral in planar approximation is used 
in this study, as follows: 

2
2 2 1 1 2 2 1 1( , ) [ ( , ) ( , )]

2 c
Gc x y H x y H x y K dx dyρ

= −∫∫  

      (14) 

where  
)y,x,y,x(l

1K
2211

3c =                    (15) 

 c is the terrain correction at the computational 
point,  

G  is the gravitational constant, 6.67×10-8 cm3g-

1s-2 , 
ρ  is the mean density of the topographic masses, 

2.67 g cm-3 , 
l is the distance between the data points 

 and the computation point , 
and 

)y,x( 11 )y,x( 22

H are the heights of the points  
The terrain correction kernel produces the matrices 
used for determining the wavelet coefficients. 
These coefficients are used to build up the design 
matrix during the evaluation of the terrain 
correction formula. For gridded data with equal 
spacing, which is the case in this study, the 
elements of the matrix in the spatial domain are as 
follows: 

2 2
2 1 2 1[( ) ( ) ]x x y y −− + − 3/ 2                    (16) 

for  or and zero for12 xx ≠ 12 yy ≠ 12 xx = and 
. The zero value compensates for the 

singularity at the computational point [Li, 1993]. 
12 yy =

Equation (14) is divided into three parts and each 
part is a discrete convolution: 

]EEE[
2
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where 
2
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2 2 2 1 1 12 ( , ) ( , ) cE H x y H x y K dx dy= − ∫∫  (20) 
2

3 2 2 1( , ) cE H x y K dx dy= ∫∫   (21) 
Equations (19), (20) and (21) are evaluated as 
convolutions. The convolution in the last equation 
is done between a unit grid (has a value of 1 for the 
all the grid points) and the kernel.  The procedure 
for the implementation of these integrals in the 
wavelet frame is described in the following, using 
E, as an example: 
The two-dimensional wavelet transform 
representation of H2 is done as follows: 
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Then the kernel is represented in the wavelet frame 
by the following two dimensional transformations: 
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   (23) 

Using Belykin’s [1993] algorithm, cK and 2H , are 
represented on a wavelet basis using the wavelet 
decomposition coefficients. That is, h stands for the 
approximation decomposition (low pass filter) and 
g for the detailing coefficients (high pass filter), as 
follows: 
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. .
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+ +∑∑ ∑∑

     (24) 
The summation is over dyadic intervals to avoid 
redundancy and decrease the computational effort. 
This kernel formula (24) is substituted in the E1 to 
yield the following equation: 
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     (25) 

The wavelet transform of the 2H  is implemented 
in equation (25) and by interchanging the order of 
integration and summation and subsequently 
integrating, the solution takes the form: 
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     (26) 
This solution can be summarized as the element-by-
element multiplication of wavelet transform 
coefficients of the kernel and the signal. Then, the 
product output matrix is summed up to have the 
solution directly at the computational point. It is 
worth mentioning that the step of inverse wavelet 
transform is done implicitly. Consequently, using 
this algorithm decreases the computational effort 
needed for to standard algorithms.  
The procedure used in solving the terrain correction 
integral is a combination of the Beylkin (1993) non-
standard algorithm for fast wavelet computations of 
linear operators, hard thresholding, and the Mallat 
algorithm. 

3 Results 

3.1 Data used and testing procedure 
 
The data used is a set of point heights (Figure 2). 
These are on a 36×56 grid with 1 km × 1 km 
spacing. The area is of very rough terrain; the 
statistics of the data heights are shown in Table 1. 

Table 1 Height statistics 

Max. (m) Min. (m) Mean (m) RMS (m) 
3395 1204 2115.08 2143.91 

Numerical integration, FFT, and wavelet solutions 
are compared in this study.  The wavelet solution is 
repeated with different kernel compression levels. 
The singularity of the kernel and the vanishing 
moments of the used wavelet family (Daubechies 
with four vanishing moments) are the main factors 
for having high compression levels. The combined 
approach of global and level-wise thresholding is 

tested. The numerical integration solution is the 
reference for all other solutions. 
 

 
Fig. 2 Grid of point heights. 

3.2 Full matrix wavelet solution 
 
All three solutions are practically identical. Figure 3 
shows the wavelet solution without compression. 
The difference between the wavelet solution and the 
numerical integration solution is shown in Figure 4; 
it has RMSE value of 0.000 mGal. 

 
Fig. 3 Full matrix wavelet solution 

 
Fig. 4 Difference between wavelet solution and 
numerical integration solution. 

Although both the wavelet and the FFT are at the 
same level of accuracy, the wavelet algorithm 



requires large memory (50.8 MB) to allocate the 
wavelet coefficient matrix of the kernel. In the case 
of FFT solution, 0.2 MB is required for allocating 
the FFT transformed kernel with zero-padding. This 
is the main drawback of the wavelet algorithm. A 
compression technique can be used, as mentioned 
before, for decreasing the memory required for 
allocating the wavelet coefficients matrix of the 
kernel and also to speed up the computations. 

3.3 Global thresholding wavelet solutions 
 
The wavelet evaluation of the Terrain correction 
integral is repeated again with different kernel 
compression levels. First, a global thresholding is 
applied using equations 10, 11, 12, and 13. A 
threshold value of 5.7×10-7 is used.  

 
Fig. 5 Difference between wavelet global thresholding 
(70% compression) and numerical integration 

The compression level (70%) corresponding to this 
thresholding value gives almost identical in 
comparison to the numerical integration solution, as 
shown in Figure 5. The RMSE of the differences is 
0.000 mGal. Larger thresholding values are used for 
the evaluation of the terrain correction integral 
using the wavelet global thresholding technique. At 
5.7×10-3 thresholding value, 93% compression level 
is achieved with 5.6 MB storage space. The RMSE 
accuracy (0.12 mGal) achieved at this compression 
level is acceptable for this application. The 
acceptable accuracy obtained at this high 
compression level is mostly the result of the fact 
that the kernel drops very fast with distance (with 
power of -3), in addition to the wavelets 
(Daubechies) four vanishing moments. Table 2 
shows the comparison between different solutions 
with different thresholding values in comparison to 
the wavelet solution without compression and the 
FFT solution. It is clear that the a significant 
improvement in the time and memory required for 

the evaluation of the terrain correction integral 
using wavelet transform; 93% compression level 
(0.12 mGal) with RMSE accuracy equal to 012 
mGal is achieved. 

Table 2 Wavelet global thresholding solutions 

Value FFT Full 5-3 5-2 5-1

RMSE 
(mGal) 0.00 0.00 0.12 1.21 8.27 

Comp. % - - 93% 96% 98% 
Storage 
(MB) 0.2 50.8 5.6 3.2 1.3 

Time  
(second) 0.05 0.5 0.15 0.15 0.15 

3.4 Level-direction wise thresholding 
wavelet solutions 

In the previous subsection, four levels of 
decomposition are done for the kernel; each one of 
these decompositions consists of three wavelet 
coefficients sets in three directions (horizontal, 
vertical, and diagonal). One global thresholding 
value is applied to all these levels and in all 
directions per level. 
In the level-direction wise approach, the global 
fixed value thresholding solution is combined with 
level direction-wise change in the threshold’s value. 
The threshold value that is computed from equation 
11 or 12 is taken as the minimum reference value. 
Larger different thresholding values are introduced 
for the diagonal, horizontal, or vertical coefficients 
at each level of decomposition. For example, 
different thresholding values are applied instead of 
the global thresholding value (5.7×10-1) 
corresponding to 98% compression level, as shown 
in table 3: 

Table 3 Level direction-wise thresholding (98% to 
97%) 

 Horizontal Diagonal Vertical 
Level 1 5.7×10-1 5.7×10-1 5.7×10-1

Level 2 5.7×10-1 5.7×10-1 5.7×10-1

Level 3 5.7×10-2 5.7×10-2 5.7×10-2

Level 4 5.7×10-3 5.7×10-2 5.7×10-3

RMSE 2.5 
Comp. % 97% 

Storage (MB) 1.8 
Time (second) 0.15 
 
At levels 1 and 2 a high thresholding value is used 
(5.7×10-1), and a different value (5.7×10-2) was used 
for level 3 in all directions and at level 4 in the 
diagonal direction only. For level 4 in the horizontal 
and vertical directions a thresholding value equal to 



(5.7×10-3) was used. If this approach is compared to 
the global thresholding case with one fixed value 
(5.7×10-1), it is seen that a 70% gain in accuracy is 
achieved with 1% loss in the compression level. For 
the 96% compression level in table 2, another 
combination of thresholding values is tested, where 
a thresholding value equal to (5.7×10-2) is used for 
the first level of decomposition and (5.7×10-3) is 
used for the other 3 decomposition levels.  The 
accuracy improved from 1.21 mGal to 0.18 mGal 
(85% improvement), with 1.8% loss in the 
compression level (96% to 94.2%), as shown in 
Figure 6. The main benefit from this combination is 
to increase the compression levels for the wavelet 
coefficients matrices without loss of accuracy. 
Figure 6 shows the results from this algorithm at 
different compression levels. It is seen that this 
algorithm is more effective at high compression 
levels. 
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Fig. 6 Wavelet global thresholding solutions versus 
wavelet global and level direction-wise thresholding 
solutions 

4 Conclusions 

Wavelet evaluation of geodetic integrals can be 
done efficiently. The global thresholding and the 
combined approaches introduced in this paper are 
very effective for evaluating the terrain correction 
integral, especially with rough areas. Orthogonal 
wavelets are essential for using this algorithm. The 
number of multiplications and the required matrix 
storage can be reduced by compression through the 
wavelet hard thresholding technique. In comparison 
to the numerical integration and FFT approaches, it 
gives practically identical results using full matrices 
without any thresholding.  The main drawback is 
the space required for allocating the wavelet 
coefficients matrix in the memory. This problem is 
solved using the global and level direction- wise 
thresholding techniques. In the evaluation of the 
terrain correction integral, compression levels of 

91% are achieved with no loss of accuracy. A 
compression level of 93% is achieved with an 
RMSE of 0.12 mGal. 97% compression level is 
achieved using the level-direction wise thresholding 
with 2.5 mGal accuracy. The fast decrease of the 
kernel is the main reason for these high 
compression levels. The wavelet global 
thresholding and the wavelet level direction-wise 
approaches are efficient techniques for the 
evaluation of geodetic integrals. 

References 

Beylkin G. (1993),Wavelets and Fast Numerical 
Algorithms, Lecture Notes for short course, 
AMS-93, Proceedings of Symposia in Applied 
Mathematics, v.47, pp. 89-117, 1993. 

Burrus, C. S., R. A. Gopinath, and H. Guo (1998). 
Introduction to Wavelets and Wavelet 
Transforms: A Primer. Prentice Hall, Upper 
Saddle River, New Jersey, USA. 

Chui, C. K., L. Monefusco, and L. Puccio (1994). 
Wavelets: theory, algorithms, and applications. 
Wavelet analysis and its applications, Vol. 5, 
Academic Press, INC. 

Daubechies, I. (1992). Ten lectures on wavelets. 
Society for Industrial and Applied Mathematics. 

Donoho, D. L., and I. M. Johnstone (1994). Ideal 
Spatial Adaptation via Wavelet Shrinkage. 
Biometrika 81: pp. 425-455. 

El Habiby M.; and M.G. Sideris (2006). On the 
Potential of Wavelets for Filtering and 
Thresholding Airborne Gravity Data. Newton’s 
Bulletin of the International Gravity Field 
Service, No.3, section 1. 

Keller, W. (2004). Wavelets in Geodesy and 
Geodynamics. Walter de Gruyter.  

Li Y.; M. G. Sideris; and K. P. Schwarz (2000). 
Unified terrain correction formulas for vector 
gravity measurements. PINSA, 66, A, No. 5, pp. 
521-535 

Mallat, S. G. (1997). A wavelet tour of signal 
processing, Academic Press, San Diego. 

Ogden, R. T. (1997). Essential Wavelets for 
Statistical Applications and Data Analysis. 
Birkhäuser, Boston, USA. 

Sideris, M. G. and Y., Li (1993). Gravity field 
convolutions without windowing and edge 
effects, Bulletin Geodesiqu, Vol. 67, pp. 107-118. 

Sideris, M. G. (1984). Computation of gravimetric 
terrain corrections using Fast Fourier transform 
techniques. UCSE Reports, No. 20007, Master 
Thesis, University of Calgary, Calgary, Alberta, 
Canada.  



Local Geoid Surface Approximation by Fuzzy 
Inference Systems: Case Studies in Turkey  
 
Mustafa Acar, M. Tevfik Özlüdemir, Rahmi Nurhan Çelik, Tevfik Ayan 

Istanbul Technical University, Division of Geodesy, 34469 Maslak, Istanbul, Turkey 
e-mail: acarmusta@itu.edu.tr 
 
 
Abstract. As one of the actual topics in the field of 
geodesy, geoid determination has never lost its 
priority. Wide-use of advanced space techniques in 
geodetic applications has even made geoid 
determination a more important research field. For 
example, ellipsoidal heights used for geoid height 
determination can be obtained much more precisely 
and reliably with space-based positioning 
techniques. Being parallel to the developments in 
space-based techniques, enormous advances in 
computer technology have enabled geodesists to 
easily apply some analysis and algorithms that had 
seemed to be much more complicated till 1980s. 
Through these developments new analysis 
techniques have also been developed. Fuzzy logic 
method that is widely employed in particular in case 
of low precision, uncertainty and the lack of 
information is one of these methods. In recent 
years, fuzzy logic algorithms have been widely 
applied in such geodetic studies as deformation 
analysis, ambiguity resolution in GPS, remote 
sensing, prediction of earth orientation parameters, 
GIS applications, immovable property valuation 
and etc. In this study, application of fuzzy logic 
approach in geoid surface approximation is 
discussed. The data belong to two different regions 
located in Istanbul and Sakarya, a town about 150 
km east of Istanbul. The topographic structures of 
these regions have different characteristics. For 
these two regions, geoid heights have been 
determined through fuzzy logic approach and the 
obtained results are interpreted. 
  
Keywords. Geoidal Height (undulation), Geoid 
Surface Approximation, Fuzzy Inference Systems, 
Soft Computing, ANFIS  

 
 

1 Introduction 
 

Today space based positioning techniques are 
widely used in geodetic and geodynamic 
applications. In former conventional techniques, 
positions were determined in two steps. In the first 

step latitude and longitude (φ, λ) were determined 
by triangulation and astronomic observations. The 
second step comprises of the determination of 
heights (H) by levelling and gravimetric 
measurements. Modern space based GPS technique 
has the capability of determining three dimensional 
coordinates in a very short time comparing to the 
conventional techniques and provide latitude, 
longitude and height of a point with respect to its 
reference ellipsoid, the geocentric WGS84 (World 
Geodetic System 1984). 

In geoid determination space based positioning 
techniques are also employed widely. As 
aforementioned, GPS technique provides ellipsoidal 
heights that are reckoned from ellipsoid. However, 
most users desire heights in a natural system rather 
than purely geometric ellipsoidal heights. Most 
surveying measurements are made in relation to the 
geoid, which is the equipotential surface of the 
Earth’s gravity field, not ellipsoid because the 
surveying equipment is aligned with the local 
gravity vector, which is perpendicular to the local 
equipotential surface passing through an 
observation point, usually through the use of a spirit 
bubble (Featherstone 2001). 

The most common natural height is the 
orthometric height above the geoid that has a 
physical meaning and depends on the gravity field 
of the world. The relation between ellipsoidal 
heights and orthometric heights can be set up by 
geoid determination. 

Gravimetric method is the most commonly 
applied method for precise geoid determination. 
However, the application of this technique is mainly 
dependent on the availability of high-resolution 
gravity data. In case of the lack of proper gravity 
data, the geoid could be modelled with different 
geometric methods such as astro-geodetic method 
or geoid height from GPS in conjunction with spirit 
levelling (Kuhar et al. 2001). Geoid height that is 
the difference between ellipsoidal height and 
orthometric height could be efficiently used for 
computing orthometric heights using coordinates 



obtained from satellite measurements through 
fitting. 

In this study, fuzzy logic approach in geoid 
surface approximation has been applied on some 
GPS/Levelling data collected in Istanbul and 
Sakarya towns which have different topographic 
structures. 
 
2 Geoid Height Determination by 

GPS/Levelling 
 
One of the main objectives of the development and 
improvement of geoid models has become to meet 
the requirements of the GPS users who want to have 
their GPS ellipsoidal heights converted into the 
local vertical datum (Engelis et al. 1985, Akyılmaz 
et al. 2003). In order to convert ellipsoidal heights 
derived from GPS measurements into conventional 
orthometric heights, the relationship between the 
geoid and the ellipsoid must be known (Kotsakis 
and Sideris 1999). The situation is illustrated in Fig. 
1. 

The relation between ellipsoid and orthometric 
heights can be written as follows: 
 
h ≈ H+N            (1) 
 

 
Fig. 1 Relation between ellipsoidal and orthometric 
heights (Akyılmaz et al. 2003) 

As given in Eq. 1 mathematical relationship 
between geoid, ellipsoidal, and orthometric heights 
is very simple. In this case the deflection of the 
vertical and the curvature of the plumb line are 
neglected. 

In practice, this expression reflects the possibility 
of GPS levelling, because it states that if the geoid 
height N is known, the orthometric height H (or 
normal height, depending on the definition of the 
quasi-geoid, but hereafter referred to as orthometric 
height) can be obtained from ellipsoidal height h 
determined by GPS. Obtaining orthometric heights 
this way, could in certain circumstances, depending 

on the required accuracy, replace conventional spirit 
levelling and thus make the levelling procedure 
cheaper and faster (Mårtensson 2002, Yılmaz and 
Arslan 2005) 

GPS/Levelling involves relative geoid heights 
and is independent of any reference system, as it 
involves determining the separation of two physical 
surfaces: the topographic surface and the geoid. 
Requires geoid heights on a reference ellipsoid to 
which the GPS heights are also referred (either a 
local ellipsoid if GPS heighting process applied 
after GPS transformation to local datum, or a global 
ellipsoid if GPS results are not first transformed). 

The determination of the geoid is in fact based 
on geoid heights. A geoid model is created through 
the interpolation of the known geoid heights at the 
control points that are located and distributed 
properly on the ground. The accuracy of the geoid 
depends on the accuracy of the input data, i.e. the 
accuracy and the density of the known geoid 
heights rather than the method used for 
interpolation. For geoid modelling different 
methods can be employed such as least squares 
collocation, multi-parameter polynomial fitting, 
multi-quadratic or weighted linear interpolations 
etc. All these methods have been evaluated only 
from the mathematical point of view and have often 
neglected the physical aspects of the geoid. In other 
words, the mentioned approaches use only latitude 
and longitude as input values. Inclusion of 
ellipsoidal heights as input values would make the 
approximation more realistic taking into account the 
physical characteristics of the geoid. Soft 
computing techniques enable us to apply such an 
approximation. This study focuses on the 
application of one of such soft computing 
techniques, namely fuzzy inference systems for 
geoid approximation. 
 
3 Adaptive Neuro-Fuzzy Inference 

Systems 
 
The acronym ANFIS derives its name from 
Adaptive Neuro-Fuzzy Inference Systems, feed-
forward adaptive networks, which are functionally 
equivalent to fuzzy inference systems. The basic 
idea of ANFIS can be described as follows: A fuzzy 
inference system is typically designed by defining 
linguistic input and output variables as well as an 
inference rule base. However, the resulting system 
is just an initial guess for an adequate model. 
Hence, its premise and consequent parameters have 
to be tuned based on the given data in order to 
optimize the system performance. In ANFIS this 



step is based on a supervised learning algorithm 
(Akyılmaz et al. 2003, Akyılmaz 2005, Jang 1993, 
Yılmaz and Arslan 2006). 

For simplicity, assume that the fuzzy inference 
system under consideration has two inputs x and y 
and one output f. Additionally, suppose that the rule 
base contains two fuzzy if-then rules of the Takagi 
and Sugeno’s type (Takagi and Sugeno 1983) as 

Rule 1: If x is L1 and y is B1; then f1=p1x+q1y+r1 
Rule 2: If x is L2 and y is B2; then f2 =p2x+q2y+r2 

The associated fuzzy reasoning and ANFIS 
structure are shown by Fig. 2(a), Fig. 2(b) 
respectively.  

Note that the node functions in the same layer 
are of the same function family (all circles without 
parameters or square nodes with parameters) 
(Akyılmaz et al. 2003, Jang 1991, Yılmaz and 
Arslan 2005) 

The functions of each layer can be described as 
follows: 

 
(a) 

 
(b) 

Fig. 2 (a), (b): (a) Type-3 fuzzy reasoning, (b) 
equivalent ANFIS (Yılmaz and Arslan 2006)  

Layer 1: Every node i in this layer is a square 
node with a node function 

)(,1 xO Aii µ=   i=1,2  

)(2,1 yO Bii −= µ  i=3,4  
(2) 

where x and y are the input to node i, and Ai is the 
linguistic label (small, medium, large, etc.) 
associated with this node function. In other words, 
O1,i is the membership function of Ai and it specifies 
the degree to which the given x satisfies the 
quantifier Ai. Usually, the membership function 

)(xAiµ  is chosen to be bell-shaped with the 
maximum value equal to 1 and the minimum value 
equal to 0 such as, e.g., the generalized bell function 
(see Fig. 3) 
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where, {ai, bi, ci} is the parameter set. As the values 
of these parameters change, the bell-shaped 
functions vary accordingly. Thus various 
membership functions on linguistic label Ai are 
defined. In fact, any continuous and piecewise 
differentiable functions, such as commonly used 
trapezoidal or triangular-shaped membership 
functions can also be considered as qualified 
candidates for node functions in this layer. 
Parameters in this layer are called “premise 
parameters” (Jang 1993). 

Layer 2: Every node in this layer is a circle 
node, which performs a fuzzy intersection operation 
on the incoming signals from the first layer and 
sends the result to the next layer. 

For instance, 

 
Fig. 3 Meanings of the parameters in the 
generalized bell membership function 
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The left equation shows fuzzy intersection by the 
algebraic product, the second one the minimum 
intersection as they are called. Both variants are 
consistent extensions of intersection in classical set 
theory. Please note that each node output represents 
the firing strength of a rule. 

Layer 3: Every node in this layer is a circle node 
such that the i-th node calculates the ratio of the i-th 
rule’s firing strength to the sum of all rules’ firing 
strengths as 

21
,3 ww

wwO i
ii +
==   i=1,2  (5) 

Outputs of this layer can be called normalized firing 
strengths. 

Layer 4: Every node in this layer is a square 
node with a node function that calculates the output 
for corresponding rules weighted by its normalized 
firing strength such that 

)(,4 iiiiiii ryqxpwfwO ++==  i=1,2  (6) 

where iw is the output of the previous layer, and 
{pi, qi, ri} is the set of parameters which are called 
“consequent parameters” (Jang1995, Yılmaz and 
Arslan 2006). 

Layer 5: The single node in this layer is a circle 
node that computes the overall output by using the 
weighted average defuzzification method as 
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ANFIS is the major training routine for Sugeno-
type fuzzy inference systems. ANFIS uses a hybrid 
learning algorithm (see Fig. 4) to identify 
parameters of Sugeno-type fuzzy inference systems 
(URL1 2006). ANFIS applies a combination of the 
least-squares method and the back-propagation 
gradient descent method for training FIS 
membership function parameters to emulate a given 
training data set (URL1 2006, URL2 2006). This 
approach is thus called hybrid learning method 
since it combines gradient descent and the least-
squares method.  

 
Fig. 4 ANFIS learning using hybrid technique 
(Walid 2005, Yılmaz and Arslan 2006) 
 
4 Numerical Example 
 

Geoid determination through fuzzy inference 
method of which details are given in the previous 
section has been applied on two data sets. These 
data sets belong to Istanbul and Sakarya which have 
different topographic characteristics. Figure 5 and 6 
show these selected test areas. Such information as 
the number of points, size of the areas, density of 
the GPS/Levelling points regarding the test areas 
are given in Table 1. 

 

Fig. 5 Point distribution of the study area in 
Istanbul 

The data collected in Istanbul belongs to a geodetic 
network densification project covering administrative 
area of the city. As seen in Fig. 5, the point 
distribution and the density of GPS/Levelling points 
in this project are optimal. However, both the point 
distribution and density are rather poor in Sakarya 
of which data belongs to a cadastral project (see 
Fig. 6). Orthometric heights in Istanbul vary 
between 1-480 m while they are in the range 
between 2-1599 m in Sakarya. 

Black Sea 

Marmara Sea 



 
Fig. 6 Point distribution of the study area in 
Sakarya 

Table 1. Information about the test areas 

Test 
Area 

Number 
of Points 

Area 
(km2) Point/km2 Point 

distribution 

Istanbul 409 10400 1/25 Good 

Sakarya 109 18000 1/165 Poor 

 
In some studies (Ayan et al. 1999, Ayan et al. 

2001, Erol and Çelik 2005) polynomial fitting 
procedures have been applied on the same data set 
for geoid modelling. In these polynomial fitting 
applications, uniformly distributed and randomly 
selected 350 points out of 409 and 19 points out of 
109 have been used for geoid modelling in Istanbul 
and Sakarya, respectively. The remaining points 
have been used for testing the model. The degrees 
of polynomial fitting employed for GPS/Levelling 
geoid modelling and the accuracies obtained by 
these models are listed in Table 2 (Erol and Çelik 
2005). 

Table 2. Results of the polynomial fitting 

GPS/Levelling Data GPS/Levelling 
Geoid 

Test 
Area 

Measur. 
Type 

Accuracy 
(cm) 

Poly. 
degr. 

RMS 
(cm) 

Istanbul  
GPS 
Geometric 
Levelling 

±1.3 
 

±2.0 
5 ±4 

Sakarya 
GPS 
Precise 
Levelling 

±1.8 
 

±0.2 
4 ±20 

As part of this study, the same data set has been 
evaluated by fuzzy logic approach. Table 3 shows 

the results of this approach. As seen from the 
results, in Istanbul region the model yields quite 
better results than polynomial fitting. The results in 
Sakarya region are also better. 

Table 3. Results of the Fuzzy logic approach 

 Model Data Test Data 
Study 
Area 

Min 
(cm) 

Max 
(cm) 

RMS 
(cm) 

Min 
(cm) 

Max 
(cm) 

RMS 
(cm) 

Istanbul -7.7 9.5 2.5 -10.2 10.3 3.4 

Sakarya -26.5 34.3 8.1 -36.8 39.7 18.3 

 
5 Conclusions 
 
The main objective of this study is the application 
of a fuzzy inference system, an approach that has 
become widely used in geodesy in recent years, on 
geoid determination. This study only focuses on the 
application of fuzzy logic approach out of several 
soft computing techniques. The data belongs to two 
different regions having different topographies. The 
outputs obtained through the application of different 
methodologies in these regions have been 
compared. In Istanbul, where point distribution is 
quite good and orthometric heights vary from 4 to 
400 m, the results obtained from either model or 
test data are quite satisfactory yielding proper 
accuracy required in the practical engineering 
applications that is defined as ± 5 cm in the 
Regulations for Large Scale Mapping and 
Geospatial Data Production that are the official 
regulations in Turkey. Fuzzy logic approach also 
yields considerable better results than the 
conventional polynomial fitting. Comparing to 
Istanbul, Sakarya is rather mountainous and its 
point distribution is quite poor. Therefore, the 
results obtained are not satisfactory in terms of the 
required accuracy. However, fuzzy logic approach 
employed for geoid modelling this region is also 
better than polynomial fitting in terms of its 
accuracy. In order to improve the model 
approximation in Sakarya region SRTM data will 
also be used in modelling. 
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Abstract. The quantity and quality of the terrestrial 
gravity plays a major role in the accuracy of local 
geoids. In countries, like Iran, where the gravity 
database is sparse and the quality is variable, the right 
selection of the computational technique is a key issue. 
Taken all limitations into account this study discusses 
the computation of the Iranian geoid. The collected 
gravimetric database consists of 16806 gravity points 
corresponding to 98 points per square km on average. 
This gravity database involves both old (low accuracy) 
and new, higher accuracy gravity.  In this study the 
authors investigated two different procedures, one uses 
only geopotential models, corrected for the 
topographic and atmospheric effects and in the second 
group they also applied the different modification 
techniques of the classical Stokes’s formula to 
integrate the terrestrial gravity data. The different 
gravimetric geoid solutions have been compared to 
GPS/levelling derived geoidal heights at some 200 
points. The best gravimetric geoid solution has shown 
-117 cm mean bias and ±67 cm standard deviation 
with respect to the GPS-levelling geoid. The same 
GPS-levelling comparison has resulted -25 cm mean 
offset and ±114 cm standard deviation for the existing 
official Iranian geoid. After applying a (linear) fit to 
the residuals the standard deviation decreased to ±36 
cm. As expected the solution without terrestrial data 
has shown much worse statistics, so it has no practical 
advantage.  
Keywords. geoid, global gravity model, topography 
 

1 Introduction 
 
The geoid, the equipotential surface of the Earth's 
gravity field, is more or less coincides with the mean 
sea level and it is used as the vertical datum for 
levelling networks. Geodesists use it as the reference 
surface for levelling while oceanographers need it for 
studies of ocean circulation, currents and tides. The 
geoid is also valuable for geophysicists as a tool for 
geodynamic studies, geophysical interpretation and 
prospecting. These applications require the knowledge 
of the geoid with a precision of better than 10 cm. An 
accurate solution of the boundary-value problem in 
physical geodesy is the well-known Stokes’s formula:  

( , , ( ) (  , , d
4
RN R S g Rϕ λ ψ ϕ λ σ
πγ σ

) = Δ )∫∫       (1) 

 
where N is the geoidal height computed at a point on 
the geoid with latitude φ, longitude λ and mean radius 
R, ψ is the spherical distance between computation and  
running points, Δg is the gravity anomaly on the geoid, 
γ is normal gravity on the ellipsoid, σ is the unit sphere 
and ( )S ψ is the original Stokes’s formula.  
  The Stokes’s formula requires that there are no 
masses (topography plus atmosphere) outside the 
geoid. This is achieved by mathematically removing 
the external masses or shifting them inside the geoid. 
The effect of the masses is then restored on the geoid 
after applying Stokes’s integral. The topographic 
effects in precise geoid determination have been 
discussed in many papers (e.g. Sideris 1990; Tziavos 
et al. 1992; Forsberg 1994; Martinec and Vaníček 
1994a, b; Nahavandchi and Sjöberg 1998; Sjöberg and 
Nahavandchi 1999; Nahavandchi 2000).  

The incomplete global availability of reliable 
gravity measurements has precluded the accurate 
determination of the geoid using Stokes’s formula. In 
practice, an approximate solution is used, where 
gravity data only in and close to the computation area 
is used. This truncation error can be reduced by the 
modification of the Stokes’s kernel; in essence, the 
long-wavelength geoid contribution is determined 
from a geopotential model and the short-wavelength 
information is derived from terrestrial gravity and 
topographic data. The modification of the Stokes’s 
formula, originating from Molodensky, aimed at 
reducing the truncation error committed by limiting 
the integration to a spherical cap around the 
computation point (Molodensky et al. 1962). 

The potential use of GPS for precise height 
determination made the geoid a practically relevant 
product of physical geodesy. Earlier, GPS and 
levelling data have been used to empirically verify 
gravimetric geoid solutions (e.g. Sideris et al. 1992; 
Smith and Small 1999; Nahavandchi and Sjöberg 
2001). Many studies have also been carried out to 
combine a gravimetric geoid and GPS-levelling data 
(e.g. Jiang and Duquenne 1996; Featherstone 2001). In 
this paper our objective is to determine different 
gravimetric geoid models over Iran. The study region, 
where the geoid is calculated, is still a 'white spot', 
where it is believed that all updates are welcome. 
Recently, different research groups used various 
procedures in their geoidal height computations over 
Iran. Ardalan and Grafarend (2004) computed a high-
resolution geoid model without applying Stokes’s 



formula over Iran. The standard deviation of the 
differences of this geoid solution with the national 
geoid model of Iran was ±91 cm. Safari et al. (2005) 
computed another geoid model based on an ellipsoidal 
gravimetric, altimetric and astronomic boundary value 
problem. The standard deviation of the differences 
between this geoid solution and 51 first-order GPS-
levelling stations was ±106.8 cm. Kiamehr (2006) 
used the classical Stokes approach and the least-
squares modification of Stokes’s formula to determine 
a newer geoid model for Iran. The geoid was based on 
GGM02s global gravity model (Tapley et al. 2005). 
The RMS of the differences between this geoid 
solution and 260 GPS-levelling stations is ±58 cm. 
This paper investigates different geoid solutions with 
and without terrestrial gravity data, as well as different 
modification procedures. A comparison with the GPS-
levelling geoid is also made.  

2 Gravimetric Geoid Determination with 
Terrestrial Gravity Data 

In practice, geoidal height can be computed by the 
following formula (see e.g. Heiskanen and Moritz 
1967; Nahavandchi 2004): 

 
1 2( , , , , , ,  N R N R N R Nϕ λ ϕ λ ϕ λ δ) = ( ) + ( ) + Corr          (2) 

 
where 
 

topo topoatm  , , , , , ,Corr tot ind dirN N R N R N Rδ δ ϕ λ δ ϕ λ δ ϕ= ( )+ ( )+ ( λ)      (3) 

 
N is the final geoidal height computed at a point on the 
geoid, atm

tot , ,N Rδ ϕ λ( )  is the total effect (direct plus 

indirect) of atmospheric masses, topo
ind , ,N Rδ ϕ λ( ) is the 

primary indirect effect on geoid due to topography, 
topo
dir , ,N Rδ ϕ λ( ) is the direct effect of topography on the 

long-wavelength part of the computed 
geoid, 1 , ,Ν R ϕ λ( )

)

 is the short-wavelength contribution 
to the geoid computed from Stokes’s integral and 

 is the long-wavelength contribution to the 
final geoid determined from a global geopotential 
model.  The short-wavelength part of the geoid can be 
determined from 
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where  
 

* * topoH H( , , ) ( , , ) ( , , )ellip sec indcorrg R g R g g Rϕ λ ϕ λ δ δΔ =Δ + Δ + Δ

where 
*H ( , , )g R ϕ λΔ  is the Helmert anomaly on the 

geoid, is the ellipsoidal correction,   ellipgδΔ

topo
sec ind ( , , )g Rδ ϕ λΔ is the secondary indirect effect on 

gravity anomaly due to topography, 0σ defines 

truncation cap and Mod ( )S ψ is a modification to the 
original Stokes’s formula ( )S ψ . In this study we use 
Helmert’s second condensation method (Heiskanen 
and Moritz 1967, p.145) to reduce the topography, 
implying that the topography is condensed to a surface 
layer at sea level, the condensation that preserves the 
mass, for which the Helmert-model Earth has the same 
mass as the real Earth. H ( , , )g r ϕ λΔ  is the Helmert 
gravity anomaly on topography which can be obtained 
from the sum of the original free-air gravity anomaly 
and the direct topographic effect referred to the Earth’s 
surface. Helmert gravity anomaly on the topography 
can be determined from the following formula: 
 

topoH
free-air dir( , , ( , , ( , ,g r g r g rϕ λ ϕ λ δ ϕ λΔ ) = Δ ) + Δ )        (6) 

where  is computed from the observed surface 
gravity (g) corrected for the free-air correction 
(0.3086H) and normal gravity (γ) ( =g-
γ+0.3086H

free-airgΔ

free-airgΔ

P, where HP is the orthometric heights in 
meters and the gravity units are in mGal), 

topo
dir ( , , )g rδ ϕ λΔ  is the direct topographical correction to 

the observed gravity anomalies. Here r=R+HP. The 
notation 

*H ( , , )g R ϕ λΔ  is used for H ( , , )g r ϕ λΔ  
analytically downward continued from the surface to 
sea level ( ). Here 

 is the effect of downward continuation of 

*H H
dwc( , , ) ( , , )g R g r gϕ λ ϕ λ δΔ = Δ + Δ H

H
dwcgδΔ

H ( , , )g r ϕ λΔ  from the Earth’s surface to sea level. 
Martinec and Vaníček (1994a, b) formulas are used to 
correct for the direct, primary and the secondary 
indirect topographical effect in this study. The 
downward continuation correction is computed based 
on a discrete formula developed in Martinec (1996, 
1998). The total atmospheric effect is computed using 
the formula derived in Sjöberg and Nahavandchi 
(2000). The ellipsoidal correction is derived by the 
formula given in Moritz (1980). Interested readers are 
also referred to Sjöberg and Nahavandchi (1999), 
Nahavandchi (2000) and Nahavandchi and Sjöberg 
(2001) for detailed treatment of correction terms.   

The long-wavelength part of the geoid can be 
determined from 

2
2

( , ,
2

M

n n
n

RN R s gϕ λ
γ

=

′) = Δ∑         (7) 
ϕ λ   

                 (5) 
where ns′  are modification parameters.  

 



Different modification methods of Stokes’s formula 
were applied in this study: modified Wong-Gore 
(1969), Vaníček-Kleusberg (1987), Molodensky 
(1962) and the least-squares (Sjöberg 1984) models. 
Interested readers are referred to Nahavandchi and 
Sjöberg (2001) for definition of modification 
parameters and related kernel modifications in the 
different models.  

3 Gravimetric Geoid Determination without 
Terrestrial Gravity Data 

 Unfortunately, the gravity data in Iran is sparse and 
the available gravity data have been collected over a 
long time span, using different methods, equipment 
and reference frames. The inconsistency and limitation 
in the gravity data is why this section introduces geoid 
models determined without the use of terrestrial 
gravity data. Nahavandchi (2002) presented two 
models:  

3.1 Model A 
This model employs the geopotential coefficients with 
the assumption that the external harmonic series 
expansion is convergent on the Brillouin sphere. 
However, a bias is expected for the external harmonic 
series when applied at the geoid within the 
topographic masses. This bias can be estimated by 
removing the topographic ( tot

MNδ ) and atmospheric 
( ) masses (such that we can now continue the 
external harmonic series of the geopotential 
downwards to the geoid - they are now harmonic 
between the geoid and the topography).  The 
realization is shown by the following formula 
(Heiskanen and Moritz 1967; see also Nahavandchi 
2002): 

tot
aNδ

( )

3 1 1 2 2

0 0 3 3 1

1
0 0 tot to

3

( , , )

1cos sin (sin )-

nnM n

nm nm
n m

t
M a

nm nm

GM a GM GM aN R C C
R R GM GM a

GMm S m P W U N
GM

φ λ
γ

λ λ φ δ
γ

= =

⎡⎛ ⎛ ⎞⎛ ⎞ ⎢⎜ ′= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢⎜⎝ ⎠ ⎝ ⎠⎝⎣
⎤

× + − + +⎥
⎦

∑ ∑

Nδ

⎞
⎟
⎟
⎠

                            (8) 
where  
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where 
 

1( ) ,           1, 2,3
4 P nmH nm H Y dυ υ

σ

σ υ
π
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and Ynm are fully normalized spherical harmonics. Also  
0ρ  is the density at the radius of sea level ( 0ρ ) 

multiplied by the gravitational constant (G), a1 is the 
equipotential scale factor for a global geopotential 
model (for EGM96=6378.1363 km), a2 is the 
equipotential radius of GRS-80 (6378.137 km), GM1 is 
the gravity-mass constant for a global geopotential 
model (for EGM96=3.986004415×1014 m3s-2), GM2 is 
the gravity-mass constant of GRS-80 
(3.986005000×1014 m3s-2), GM3 is the best estimate of 
gravity-mass constant for the Earth 
(3.986004418×1014 m3s-2), W0 is the adopted gravity 
potential on the geoid (62636856.88 m2s-2), U0 is 
defined as the normal gravity potential on the ellipsoid 
(62636860.8 m2s-2), Cnm, Snm are fully normalized 
geopotential coefficients of a global geopotential 
model in a non-tidal system, C'

nm are fully normalized 
normal potential coefficients of GRS-80 in a non-tidal 
system and S'

nm =0. 

3.2 Model B 
The second model is based on the fact that the geoid 
can be computed through height anomaly ζ0 and the 
height anomaly can be computed by the geopotential 
coefficients at the topography not onto the geoid. 
Therefore, one can ignore the bias due to the non-
harmonicity in the previous formula. This procedure is 
realized as (see Heiskanen and Moritz 1967; Rapp 
1997; Nahavandchi 2002): 

 
0 0

2Bouguer Free-air

( , , ) ( , , ) correction terms= ( , , )

( )
2 H

P

N R r r
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r H
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ζ ζ γ
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= +
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where all terms in Equation (12) are defined in 
Nahavandchi (2002).  0( , , )rζ φ λ  and the first three 
correction terms in Equation (12) is computed from a 
spherical harmonic representation of geopotential. The 
last correction term is computed from an integral 
formula (see Nahavandchi 2002). 

4 Numerical Investigations 

4.1 Data Sources 

=         (11) 

This study focuses on the determination of different 
gravimetric geoid models for Iran. The distribution of 
the terrestrial gravity data used is shown in Figure 1. 
The gravity data was provided by the Iranian Mapping 
Authority (National Cartographic Center of Iran, 
NCC). The topographic information in the form of a 1 
km Digital Elevation Model (DEM) was provided by 
the National Geophysical Data Center (NGDC) 
(http://www.ngdc.noaa.gov/mgg/topo/globe.html) 
and it was used for the computation of the topographic 
corrections.  

http://www.ngdc.noaa.gov/mgg/topo/globe.html


 The height coefficients nmH ,  and  
were determined using Equation (11). For this, a 30' × 
30' DEM was generated using the GETECH 5' ×5' 
DEM (1995) and averaged using area weighting. The 
spherical harmonic coefficients of the topography 
were computed to degree and order 360. This degree 
and order (360) was used in all topographical 
corrections in this study. The parametric definitions 
are: 

2( )nmH 3( )nmH

0Gμ ρ=  where G= 6.673 ×  and 11 3 -1 -210 m kg s−
0ρ = 

2670 , -3kgm 0ρ = 1.23 , R=6371 km, and -3kgm γ = 981 
Gal. The gravity anomalies were interpolated to a grid 
with10 resolution. The global geopotential model 
of GGM02s (Tapley et al. 2005) to degree and order 
120 is used throughout this study. 

10′× ′

4.2 Computations 
Prior to the geoid computations, the correction terms 
are computed. The direct topographic effect reaches a 
maximum value of 242.32 mGal, the primary indirect 
effect has a minimum value of -149.7 cm (largest 
value in an absolute sense), and the total atmospheric 
effect ranges from -10.4 to -25.2 cm. Thereafter, 
different geoid models were computed based on the 
mentioned modification procedures. 200 GPS-
levelling points distributed over Iran, were used to test 
the different gravimetric geoid versions. The rough 
accuracy estimate of the levelled heights in Iran is 
around 70 cm in the absolute sense (Hamesh 1991). 
The height system used is rather ambiguous, but it is 
assumed to be an orthometric system (ibid.). The GPS 
ellipsoidal heights in Iran are referred to the WGS84 
datum. The accuracy of the ellipsoidal height 
computed from GPS is estimated about 25 cm 
(Nilforoushan 1995). In Table 1 the statistics of the 
geometric (GPS-levelling) and gravimetric geoid 
differences are presented. The final Iranian 
Gravimetric Geoid (IRGG05, see in Fig.2) is 
computed using the Vaníček-Kleusberg solution as it 
has the best fit to the geometric geoid. At the IRGG05 
geoid solution the GGM02s geopotential model and 
the gravity data, integrated with 3 degrees truncation 
cap is used. IRGG05 refers to the Geodetic Reference 
System 1980 (GRS80) (Moritz 1980).  

The gravimetric geoid model of Iran is then fitted to 
200 GPS-levelling geoid heights using the least-
squares collocation method. A linear model was used 
to remove the trend from the data. Table 2 shows the 
statistics of the differences between the gravimetric 
geoid solutions and the GPS-levelling geoid. The 
official geoid model of Iran (Hamesh and 
Zomorrodian 1992) is also included in the 
comparisons. The results show that the gravimetric 
geoid model, computed in this study provides the 
smallest residuals.  

 

 
Fig. 1 Gravity data distribution in Iran. 

 
Table 1. The statistics of the differences between the 
geometric geoid, and the gravimetric geoid computed by 
different modification procedures. 
 

 Molodensky Least- 
squares 

Wong-
Gore 

Vaníček-
Kleusberg 

Max  1.406  2.158  1.897  1.068 
Min -2.615 -2.559 -2.987 -2.682 
Mean -0.917  -0.572 -0.885 -1.173 
Std  0.702  0.738  0.894  0.672 

 
Table 2.  The statistics that show the differences between the 
geometric and gravimetric geoidal heights with different 
solutions 1) New geoid model of Iran computed by the 
Vaníček -Kleusberg solution (GGM02s is used as the long-
wavelength geoid, M=120) before fitting; 2) after de-trending 
with linear model; 3) after fitting using Least-squares 
collocation; 4) official geoid of Iran (Hamesh and 
Zomorrodian 1992) before fitting; 5) official geoid of Iran 
(Hamesh and Zomorrodian 1992) after de-trending with 
linear model and fitting using Least-squares collocation. 
 

 Solution 
1 

Solution 
2 

Solution 
3 

Solution 
4 

Solution 
5 

Max  1.068  2.094  1.278  2.829 3.109 

Min -2.682 -1.411 -1.398 -4.341 -2.621 

Mean -1.173  0.000  0.000  -0.259 0.000 

Std  0.672  0.659  0.363  1.140 0.580 

 
In the next step, the geoid models A and B, which 

do not use terrestrial gravity data (described in Section 
3), were computed. They were created to test the 
capability of the geoid computations, where no 
terrestrial gravity data is available. The accuracy of 
these two geoid models was estimated with the earlier 
used 200 GPS-levelling points. Figure 3 shows the 
total topographic correction applied in model A. 
Thereafter, the geoid was computed using Equations 
(8)-(10) as shown in Figure 4. This geoid model is also 
referred to the GRS80 reference ellipsoid and is 
comparable with the geoid derived from terrestrial 
gravity data. Note that the computation area is slightly 



different from the geoid derived using terrestrial 
gravity data.  

Thereafter, model B (not using terrestrial gravity data) 
was employed. Prior to the geoid determination all 
correction terms were computed [see Equation (12)]. The 
sum of all correction term is plotted in Figure 5. 

Table 3 shows the comparisons of these two geoid 
models at the same 200 GPS-levelling stations. Both 
models provide agreement about 1 m with GPS-
levelling data. This accuracy is acceptable considering 
the fact that no terrestrial gravity data were applied in 
these two models.  

 
Table 3. Statistics showing the differences between GPS-
levelling geoidal heights and the two other geoid models 
without terrestrial gravity data in metres 
 

     Mean Max Min SD 

Model A -1.617 1.553 -3.322 0.968 

Model B -1.464 2.208 -3.211 1.013 

 
Fig. 2 The gravimetric geoid model of Iran (IRGG05). 

 

 
Fig. 3 The total topographic correction computed for the 

geoid model A without terrestrial gravity data. 

 
Fig. 4 The geoid model of Iran computed using model A 

without terrestrial gravity data 
 

 
Fig. 5 The total correction terms computed for the geoid 

model B without terrestrial gravity data 
 

6 Discussions  
 
This study targeted at the determination of a new geoid 
model over Iran, (IRGG05) based on different 
modification methods of Stokes’s formula. Sparse 
terrestrial gravity data with 3 degrees of integration 
cap and the   GGM02s geopotential model was used. 
200 GPS-levelling points were used to select the best 
fitting gravimetric solution. According to this test the 
solution based on the Vaníček-Kleusberg modification 
method was selected as the final gravimetric geoid 
model of Iran (IRGG05).   

The overall comparison among different geoid 
models (over Iran) shows that the IRGG05 solution 
obtains one of the best results. However, further 
investigations are needed for the actual performance of 
IRGG05 among all geoid solutions over Iran. Denser 
and more precise GPS-levelling data are needed. 

The treatment of the gravity data, collected with the 
different methods and equipment, during several 



decades by different specifications, requires careful 
investigation before it is used for geoid computation. 
The gravity data are affected by various systematic 
errors, and they are referred to different reference 
frames. Also, the lack of accurate heights is usually an 
important error source. It was for these reasons, the 
geoid models without terrestrial gravity data were also 
created. The accuracy of those models however does 
not fit for the practical needs.  

Finally, it should be noted that in computation of 
the topographic corrections by integral formulas, the 
resolution of the DEM models plays an important role. 
A global model is used in this study while the DEMs 
with higher resolution, for example, the data provided 
by the Shuttle Radar Topography Mission (SRTM) 
will provide slightly different results.  
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Abstract.  Upon the request of the steering commit-
tee of the European Gravity and Geoid Project, the 
Institut Géographique National has prepared a data 
set to test geoid computation methods and pro-
grams. The set consists of digital terrain models, 
gravity data and levelled GPS points prepared in 
such a way that the computation of a 3°×2° geoid is 
feasible. The first section describes the motivations 
for the preparation of this data set and the specifica-
tions. In the next two sections, the area characteris-
tics and the data are presented. The fourth section 
gives an evaluation of the quality of the data set 
through a first solution for the quasigeoid. Finally a 
practical way to retrieve the data and future per-
spectives are outlined. 

Keywords.  Geoid modelling, quality control. 

1 Motivations and objectives 

At the IAG international symposium GGSM 2004 
in Porto, the steering committee of the European 
Gravity and Geoid Project (EGGP) asked the Insti-
tut Géographique National (IGN) to provide inter-
ested institutions and researchers with a data set to 
test methods and software to compute geoid mod-
els. As other mapping agencies, the IGN is specially 
involved in the evaluation of geoid models and 
could only reply positively to this request. 

A suitable test data set should satisfy the follow-
ing requirements: 

• The size of the test area should be large enough 
to allow the evaluation of geoid models at least 
at short and medium wavelengths. 

• Diverse kinds of field-related data should be 
available so that all computation methods can be 
used or tested. 

• The data coverage should be dense and homoge-
neous.  

• The topographic and geological features of the 
area should vary so that the influence of terrain 
density changes can be studied. 

• The data accuracy should be sufficient to avoid 
problems in separating errors in the data from er-
rors in the models or software. 

• The data should refer to known reference sys-

tems to avoid inconsistencies in the geoid com-
putation. 

• The data set should be easily accessible. 

The data set presented below corresponds to these 
specifications more or less accurately. 

2 Presentation of the area 

The target area for the geoid, which can be com-
puted, is plotted in the Figure 1. The area is located 
in the centre of France. It covers the northern part of 
the Massif Central and the southern part of the Paris 
Basin. Its size is about 200  × 200 km. It contains 
various types of terrains and geological structures:  

• The Limousin plateau of the Hercynian era,  
• Medium sized mountains of the tertiary era, cut 

by gaps where the Loire and Allier rivers flow 
through narrow valleys,  

• About 60 old volcanoes of the so called “Chaîne 
des Puys” from the Puy de Dôme to the Plomb 
du Cantal, in Alvernia. Some of the volcanoes 
are visible on the map.  

• In the north the large and flat Paris Basin begins. 

Heights vary from less than 150 metres (near the 
north-western corner of the area) to 1886 metres at 
the Puy de Sancy.  
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Fig. 1. Area for geoid computation. The geoid area is delim-
ited by the broken white line. 
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Fig. 2. Limits for the respective areas covered with levelled 
GPS points, gravity data and DTM’s. 

3 Data description 

Figure 2 shows the respective regions covered by 
three types of data: 

• Levelled GPS points are provided within the 
inner square delimited by the broken line; this 
area is the same as the geoid target area. 

• Gravity data cover the square delimited by a 
“dash dot” line, which extends beyond the geoid 
area with a margin of 192 km. 

• The digital terrain models are delimited by the 
continuous line. The margin allows terrain cor-
rections within a radius of 75 km. 

3.1 Levelled GPS points 

75 levelled GPS points are available (Figure 3). 
They originate from the “French Basic Network” 
(SGN, 1996), which is the French first order GPS 
network, and from the so called “NIVAG” data set 
(Bouron, 2004), which has been established to 
maintain the national levelling network by combin-
ing precise levelling and GPS measurements. The 
geodetic coordinates refer to the RGF93 reference 
frame, which is fully compatible with ETRS89. The 
standard deviation of the ellipsoidal heights is about 
2~3 cm for the RBF points, and slightly better for 
the NIVAG points. All the points are linked to the 
national levelling network (NGF-IGN69) by precise 
levelling with redundant observations. The total 
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Fig. 3. Distribution of the levelled GPS points. 

standard deviation of the difference in heights be-
tween neighbouring points is better than 2 cm, in-
cluding the uncertainties of the basic network and 
of the local ties. 

3.2 Gravity data 

Gravity data have been extracted from the data base 
of the Bureau Gravimétrique International, which 
was supplied by the Bureau de Recherches 
Géologiques et Minières for the French territory. 
The  number  of  points is about  240000, within the 

 
Fig. 4. Gravity data. 



limits °≤≤°−°≤≤° 71,4943 λϕ  (Figure 4). The 
mean density is 0.59 points per square kilometer 
with significant variations. Data are sparse in some 
mountainous areas, especially in the southern part 
of the geoid computation area. Although mainly 
measured before 1971, the gravity values have been 
converted to the IGSN71 system. They have been 
checked at BGI with the DIVA software, which 
uses a re-interpolation by collocation (Toustou, 
1991). The accuracy of gravity values has been 
evaluated as 0.25~0.75 mGal. These figures may 
worsen up to 1 or 2 mGal when computing Bouguer 
or residual anomalies due to errors in position or 
inconsistencies with the digital terrain model. 
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3.3 Digital terrain models 

Fig. 5. The quasigeoid. Units are metres. Two digital terrain models are provided in the limits 
°≤≤°−°≤≤° 82,5042 λϕ . One of them ex-

presses normal heights referred to the NGF-IGN69 
system; the other gives heights above the GRS80 
ellipsoid in the RGF93/ETRS89 system. The former 
has been obtained in 1992 from the IGN’s height 
data base which has been built up from regular to-
pographic maps or aerial surveys (Duquenne, 
1992). The latter DTM has been derived from the 
former using the RAF98 conversion grid (Du-
quenne, 1998). Given values in both models corre-
spond to the average height of each pixel. The reso-
lution of both models is 4.5″ in latitude and 6″ in 
longitude (about 140 m). The accuracy of the 
DTM’s has been evaluated by a comparison with 
753 geodetic benchmarks known to be at the terrain 
level. A standard deviation of 5 metres has been 
found in flat (open or wooded) terrain, up to 15 m 
in very rough topography. 

tion, neither the atmospheric correction (Sjöberg, 
1998) nor the ellipsoidal correction (Sjöberg, 2002) 
were applied. Figure 5 shows the quasigeoid. Tables 
1 and 2 summarize the statistics of gravity anoma-
lies ( g∆ : free-air, GGMg∆ : from the global model, 

resg∆ : residual) and height anomalies ( resζ : resid-
ual, GGMζ : from the global model, ζ : total), re-
spectively.  

Table 1. Statistics of gravity data. Units are mGal. 

 Mean Std. dev. Min Max 
g∆    3.06 20.70 −127.47 177.82 

GGMg∆    8.76 17.95   −34.92 122.65 

resg∆ (points) −1.03   8.89   −59.11  61.44 

resg∆  (grid)   0.25   8.74   −35.12  60.05 

4 A preliminary solution for the geoid 

In order to test the data set, a model of the quasige-
oid has been computed, using the residual terrain 
approach and the GRAVSOFT package (Forsberg, 
1994; Tscherning et al., 1992). The long wave-
length contribution of the gravity field has been 
modelled by an Earth gravitational model obtained 
from a combination of GGM02S (Tapley et al., 
2005) from degree 0 to 110 and EGM96 (Lemoine 
et al., 1998) from degree 110 to 360. Owing to the 
roughness of the topography in some areas, terrain 
effects have been computed by numerical integra-
tion. All available gravity data were used to com-
pute a grid of the quasigeoid. Tests with fixed ra-
dius for Stokes’s integration (100 km, 150 km)  
gave  less accurate results.  In this preliminary solu- 

Table 2. Statistics of height anomalies. Units are metres. 

 Mean Std. dev. Min Max 

resζ    0.10   0.11 −0.28   0.44 

GGMζ  49.46   1.46 46.70 52.62 

ζ  49.59   1.52 46.64 52.70 

Table 3. Comparison between the gravimetric quasigeoid 
and 75 GPS-levelling control points. Units are metres. 

Trend 
removed 

Mean 
diff. 

Std. dev. Min diff. Max. diff 

None −0.184 0.038 −0.292 −0.117 
Constant    0 0.038 −0.108   0.067 
Linear trend     0 0.037 −0.069   0.093 
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Fig. 6. Residuals of the differences between the gravimetric quasigeoid and the levelling-GPS data after a 3-parameter regression. 

A comparison of the quasigeoid with GPS-level-
ling data can be used to estimate the total accuracy 
of the data and the computation method; in addition, 
a check for outliers can be performed. Table 3 gives 
the statistics of the differences between the gravim-
etric quasigeoid and the geometric quasigeoid com-
puted from the 75 GPS and levelling points. A trend 
has been removed as denoted in the first column. 
The average difference (−0.184 m) is due to incon-
sistencies between the datums: the French height 
reference system NGF-IGN69 is known to be af-
fected by a systematic error consisting of a constant 
and a NS-slope. The accuracy (0.038 m) is similar 
to those related in other works. 

Figure 6 depicts the residuals of the 3-parameter 
regression. The maximum value (0.093 m) occurs in 
an area where the gravity data are very sparse. 

5 Practical considerations 

The data described above consists of 3 subsets: GPS 
and levelling points, gravity data and DTM’s. The 
first two are in the public domain and can be used 
without any authorisation. On the contrary the 
DTM’s are considered to be commercial products. 
Their use is presently limited to research on geoid 
modelling in the scope of the European Geoid and 
Gravity Project and require signing an agreement. A 

new DTM derived from the SRTM data is in prepa-
ration: it will be usable with fewer formalities. 
Moreover the complete data set will be made avail-
able through the website of the International Geoid 
Service: http://www.iges.polimi.it/. For the mo-
ment, geodesists interested in getting the data 
should send an e-mail to Henri.Duquenne@ign.fr.  

6 Conclusions and future 
developments 

A data set to evaluate geoid computation methods 
and software has been prepared. It could also be 
useful for training purposes. Comparison of a first 
solution for the geoid with levelled GPS points 
yields an estimate for the precision of 3.8 cm, in-
cluding errors in the data and method. Nevertheless 
this data set may not completely fulfill the require-
ments listed in the section 1 above. The size of the 
computation area could be increased, but this re-
quires international cooperation. The density and 
quality of the gravity data could be improved, 
mainly in the south-western part of the area of com-
putation. New kinds of data could be measured and 
included (deflections of the vertical, gravity gradi-
ents). Finally, the main problem for the evaluation 
of the geoid modelling is still pending: how to sepa-
rate errors in the data from errors due to the meth-

mailto:Henri.Duquenne@ign.fr


odology or approximations. The solution could be 
to build a set of synthetic data on the basis of the 
real data. The former could be fully coherent and 
errorless while being as realistic as possible. 
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Abstract. Today, because satellite based 
positioning techniques such as GPS and GLONASS 
has a wide range use in practical geodetic 
applications, precise geoid determination became a 
major issue of geodesy. The reason for this, heights 
obtained with satellite measurements and 
conventional way are determined according to 
different referents surfaces. Ellipsoidal height can 
be determined with satellite measurements easily. 
However, in many geodetic applications instead of 
ellipsoidal heights, orthometric heights, reckoned 
from geoid, are required. Because orthometric and 
ellipsoidal heights are determined according to 
different surfaces, these two height systems are not 
collided each other and the difference between the 
systems are called geoid height or geoid undulation 
and geoid height is a transformation parameter used 
between the two systems. If geoid height could be 
determined precisely, orthometric heights can be 
obtained from ellipsoidal heights easily. Therefore, 
instead of conventional way of leveling, heights can 
be obtained with GPS measurements by saving time 
and money. In this study, geoid heights were 
determined by polynomial coefficients and Fuzzy 
logic (both Mamdani and Sugeno Fuzzy model) 
using data in Istanbul and effect of calculation 
methods of geoid height were examined. 
 
Keywords. Geoid height, GPS, orthometric height, 
ellipsoidal height, Fuzzy logic, polynomial 
coefficients. 
 

1 Introduction 

The geoid is an equipotential (level) surface of the 
earth's gravity field which coincides with mean sea 
level (MSL) in the open oceans. As such, the geoid 
provides a meaningful reference frame for defining 
height. The importance of accurately modeling the 
geoid has increased in recent years with the advent 

of satellite positioning systems such as the Global 
Positioning System (GPS). GPS provides height 
information relative to a best-fitting earth ellipsoid 
rather than the geoid (Seager (1999)). To convert 
ellipsoidal heights derived from GPS to 
conventional (and meaningful) orthometric heights, 
the relationship between the geoid and the ellipsoid 
must be known (Kotsakis and Sideris (1999)). The 
relation between ellipsoid, geoid and geoid height 
can be written following simple equation 

H = h – N + ε                          (1) 

where h are ellipsoidal heights obtained from GPS 
observations, H are orthometric heights derived 
from spirit leveling and gravimetry, N are geoid 
heights and ε are small quantities due to the 
deflection of the vertical and the curvature of the 
plumb line (Torge (1980)). 

In this study, how to calculate geoid height by 
Fuzzy logic and polynomial coefficients are 
explained and a case study is performed. In the case 
study, Fuzzy models (Sugeno and Mamdani) and 
polynomial coefficients are used to determine geoid 
height. 200 points distributed in Istanbul (Turkey) 
are used to construct fuzzy models and to determine 
polynomial coefficients; on the other hand, 50 
points are used to test of calculations. Calculations 
are interpreted, discussed and conclusion is drawn. 

2 Gps/levelling Geoid Height 
Determination 

The satellite based global positioning system 
Navstar-GPS (from now on referred to as GPS 
only) have had a tremendous impact on geodesy 
and surveying since its introduction some 20 years 
ago. The most widespread use of GPS in geodesy 
has, however, been on obtaining two dimensional 
positions, leaving the third dimension (height) out 
mainly because of the problems associated with 



different reference systems. Heights obtained by 
GPS are above an ellipsoid and are fundamentally 
different from traditionally obtained heights which 
are given with respect to the geoid.  
Mathematically, there is a simple relation between 
the two reference systems (where we have 
neglected the deflection of the vertical and the 
curvature of the plumb line) and this simple relation 
was stated in equation 1. 

In practice, the expression reflects the possibility 
of GPS leveling, because it states that if the geoid 
height N is known, the orthometric height H (or 
normal height, depending on the definition of the 
geoid, but hereafter referred to as orthometric 
height) can be obtained from ellipsoidal height h 
determined by GPS. Obtaining orthometric heights 
this way, could in certain circumstances, depending 
on the required accuracy, replace conventional spirit 
leveling and thus make the leveling procedure 
cheaper and faster (Mårtensson (2002)). 

3 Determination of Geoid Height 
According to Polynomial Coefficients 

Polynomial surface fitting is one of the most 
common methodsused in surface fitting. The goal of 
this method is that study area is expressed only one 
function. Put it another way, with points which 
characterize the region and arguments (X, Y, N, or 
µ,λ, N) that required to solve problem, it is a 
determination of polynomial coefficients using 
model points to find geoid height at a point whose 
horizontal coordinates known in the region. 
Furthermore, polynomial coefficient is widely used 
as a trend surfaces in the study area in some 
methods such as Kriging and Collocation. Degree 
of polynomial is determined by highest degree term 
in a polynomial. 

Surface is generally expressed with a two 
parameter high degree polynomial as equation (2) 
which is general expression of orthogonal 
polynomial 

∑ ∑
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=
=

=
n

0k

k

0i
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ij  Y) N(X, ji yxa                    (2) 

where, 
aij     : unknown polynomial coefficients, 
n     : degree of polynomial, 
x, y : horizontal or geographical coordinates of 
points. 

If number of model points will be greater than 
number of polynomial coefficients to be 
determined, polynomial coefficients are determined 

according to Least Square Method (LSM). More 
details can be found Yılmaz and Arslan (2005) and 
Ayan et al. (1999). 

4 Fuzzy Logic 

Fuzzy sets and fuzzy logic were developed to 
represent, manipulate, and utilize uncertain 
information and to develop a framework for 
handling uncertainty and imprecision in real-world 
applications (Lin et al. (2003)). Fuzzy logic systems 
provide an effective and accurate method for 
describing human perceptions.  

Fuzzy logic provides an inference structure that 
enables approximate human reasoning capabilities 
to be applied to knowledge-based systems. The 
theory of fuzzy logic provides a mathematical 
strength to capture the uncertainties associated with 
human cognitive processes, such as thinking and 
reasoning. The conventional approaches to 
knowledge representation lack the means for 
representing the meaning of fuzzy concepts (Walid, 
2005).  

Some of the essential characteristics of fuzzy 
logic relate to the following (Zadeh (1984)): 

 Exact reasoning is viewed as a limiting case of 
approximate reasoning.  

 Everything is a matter of degree.  
 Knowledge is interpreted a collection of elastic 
or, equivalently, fuzzy constraint on a 
collection of variables.  

 Inference is viewed as a process of propagation 
of elastic constraints.  

 Any logical system can be fuzzified.  
In addition, there are also two main 

characteristics of fuzzy systems that give them 
better performance for specific applications:  

 Fuzzy systems are suitable for uncertain or 
approximate reasoning, especially for the 
system with a mathematical model that is 
difficult to derive.  

 Fuzzy logic allows decision making with 
estimated values under incomplete or uncertain 
information.  

There are two fuzzy models used in practice. These 
are Mamdani fuzzy model and Sugeno fuzzy model. 

4.1 Mamdani Fuzzy Model 

The Mamdani Fuzzy model was proposed as the 
very first attempt to control a steam engine and 
boiler combination by a set of linguistic control 
rules obtained from experienced human operators. 
Mamdani fuzzy logic use the linguistic variables to 



describe the process states and use these variables 
as input to control rules. Input variables are the 
basic of system. The terms of the linguistic 
variables are fuzzy sets with certain shape. It 
usually uses the trapezoidal or triangular fuzzy set 
but other shapes are possible. 

Mamdani Fuzzy model can be formed in five 
steps and these are (www1 (2005)); 

 Fuzzify input: decide all fuzzy statements in 
the antecedent and get a degree of membership 
between 0 and 1. 

 Apply fuzzy operator to multiple part 
antecedents: use the fuzzy logic operators and 
resolve the antecedent to a single number 
between 0 and 1. It is the degree of support for 
the rule. 

 Apply implication method: use the degree of 
support for the rule to shape the output fuzzy 
set. 

 Aggregate all Outputs: combine all the fuzzy 
sets that represent the outputs of each rule. 

 Defuzzify: defuzzify the aggregate output 
fuzzy set into a single number. 

Advantages and disadvantages of Mamdani 
Fuzzy model can be summarized as follow; 

Advantages of the Mamdani Fuzzy method: 
 It is simple to build. 
 It is the basic of the other fuzzy method. 
 It is suited to human feeling. 

Disadvantages of the Mamdani Fuzzy method: 
 It is too simple to control the process quickly 
and only suited to the long delay system, such 
as the temperature control system. 

 When it controls the high frequent input 
system, it needs additional device to improve 
the efficiency. 

4.2 Sugeno Fuzzy Model 
The Sugeno fuzzy model (also known as the TSK 
Fuzzy model) was proposed by Takagi, Sugeno, and 
Kang (Sugeno and Kang (1988)), (Takagi and 
Sugeno (1985)) in an effort to develop a systematic 
approach to generating Fuzzy rules from a given 
input output data set. A typical Fuzzy rule in a 
Sugeno Fuzzy model has the form 

If x is A and y is B then z = f(x,y) 

Where A and B are Fuzzy sets in the antecedent, 
while z= f(x,y) is a crisp function in the consequent. 
Usually f(x,y) is a polynomial in the input variables 
x and y, but it can be any function as long as it can 
appropriately describe the output of the system 
within the Fuzzy region specified by the antecedent 
of the rule. When f(x,y) is a first –order polynomial, 
the resulting Fuzzy inference system is called a first 

order Sugeno Fuzzy model, which was originally 
proposed in Sugeno and Kang (1988), Takagi and 
Sugeno (1985). When f is a constant, we then have 
a zero order Sugeno Fuzzy model, which can be 
viewed either as a special case of the Mamdani 
Fuzzy inference system, in which each rule’s 
consequent is specified by a Fuzzy singleton (or a 
prediffuzzified consequent). 

Advantages of the Sugeno Fuzzy method (www1 
(2005)); (www2 (2005)); 

 It is very suitable to compute 
 It can use linear techniques to control the non-
linear system. 

 It can optimize the parameters of the output to 
improve the efficiency. 

 It has the continuous output surface. 
 It can be analyzed by mathematics. 

Disadvantages of the Sugeno Fuzzy method 
(www2 (2005) ; 

 It is not intuitive. 
 When using the higher order Sugeno method, 
it is complex. 

4.2.1 Adaptive Network Based Fuzzy 
Inference Systems 

Adaptive Network based Fuzzy Inference Systems 
(ANFIS) are feed-forward adaptive networks which 
are functionally equivalent to fuzzy inference 
systems. The basic idea of ANFIS can be described 
as follows: A fuzzy inference system is typically 
designed by defining linguistic input and output 
variables as well as an inference rule base. 
However, the resulting system is just an initial 
guess for an adequate model. Hence, its premise 
and consequent parameters have to be tuned based 
on the given data in order to optimize the system 
performance. In ANFIS this step is based on a 
supervised learning algorithm (Jyh- Shing (1993)). 

All types of fuzzy inference systems can be 
subjected to such a procedure. However, the 
complexity of the problem depends on the type of 
reasoning in the consequent part even if the results 
of all three types would not change significantly for 
the same data set. Therefore, in this section, Type-3 
ANFIS is explained which is least complex and 
hence used for the prediction of the geoid heights. 
For simplicity, assume that the fuzzy inference 
system under consideration has two inputs x and y 
and one output f. Additionally, suppose that the rule 
base contains two fuzzy if-then rules of Takagi and 
Sugeno’s type (Takagi and Sugeno (1983) as 

Rule 1: If x is A1 and y is B1; then f1= p1x + q1y + r1. 
Rule 2: If x is A2 and y is B2; then f2 = p2x + q2y +r2. 



Note that the node functions in the same layer 
are of the same function family (all circles without 
parameters or square nodes with parameters) 
(Akyilmaz et al. (2003)). 

The functions of each layer can be described as 
below 

Layer 1: Every node i in this layer is a square 
node with a node function 
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where, x and y  are the input to node i, and Ai is the 
linguistic label (small, medium, large, etc.) 
associated with this node function. In other words, 
O1,i is the membership function of Ai and it 
specifies the degree to which the given x satisfies 
the quantifier Ai. Usually, the membership function 

)(xAiµ  is chosen to be bell-shaped with the 
maximum value equal to 1 and the minimum value 
equal to 0 such as, e.g., the generalized bell function 
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where, {ai, bi, ci} is the parameter set. As the values 
of these parameters change, the bell-shaped 
functions vary accordingly. Thus various 
membership functions on linguistic label Ai are 
defined. In fact, any continuous and piecewise 
differentiable functions, such as commonly used 
trapezoidal or triangular-shaped membership 
functions can also be considered as qualified 
candidates for node functions in this layer. 
Parameters in this layer are called “premise 
parameters” (Hines (1997). 

Layer 2: Every node in this layer is a circle 
node, which performs a fuzzy intersection operation 
on the incoming signals from the first layer and 
sends the result to the next layer. 
For instance, 

            1,2i)().(,2 ===      yxwO BiAiii µµ  (5) 

Layer 3: Every node in this layer is a circle node 
such that the i-th node calculates the ratio of the i-th 

rule’s firing strength to the sum of all rules’ firing 
strengths as 
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Outputs of this layer can be called normalized 
firing strengths. 

Layer 4: Every node in this layer is a square 
node with a node function that calculates the output 
for corresponding rules weighted by its normalized 
firing strength such that 

      1,2i)(,4 =++==      iiiiiii ryqxpwfwO  (7) 

where, iw is the output of the previous layer (layer 
3), and {pi, qi, ri} is the set of parameters which are 
called “consequent parameters” (Jyh- Shing 
(1995)). 

Layer 5: The single node in this layer is a circle 
node that computes the overall output by using the 
weighted average defuzzification method as 
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5 Used Data  

In this study 200 points whose latitude, longitude, 
ellipsoidal and orthometric heights known in 
Istanbul (Turkey) region are used to construct fuzzy 
models and to determine polynomial coefficients 
for the region. The points are homogenously 
distributed in Istanbul and point density is nearly 
one point in 25 km2. Data covers the region 
between 41°29´ 11″.07 > ϕ > 40° 45´11″.46 and 29° 
41´ 50″.69 > λ > 27° 57´ 36″.02. RMSE value of 
ellipsoidal height precision of data is nearly ± 3.5 
cm (Ayan et al. (1999)). To check for the 
calculations 50 points which had not been included 
in fuzzy models are used. 

6 Results  

Using 200 model points two different fuzzy models 
were constructed. The first Fuzzy model was 
constructed according to Sugeno type and the 
second one was according to Mamdani type. Both 



Fuzzy models were two inputs (Latitude and 
longitude) and one output (geoid heights). Inputs 
were divided five subsets and triangular 
membership function was used in the two Fuzzy 
models. Both fuzzy model calculations were 
performed using fuzzy toolbox in Matlab. 200 
model points were also used to determine 
significant polynomial coefficients for region. A 
fifth degree polynomial coefficient was determined 
for the region. Three coefficients were eliminated 
after significance test. 

Results of the two fuzzy models and fifth degree 
polynomial coefficients in both model and test data 
can be seen in Table 1.  

Table 1. Results of geoid height calculated by 
Sugeno, Mamdani and polynomial coefficient in 
both model and test points. 
 

Model Data 
Method Min 

(cm) 
Max 
(cm) 

RMSE 
(cm) 

Sugeno -0.0907 0.0831 0.0304 
Mamdani -0.4384 0.4480 0.1368 
Polynomial -0.0992 0.0907 0.0396 

Test Data 
Sugeno -0.0968 0.0928 0.0385 
Mamdani -0.2709 0.2218 0.1103 
Polynomial -0.0960 0.1040 0.0404 

When the results in table 1 were examined, it can 
be seen that Mamdani type of Fuzzy model gave the 
worst RMSE which were ± 0.1368 and ± 0.1103 cm 
in both model and test data respectively. Although 
Sugeno type of Fuzzy model results were the best of 
all, fifth degree polynomial coefficients results were 
also fairly good results especially the used data 
quality and data density. Fuzzy model was trained 
with model data according to hybrid method (least 
square adjustment was used to determine premise 
parameters and neural network was used to find 
error distribution and consequent parameters) in 
Sugeno type of Fuzzy model. On the other hand, the 
model was not trained with model data in Mamdani 
type of Fuzzy model. Mamdani type of Fuzzy 
model took more time to build than Sugeno type 
because the span of each subset of every input had 
to be determined by user and rules were formed by 
user in Mamdani type. However, determination of 
span of subsets of inputs and rules were formed 
automatically in Sugeno type. Geoid height errors 
in test data for the three calculation methods can be 
seen in Fig. 1 and Fig. 2. 

 
Fig. 1 Graphical representation of geoid height 
errors in test data for three calculation methods. 

7 Conclusion and Recommendation  

Geoid height is a transformation between 
orthometric (traditional way of leveling) and 
ellipsoidal (obtained from satellite measurements) 
height. Therefore geoid determination became a 
major problem of geodesy recently. In this study, 
geoid heights were determined using three different 
methods. These methods were Mamdani and 
Sugeno type of fuzzy models and a fifth degree 
polynomial coefficient method. Sugeno type of 
fuzzy modeling gave the best results because it was 
possible to form trained fuzzy model. It was also 
easy to construct. However, Mamdani type of fuzzy 
model took too much time to form and gave the 
worst results of all. Polynomial coefficient method 
gave very good results according to data quality. 
Geoid determination method, data density and data 



quality were the factors effecting geoid height 
precision. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 2: Geoid height error at test points determined 
by (a) Sugeno Fuzzy (b) Mamdani Fuzzy and (c) 
5th degree polynomial coefficients 
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Abstract. A new airborne gravity survey was 
conducted over Taiwan in 2004-2005. The survey 
results in conjunction with existing terrestrial, 
marine and satellite altimetry data are used for 
creating a consistent 2´x2´ grid of gravity anomalies 
referred to the Earth’s surface. For this, the gravity 
anomalies observed at the flight level are downward 
continued to the topographic surface. After the 
gridding, to solve the boundary value problem 
(BVP) by Stokes’s formula, the surface gravity 
anomalies are continued further to the sea level. The 
inverse of Poisson’s integral formula is used at these 
steps. The effects of topographic masses are 
estimated by applying Helmert’s second 
condensation method. A modified Stokes’s formula 
is used for evaluating the short wavelength geoid 
contribution, whereas the long wavelength geoid 
information stems from a recent GRACE-based 
geopotential model. The effect (in terms of geoidal 
heights) of inclusion the airborne data exceeds one 
metre over the mountainous part of Taiwan.   
 
Keywords: airborne gravimetry, BVP, downward 
continuation, Helmert condensation,  
_____________________________________________________ 
 
1  Introduction 
 
Over the past years several geoid models have been 
computed over Taiwan, see Hwang (1997) and 
references therein. Recent geoid computations 
employed the so-called ‘remove-compute-restore’ 
(r-c-r) principles and have been carried out by the 
GRAVSOFT (Tscherning et al., 1992) software. 
According to this method the residual terrain model 
(RTM) gravity effect and the long wavelength 
gravity field from the EGM96 (Lemoine et al., 1998) 
model are removed from the surface-related free-air 
anomalies. The Fourier transform and least-squares 
collocation were used to transform these residual 
gravity anomalies into the residual geoid. After 
adding to it the RTM contribution and the EGM96 
based reference spheroid one arrives at the quasi-
geoid model, which is then converted into geoidal 
heights. Note that in these computations the 
integration is proceeded by the unmodified Stokes 

function and the full expansion (i.e. up to degree 
360) of the EGM96 is used. The estimation of the 
residual topographical effects is based on the planar 
approximation of the topography. 

This contribution aims at summarizig the 
application of the Stokes-Helmert approach for 
computing a new geoid model for Taiwan. It should 
be noted that the Stokes-Helmert principles deviate 
quite a lot from those applied in earlier studies. Due 
to space limitations, however, their comparison with 
the r-c-r scheme is considered to be outside the 
scope of this study. Instead, the focus here is on 
incorporating the airborne data into the geoid 
determination procedure. Second, the recent 
improvements of the gravity data in the global scale 
have significant computational implications for 
regional geoid modelling as well. In this context a 
typical computational set-up with employing up-to-
date (e.g., GRACE-based) geopotential models 
(GGM) for regional modelling is revisited. 

We continue with a general summary of the 
Stokes-Helmert geoid modelling principles. A brief 
description of the characteristics of the target area 
and available data is given in Section 3. As is well 
known these factors may impose important 
constraints to geoid modelling. Computation of the 
Helmert anomalies and their downward continuation 
is tackled in Section 4. Some aspects of the anomaly 
gridding and solving Stokes’s BVP are described in 
Sections 5 and 6, respectively. The effect of 
inclusion the airborne data is shown in Section 7. A 
brief summary concludes the paper.   
 
2  Stokes-Helmert’s geoid modelling 
principles 
  
The solution of the BVP by Stokes’s method 
requires gravity observations that refer to the geoid. 
The gravity measurements are taken at the 
topographic surface or even above it. Thus, to satisfy 
the boundary condition the gravity anomalies need 
to be downward continued (DWC) to the geoid 
level. To ensure harmonicity of the quantities to be 
downward continued a number of different 
corrections related to the existence of topography 
and atmosphere need be introduced. As is well 



known the evaluation of the topographical effects is 
one of the most serious limits in precise geoid 
modelling nowadays.   

One way of estimating the effect of topographical 
masses is to use Helmert’s second condensation 
model. According to this model a condensation layer 
located on the geoid replaces the Earth’s 
topographical masses. So “Helmertizised” gravity 
field can be downward continued to the geoid level, 
where it will be decomposed into low- and high-
frequency parts. The long wavelength geoid 
information comes from the adopted GGM, whereas 
the short-wavelength part is obtained from the 
Stokesian integration over a limited domain. The 
truncation bias that occurs due to neglecting the 
remote zone is mitigated by modifying Stokes’s 
formula. For more details on Stokes-Helmert 
scheme, see e.g., Vaníček and Martinec (1994), 
Martinec (1998), Vaníček et al. (1999) and 
references therein. A recent review can also be 
found in Ellmann and Vaníček (in press).  

 
3  Target area and gravity data  
 
The geographical limits of the target area are 21.5° 
and 25.5° northern latitudes, and 119.5° and 122.5° 
eastern longitudes (i.e. an area of 440 x 300 km2), 
see Fig. 1. The new geoid model comprises the 
whole of Taiwan together with a large portion of 
surrounding waters. Taiwan’s terrain is complex and 
mostly inaccessible for conventional gravity survey. 
Over 75% of Taiwan’s terrain is covered with hills 
and high mountains, with the highest point being 
nearly 4000 m. Here the existing gravity data are 
sparsely distributed and there have been 
uncertainties in the gravity datum and the coordinate 
system associated with point gravity data (Hwang et 
al., in press). Obviously, the shortages of the data in 
the (mountainous) centre of the target area affect 
negatively the reliability of the overall geoid 
determination results. 

In order to enhance the spatial resolution of 
gravity data both on land and sea, an airborne 
gravity survey campaign was carried out in 2004-
2005 over Taiwan using a LaCoste & Romberg air-
sea gravimeter. The average flight altitude was 5156 
m, the survey area (~75,000 km2) covers the major 
part of the target area (for an illustration see e.g., 
Hwang et al., in press, Fig. 1). The overall airborne 
gravity accuracy is estimated to be 2 mGal at a 
spatial (half wavelength) resolution of 6 km. A more 
detailed report of the survey particulars and quality 
assurance can be found in Hwang et al. (in press). 

Recall, that the main objective of this study is to 
investigate the geoid improvements due to inclusion 
of the new airborne gravity data. For the sake of 
comparison two new geoid models are computed. 
The first model will be based on the existing 

terrestrial, marine and satellite altimetry gravity 
data, hence to be referred to as NoAirborne geoid 
model. The second model combines exactly the 
same data-sets plus airborne gravity data. This 
model is referred to as Airborne geoid model.  

The computational scheme of the Airborne geoid 
model is as follows: (i) DWC the airborne data to 
the earth’s surface; (ii) construct the existing and 
airborne data into a uniform grid at the earth’s 
surface; (iii) DWC the anomaly grid to the geoid 
level; (iv) Stokesian integration on the geoid level. 
The computational scheme for the NoAirborne 
model begins from step (ii). Since both models 
employ the Stokes-Helmert principles then their 
discrepancies indicate the geoid improvements due 
to the inclusion of the new airborne gravity data. 

 
4  Downward continuation of Helmert’s 
anomaly 
 
4.1 Helmert’s anomaly 
 
Application of the Helmert reduction yields a new 
gravity field, which becomes slightly different from 
the actual gravity field. As a result, the 
corresponding Helmert anomalies, ∆gh(r,Ω), differ 
from the commonly used free-air anomalies, 
∆g(r,Ω). The relation between the two anomaly 
types can be expressed as (cf. Vaníček et al., 1999): 
 

 
Fig. 1. Distribution of the terrestrial and marine gravity data-
points in the target area (enclosed by the rectangle). The white 
polyhedral bounds the mountainous area (average H > 1200 
m), where the airborne data will be used for the gridding.   
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where Vt(r,Ω) and Vct(r,Ω) are the potentials of 
topographic masses and condensation layer, 
respectively. The geocentric position (r,Ω) is 
represented by the geocentric radius r(Ω) and a pair 
of geocentric coordinates Ω = (φ,λ), where φ  and λ  are the geocentric spherical coordinates. All the 
quantities in Eq. (1) are referred to the flight level,    
rf (Ω)=rg(Ω)+5156 m, where rg(Ω) is the geocentric 
radius of the geoid surface. The term εellips(rf ,Ω) 
represents the ellipsoidal correction, which accounts 
for the deviation of the actual shape of the Earth 
from the spherical approximation of the fundamental 
gravimetric equation (for more details see, Vaníček 
et al., 1999). The formulation of the topographic 
terms in Eq. (1) employs the spherical 
approximation (Martinec, 1998). They can be 
evaluated by using the topographic elevation/density 
models in some numerical quadrature method (see 
e.g., Martinec, 1998). More specifically, the 
integration domain is usually divided among 
different element sizes, with small as possible 
elements close to the computation point. The 
topographic effects are estimated by using a new 
3”x3” Taiwanese digital elevation model, it serves 
also as a basis for generating the sets of 30”x30” and 
2´x2´ mean heights, which are used for more distant 
masses with respect to the computation points.  

Note that the atmospheric effects are neglected in 
Eq. (1). This due to the fact that the IAG 
atmospheric correction (Moritz, 1992) is already 
considered in the Taiwanese gravity data.  

The gravity field over Taiwan is fairly 
complicated due to various regional geophysical 
phenomena. Recall also that the free-air anomalies 
are strongly correlated with the topography. 
Therefore, even at the flight altitude, the free-air 
anomalies are rather powerful, ranging from +257 to 
–173 mGal. It should be noted, however, that the 
corresponding Helmert anomaly field (obtained by 
Eq. (1)) is somewhat smoother than the initial free-
air anomalies.  
 
4.2 Downward continuation 
 
Since the Helmert condensation has (numerically) 
removed the masses above the geoid then the 
Helmert anomaly can be continued all the way down 
to the geoid level (conversely, this is not the case for 
the free-air anomaly!). However, here we want to 
halt at the earth’s surface. Recall that step (ii) aims 

at combining the downward continued data points 
with the existing terrestrial data-points to form a 
uniform data grid at the earth’s surface. Note, 
however, that the terrestrial data is of good quality 
and sufficiently dense in lowland (coastal) regions. 
Therefore the downward continued data will be used 
only in the regions above 1200 m. 

In this study the downward continuation is solved 
by using the Poisson equation (Heiskanen and 
Moritz, 1967, p. 317). This integral formula had 
been originally designed as a formula for the upward 
continuation of harmonic quantities. In practice the 
integration is replaced by a summation over a 
regularly spaced grid of geographical coordinates. 
The resolution of the air-borne survey allows 
forming a 2´x2´ anomaly grid, which thereafter will 
be used for downward continuation. 

Importantly, the gridding helps to overcome the 
following shortage. Namely, the Poisson downward 
continuation is known to be an unstable problem. 
Due to the instability, existing errors in ∆gh(rf ,Ω), 
may appear magnified in the solution. However, 
when mean values (obtained from gridding) are used 
instead of point values, this problem is somewhat 
alleviated, as the mean values do not exhibit the 
highest frequencies (Sun and Vaníček, 1998). For 
solving Poisson’s formula it is expressed as a system 
of linear equations (cf. Martinec, 1996): 

 
( ) ( ) ( ), , , , ,h h

f f i ir r r rψ ′ ′ ∆ Ω = Ω Ω ∆ Ω g K g  ,  (2) 
 
where ∆gh(rf ,Ω´) is the vector of Helmert’s anomaly 
at the flight altitude (5156 m), ∆gh(ri ,Ω´), is the 
vector of the gravity anomalies referred to an i-th 
layer with a geocentric radius ri,  ( ), , ,f ir rψ ′ Ω Ω K  
is the matrix of the values of the Poisson integral 
kernel multiplied by the area of integration element, 
ψ(Ω,Ω´)is the geocentric angle between the 
computation and integration points. Downward 
continuation is an inverse problem to the original 
Poisson integral. The matrix-vector form of 
Poisson’s equation can then be used for solving the 
inverse problem, i.e. computing the unknown 
elements of the vector ∆gh(ri ,Ω). 

It is assumed that ri in Eq. (2) represents the 
geocentric radius of a horizontal layer, which is also 
parallel to the geoid surface. Recall, that the product 
of the Helmert anomaly and geocentric radius, ∆gh·r, 
is harmonic (Vaníček et al., 1996), and therefore 
such a field can be downward continued to any 
elevation within the interval of rg < rg+H < rf. 

Layer-wise DWC will be used to form a number 
of horizontal (2D) anomaly grids at different 
altitudes (the separation between the adjacent layers 
is set to 200 m) as follows. Since the mean 2’x2’ 



heights over Taiwan do not exceed 3400 m then the 
uppermost grid of downward continued gravity 
anomalies is formed at H = 3400 m. The next grid of 
gravity anomalies is formed at 3200 m. Further on, 
similar 2D grids are formed at the altitudes 3000 m, 
2800 m, etc. all the way down to 1200 m. 
Remember, for each layer the Helmert anomalies at 
the flight level serve as initial values. In other words 
a 3D structure, a mesh, consisting of 14 horizontal 
layers is formed. The anomaly values at topographic 
surface points (1200 < H < 3400 m) are predicted by 
a simple “sandwich”-grid 3D interpolation. The 
resulting Helmert anomalies are referred to the 
surface of the Earth, rt(Ω) = rg(Ω) + H(Ω). 

It should be noted that other strategies of 
combining different data-sets are still being tested 
and the results will be reported on in proper time. 
For instance, an alternative scheme is considered: (i) 
separate DWC of the airborne and terrestrial data-
points to the geoid level; (ii) forming a uniform grid 
of gravity anomalies at the geoid level; (iii) using 
this grid for solving the BVP.   

 
5  Gridding of anomalies  
 
Many numerical procedures at geoid modelling 
require gravity/topographic data on regularly spaced 
grid of geographical coordinates. Within the target 
area the total number of the terrestrial, marine and 
satellite altimetry (KMS02 was used, see Anderson 
and Knudsen, 1998) gravity points exceeds 10000. 
The average number of gravity points per one degree 
square is about 1000 (1 point per 10 km2), which 
suggests that a 2´x2´ grid resolution is a reasonable 
choice. The gridding is proceeded by a NCTU 
collocation program, whereas different weights are 
assigned for different data types.  

Gridding is a critical issue, because any error 
committed at this stage will directly propagate into 
the geoid solution. Within the frame of an 
experiment, not described here, the gridding for the 
NoAirborne model was proceeded with the free-air 
anomalies. Better interpolation results, however, are 
usually achieved by using the smoother Bouguer 
anomalies. Therefore the Airborne model utilises the 
complete spherical Bouguer anomalies (Vaníček et 
al., 2004) for gridding. This anomaly is also called 
as NoTopography (NT) anomaly, since the attraction 
of the global topography has been completely 
subtracted from the “full” gravity. The complete 
spherical Bouguer anomaly is hence a smoother 
quantity than the simple or refined (planar) Bouguer 
anomalies. A more detailed discussion on the used 
gridding approach is spared for a forthcoming paper. 
The resulting grids of the NT-anomalies (Airborne 
scheme) and free-air anomalies (NoAirborne 

scheme) are converted into surface-related Helmert 
anomalies, see Eq. (1). ( ),h

tg r∆ Ω  are thereafter 
downward continued to the geoid level. The same 
approach is used as described in Section 4.2, 
whereas the symbols rf and ri in Eq. (2) need to be 
replaced by rt and rg, respectively. 
 
6 Solution to Stokes’s boundary value 
problem 
  
The Helmert gravity anomalies on the geoid level 
serve as an input when solving the Stokes boundary 
value problem. Strictly speaking, the original Stokes 
formula requires gravity anomalies over the entire 
Earth (Ω0). In practice, however, the area of 
availability of anomalies is limited to some spatial 
domain (Ωψ0) around the computation point. The 
truncation bias (that occurs when the remote zone, 
Ω0 - Ωψ0, is neglected in the integration) can be 
reduced by modifying Stokes’s formula 
(Molodensky et al., 1960). This study employs the 
generalized Stokes scheme (cf. Vaníček and 
Sjöberg, 1991), which uses the long wavelength part 
of a GGM as follows: 
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where R is the mean radius of the Earth; the 
modified Stokes function SM(ψ0,ψ,(Ω,Ω´)), can be 
computed according to Vaníček and Kleusberg 
(1987); ( )0γ φ  is the normal gravity (a function of 
latitude) at the reference ellipsoid, dΩ´ is the area of 
the integration element. Note also that the used 
geopotential coefficients need first to be Helmertised 
to compute the harmonics ( ),h

n gg r∆ Ω . For more 
details see Vaníček et al. (1995).   

The Stokesian integration with Helmert’s residual 
anomalies (i.e. the last term on the right hand side of 
Eq. (3)) results in the Helmert residual co-geoid. 
Since the low-degree reference gravity field is 
removed from the anomalies before the Stokes 
integration, then the long-wavelength geoid 
information, i.e. the reference spheroid of degree M 
(see Heiskanen and Moritz, 1967, p. 97), is added to 
the residual geoid.  

As already noted, the condensation of the 
topographic masses causes the Helmert potential to 
become slightly different from the actual potential. 
Consequently, also the Helmert co-geoid does not 



exactly coincide with the real geoid. The effect 
causing this change is called primary indirect 
topographic effect. Thus, the first term in the right 
hand side of Eq. (3) transfers the Helmert co-geoid 
into the actual geoidal heights.  

The selection of the upper limit, M, which is used 
for defining the reference spheroid/anomaly and the 
modified Stokes function, SM(ψ0,ψ,(Ω,Ω´)), is 
important in geoid modelling. The following criteria 
were considered at the selection of the suitable limit 
(M) and corresponding integration radius ψ0. 
Obviously, the regional geoid models are also 
dependent, among other factors, on the quality of the 
used GGM. Recall that the high-degree GGM-s are 
determined from a combination of satellite data and 
terrestrial gravity data. This combination implies 
that the reference GGM and ∆gh(r,Ω) in Eq. (3) 
could be correlated with each other. One may want 
to avoid this undesirable feature. Therefore it is 
recommendable to use the “satellite-only” harmonics 
for computing the reference quantities in Eq. (3).  

A new combination model EIGEN-CG03C 
(Förste et al., 2005) is based on the CHAMP mission 
and the global surface data, but takes also into 
account 376 days of the GRACE twin-satellites 
tracking data. The EIGEN-CG03C spherical 
harmonics are developed up to degree/order 
360/360, which corresponds to a spatial resolution of 
110 km. The EIGEN-CG03C “satellite-only” field is 
developed up to degree/order 150/150. However, the 
user of a GGM should not consider the “satellite-
only” harmonics as an errorless dataset, especially at 
the higher degrees. Therefore one cannot increase 
the modification limit in Eq. (3) all the way up to 
maximum available spherical harmonic degree. For 
instance, the EIGEN-CG03C developers estimate an 
1 cm accuracy in geoid modelling with a spectral 
resolution up to degree/order 75/75. For more details 
see the original publication. 

Various aspects need to be considered when 
selecting the integration radius. Generally, a 
compromise is needed to balance between the 
shortages of the low- and high-degree parts of the 
gravity data. Fig. 1 demonstrates that the limited 
extension (especially to the west from the target 
area) of the gravity data is the most serious 
constraint for the present study.  

The choice of ψ0 = 1.5° is the basis for 
determining the upper modification limit M. 
According to an approach in Featherstone et al. 
(1998) we want the modified Stokes function 
SM(ψ0,ψ,(Ω,Ω´)) to become zero at the edge of the 
integration cap. The kernel is enforced to zero at ψ0 
= 1.5° with M = 90. This is satisfactory to us, since 
at the degree 90 the correlation between the EIGEN-
CG03C-derived and terrestrial datasets is completely 
prevented. Even though this limit exceeds somewhat 
the sub-cm accuracy expectation, it is tolerable due 

to limited availability of the regional gravity data. 
To eliminate the edge effect the gravity anomalies 
outside of the target area (where available) were also 
included into Stokes’s integration.  

It should be noted, however, that in the case of 
sufficient data coverage a larger integration radius in 
conjunction with a smaller modification limit could 
provide more reliable results.  

 
7  Discrepancies between the Airborne 
and NoAirborne geoid models  

 
The resulting discrepancies between the Airborne 
and NoAirborne geoid models range between –1.1 
and +2.3 m. Naturally, the largest discrepancies 
occur over the mountains, more specifically, inside 
the loops of the terrestrial gravity survey. Obviously, 
the new airborne gravity data has affected 
significantly the resulting geoid model. Note also 
that at the closest vicinity of the terrestrial survey 
loops the discrepancies remain relatively small. 

Recall, also that different types of gravity 
anomalies were used for gridding of the Airborne 
and NoAirborne models. Therefore, the 
discrepancies between the NoAirborne and Airborne 
geoid models are not only due to inclusion of the 
airborne data, but also due to adoption of different 
anomaly types for gridding. This is in agreement 
with a recent study by Janák and Vaníček (2005), 
who demonstrate that different gridding strategies 
may have a significant effect (up to 1-2 metres) on 
the geoidal heights. 

 

 
 
Fig. 2. Discrepancies between the two geoid models 
(“NoAirborne” minus “Airborne”) over the central part of 
Taiwan. The discrepancies range from -1.1 m (the darkest region) 
to +2.3 m (the brightest region). Black dots denote the locations 
of the point gravity data (downward continued airborne gravity 
points are not shown). 



8  Summary and further studies 
 

This contribution presents results for the effect of 
inclusion the airborne data on anomaly gridding over 
the mountainous parts of Taiwan, and the 
corresponding effects on geoid heights. Stokes-
Helmert’s geoid determination principles were 
applied for computing two new geoid models over 
Taiwan. The emphasis was given to the downward 
continuation of the harmonic Helmert anomaly and 
solving Stokes’s BVP by using up-to-date GRACE-
based reference models. We conclude, that the 
downward continued airborne gravity data in 
conjunction with surrounding terrestrial 
measurements are useful for geoid improvements 
over the areas with insufficient coverage of 
terrestrial data.  

Evidently, the region of interest, due to its very 
complicated geophysical conditions, appears to be 
very challenging in the context of the geoid 
modelling. Geoid modelling in Taiwan is a 
continuous effort and the goal is to achieve a cm-
level accuracy everywhere in Taiwan. Hence, the 
results here are only a part of the on-going work. 
Future studies include: (i) validation of the geoid 
models by using high-precision GPS-levelling data; 
(ii) comparisons with earlier geoid models in order 
to detected the most suitable geoid approach (e.g., r-
c-r vs. Stokes-Helmert) (iii) usage of different 
reference models (e.g., EGM96 vs. GRACE-based 
models) and modification limits; (iv) application of 
different gridding approaches. Furthermore, another 
airborne gravity survey campaign (the flight altitude 
~1500 m) was carried out over the Kuroshio Current 
east of Taiwan in 2006. It is of interest to utilise the 
new results in the Taiwanese geoid determination as 
well. The results of the aforementioned studies will 
be reported in forthcoming papers.  
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ABSTRACT. National heights systems throughout 
the world are referenced to the geoid whereas 
heighting by GPS directly results in ellipsoidal 
heights. These GPS-defined ellipsoidal heights have 
to be transformed into the national height systems. 
In practice, the surface polynomials are the most 
practical method to perform the transformation. 
Because of advances in computer science, surveyors 
have had an alternative method, the artificial neural 
networks, to the surface polynomials. In this study, 
these two methods are compared to each other using 
the data from Istanbul, Turkey. The investigations 
carried out show that the neural network method 
provides comparable results in modeling general 
characteristics with the conventional polynomial, 
but better results in modeling local characteristics. 
 
Keywords. Ellipsoidal height, orthometric height, 
geoid, surface polynomials, neural networks 

1 Introduction 

The GPS-defined ellipsoidal heights have to be 
transformed into the national height systems which 
are referenced to the geoid. A sufficiently accurate 
relationship between ellipsoidal (h) and geoid-
referenced orthometric heights (H) is established by 
the following formula (Bomford, 1965; Vanicek 
and Krakiwsky, 1982; Torge, 1991): 

NHh +=     (1) 

where N  is the ellipsoid-geoid separation which is 
also called geoid height or geoid undulation. 

In this equation, the geoid heights at survey 
points need to be known to achieve the height 
transformation. For local applications, they can be 
interpolated successfully by low order surface 
polynomials using GPS/leveling control points 
(Illner and Jager, 1995; Collier and Croft, 1997). 
Apart from this, there are many other methods 
which have been frequently used and some of them 

like trigonometric transformation (Heiskanen and 
Moritz, 1967) are rather old. Another method which 
has been widely used during the last few decades is 
Least-Squares Collocation. Recently developed 
methods are the Second-Generation wavelets and 
Artificial Neural Networks (see Duquenne et al., 
2004; Iliffe et al., 2003; Kotsakis and Sideris, 1999; 
Soltanpour et al., 2006; Featherstone and Sproule, 
2006; Kavzoglu and Saka, 2005). 

In this study, we deal with Artificial Neural 
Network (ANN) method alternative to the surface 
polynomials for the interpolation of geoid heights. 
Although these two methods were compared by 
Kavzoglu and Saka (2005), they had been applied to 
the simplest training function of ANN. Today, more 
advanced methods and training functions are 
available for ANN. In addition, while the 
performances of the methods in their study were 
measured only by the root mean squared error 
(rmse) further analyses are employed in this study 
to compare both methods. Last but not least, the 
methods that they used unusually resulted in better 
approximations for the test points than the common 
points used for estimating the model parameters. 
The reason of that might be insufficient or over-
controlled selection of the test points. For this 
investigation much more common point and much 
more test point are used. The data have been 
provided from a project carried out for renewing the 
geodetic infrastructure of Istanbul which is the most 
populated city in Turkey. With this project 
conducted by Istanbul Technical University, 650 
points were positioned by GPS technique in 
ITRF94. To obtain orthometric heights in the 
Turkish national height system, leveling 
measurements were carried out for 453 of 650 
points, and thus common points were produced for 
modeling the geoid in Istanbul locality called “local 
geoid” below (ITU, 2000). 100 points among them 
are randomly chosen as the check points to test the 
responses of both methods, used in this study, to the 
new points. Of course, the remaining 353 points are 
used for modeling the geoid (Fig. 1 and 2). 
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Fig. 1 Common points 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Check points 

2 Local Geoid by Surface Polynomials 

For the interpolation of geoid heights, the equation 
of surface polynomials can be given by 

∑∑
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where u  and v  represent position coordinates, aij 

symbolize the polynomial coefficients, and k is the 

degree of polynomials. In this study, the position 
coordinates are obtained from the ellipsoidal 
geographical coordinates as follows 

λϕ σλλσϕϕ /)(,/)( 00 −=−= vu (3) 

where 00  and λϕ  are the arithmetic averages of 
latitude and longitude with the standard deviations 

λϕ σσ  and , respectively. 
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For the Istanbul data, the degree of the surface 
polynomials has been set 9 at first, but 9th order 
polynomials has been led to erratic results for the 
check points. Whereupon the degree of the 
polynomials has been decreased to 5 step by step 
which gives the most reasonable results. In Table 1, 
the statistically significant coefficients of the 5th 
order polynomial obtained from the common points 
are shown. Having applied these coefficients to the 

common points the results obtained are plotted to 
give the contour map of local geoid in Fig. 3. 

The comparison of the polynomial model values 
with the known heights are resulted in errors with 
the standard deviation of 4.2 cm which range from 
-10.81 cm to 11.26 cm. When the surface 
polynomials are applied to the check points the 
errors range from -146.92 cm to 35.84 cm. The 
standard deviation of the check point errors is 21.34 
cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Local geoid from 5th order surface polynomials 

Table 1. Parameters of the surface polynomials obtained 

Parameter Value Parameter Value Parameter Value 
a00 36.911±0.007 a30 -0.012±0.008 a04 -0.059±0.005 
a10 0.028±0.011 a12 -0.028±0.021 a50 0.016±0.006 
a01 -0.545±0.014 a03 0.209±0.018 a41 0.108±0.020 
a20 -0.292±0.012 a40 -0.009±0.007 a32 0.209±0.025 
a11 -0.556±0.012 a31 -0.065±0.019 a23 0.090±0.019 
a02 0.075±0.012 a22 -0.057±0.016 a14 -0.041±0.013 

    a05 -0.065±0.006 
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3 Local Geoid by Neural Networks 

Neural Network method is an artificial intelligence 
technology which imitates human brain. This 
method is based on learning events using available 
samples and thus generating proper responses to 
new samples. The learning process is achieved by 
artificial neurons. General architecture of neural 
networks is composed of input, output and hidden 
layers. With respect to the problem, a neural 
network can be composed of many hidden layers 
which may contain a different number of neurons; 
however, in approximation problems one hidden 
layer usually suffices. Each neuron in a layer is 
connected to the neurons in the next layer through 
weights. The weighted sums of the neuron outputs 
in a layer are the inputs of the neurons for the next 
layer. In each neuron, the accepted input is added to 
the bias of the relevant neuron, and passed from a 
predefined activation function to produce the 
outputs. This process is continued as far as the 
output layer. The responses obtained in the output 
layer are then compared to the known sample 
values. Depending on the success in fitting of the 
responses to the sample values, all the weights of 
the network are altered through a predefined 
training function based on a specific learning rule. 
Using the new weights, the new responses are 
produced by the network. This procedure is carried 
on until the network produces responses that 
provide a predefined goal of a performance 
function, or reaches the maximum epoch number, or 
the number of maximum failure (Rumelhart et al., 
1986; Hagan et al., 1996). 

In this study, a neural network with one hidden 
layer is designated for modeling the local geoid 
surface of Istanbul. Its input layer contains two 
neurons to enter the position coordinates u  and v  
into the network system. Of course, the output layer 
consists of one neuron to get the responses for the 
geoid heights. As for the hidden layer, the number 
of its neurons is determined as twenty four using the 
following equation offered in (Otto, 1995): 

s)5(n
p

m +=     (4) 

where m is the number of neurons, p is the number 
of elements in the data set used in training, and n 
and s are the numbers of input and output neurons, 
respectively. The network which occurs after these 
settings up is displayed schematically in Fig. 4.  

 

 

 

 

 

 

 

 

 

Fig. 4. Scheme of the neural network  

This network is designed as a feedforward type 
of network which uses the backpropagation learning 
rule. For training function, the Levenberg-
Morquardt function is applied. As usually applied in 
establishing networks for function approximation, 
the tangent sigmoid and linear activation functions 
are employed in the hidden and output layers, 
respectively. 

The network is repeatedly trained by the 
common points until an optimum solution which is 
accomplished at the 35th iteration resulted in a mean 
square error (mse) of 1.2x10-3. After the training 
process, the network is employed to compute the 
geoid heights of the common points. Fig. 5 displays 
the contour lines of local geoid using the geoid 
heights of the common points obtained from the 
network. According to the figure, the local geoid 
from the neural network is uneven in comparison to 
the one from the surface polynomials. 
When the model values are compared with the 
known geoid heights the errors are found to range 
from -10.12 cm to 11.22 cm, and to deliver the 
standard deviation of 3.4 cm. As to the check 
points, applying the neural network is resulted in 
the errors with the standard deviation of 15.62 cm, 
which extend from -71.43 cm to 31.05 cm. 

3 Discussion and Results 

Based on the statistics given in Table 2, it can be 
said that both methods provides comparable 
solutions for the common points. The minimum and 
maximum values, ranges and absolute mean values 
of the errors obtained from each model are very 
close to each other. Their standard deviations are 
also in quite good agreement. In addition to these 
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Fig. 5. Local geoid from neural network 

statistics, the fitting index values, also known as 
coefficient of determination, take place in the table. 
Fitting index is an indicator from 0 to 1 (or 
presented as percentage) that reveals how closely 
the estimated values ( iŷ ) from an approximation 

model corresponds to the actual data ( iy ), and 
obtained from 
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where y  is the mean value of the actual data 
(Chapra and Canale, 2002). As seen from the table 
the fitting index values for the common points 
confirm that the both methods have provided well 
approximations. However, if a comparison has to be 
made between the methods, the neural network is 
favored in terms of the whole statistics of the 
common points against the surface polynomials.  

As for the check points, the error ranges of the 
polynomial and neural network models are about 
eight and five times larger than those obtained from 
the common points, respectively. Four times worse 

absolute mean values are obtained from both 
methods. The errors of the check points from both 
models are resulted in about five times worse 
standard deviations. The fitting indexes are also 
lowered in comparison with the common points. 

Table 2 Some statistics from the common and check points 

 Polynomial Neural Net 

 Common 
points 

Check 
points 

Common 
points 

Check 
points 

Min. (cm) -10.81 -146.92 -10.12 -71.43 
Max. (cm) 11.26 35.84 11.22 31.05 
Range (cm) 22.07 182.76 21.34 102.48 
Abs. mean (cm) 3.39 12.05 2.66 11.05 
Std. dev. (cm) 4.21 21.34 3.40 15.62 
Fitting ind. (%) 99.09 81.27 99.59 72.76 

When comparing two methods, the surface 
polynomials is better only in fitting index although 
it is regarded as comparable to the neural network. 
This situation can be explained in that the general 
characteristics of the data has been approximated 
better by the surface polynomials while local 
characteristics by the neural network. 
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4 Conclusions 

Based on these analyses above, comparable 
approximations for the common points are obtained 
from both of the methods. For the check points, the 
neural network gives better error range, absolute 
mean and standard deviation but the polynomial 
method provides relatively better fitting index. This 
means that the neural network is better in modeling 
local characteristics while the conventional method 
is better in modeling general ones.  

At this point, practitioners must decide what they 
need: only a better fitting to general or a 
comparable fitting to general but also a better fitting 
to local. When making a decision flexibility in 
designing a neural network should be accounted for. 
For instance, hundreds of training using different 
methods of ANN, such as “radial basis networks” 
and “generalized regression networks”, and/or 
different number of neurons in the hidden layer 
have been carried out; however, only one which 
gives the best results has been brought into view in 
this study. 

Finally, in the light of the findings above, it can 
be said that the neural network method is a practical 
alternative to the surface polynomials for local 
applications of geoid determination. Besides being 
an alternative, one may consider to combine both 
methods in a proper way, and to gather their 
strengths together. 
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Abstract. In regions with a rough topography, e.g.
the European Alps, the accuracy of geoid or quasi-
geoid models is often reduced. For the valida-
tion and accuracy assessment of gravimetric mod-
els, astronomical levelling is a well-suited indepen-
dent method. In a test area, located in the German
Alps, a new astrogeodetic data set was acquired using
the Hannover Digital Zenith Camera System. Verti-
cal deflections were determined at 100 new stations
(spacing about 230 m) arranged in a profile of 23 km
length. Repeated observations at 38 stations in differ-
ent nights reveal an observational accuracy of about
���.��. In order to precisely interpolate the vertical de-
flection data between adjacent stations, topographic
reductions of the observed deflections are carried out
using a high-resolution digital terrain model. A least
squares prediction approach is applied for the inter-
polation of a dense profile of deflection data. Eventu-
ally, the topography effect is restored. By computing
the normal correction, the deflection data is reduced
to the quasigeoid domain. The accuracy of the com-
puted astrogeodetic quasigeoid profile is estimated
to be at the millimeter-level. The available quasi-
geoid models, namely the German Combined Geoid
GCG2005, the Digital Finite Height Reference Sur-
face DFHRS and the quasigeoid by IAPG (TU Mu-
nich), are in agreement with the high-precision astro-
geodetic quasigeoid profile by about 8 mm, 20 mm
and 4 mm (RMS), respectively. A comparison of the
astrogeodetic profile with GPS/levelling data yielded
differences of 10 mm.

Keywords. Digital Zenith Camera System, verti-
cal deflection, astrogeodetic quasigeoid profile, local
quasigeoid evaluation

1 Introduction

During the recent years, considerable advances have
been made in the astrogeodetic determination of the
gravity field with Digital Zenith Camera Systems
(Hirt 2004, Hirt and Bürki 2002). These new mea-

surement systems provide vertical deflection data ac-
curate to 0��.08-0��.1 at a typical observation time of
about 20 min per station. Besides regional applica-
tions, e.g. the combined gravity field determination
in mountainous areas (e.g. Brockmann et al. 2004),
vertical deflections may be used in the method of as-
tronomical levelling in order to determine local geoid
and quasigeoid (QG) profiles. Astrogeodetic vertical
deflections represent independent observables which
can be used for comparison with gravity field models
based on gravimetric computation techniques. Pro-
vided that vertical deflection data is precisely ob-
served at densely distributed stations and the inter-
polation between the observation sites is done with
sufficient accuracy, astronomical levelling provides
the shape of the local gravity field with an accuracy at
the millimeter level over distances of about 10-20 km
(section 4). As a consequence, astrogeodetic grav-
ity field profiles may be used for the local validation
and accuracy assessment of gravimetric gravity field
models.

The aim of this work is the validation of different
gravimetric QG models by a new set of astrogeodetic
vertical deflections. The astrogeodetic data was de-
termined in a test area, located in the German Alps,
using the Hannover Digital Zenith Camera System
TZK2-D (section 2). Due to the rough Alpine topog-
raphy, the location is considered to represent a kind
of area where gravity field models tend to show a re-
duced precision (e.g. Denker et al. 2003). The main
focus of the paper is put on the thorough computation
of the astrogeodetic QG profile. Different aspects are
covered such as the role of Digital Terrain Model
(DTM) data for topographic reductions, interpola-
tion of the observed deflection data and the transition
from the observations to the QG applying the normal
correction (section 3). The computed astrogeodetic
profile is suited for comparison with GPS/levelling
data and gravimetric gravity field models (section 5).
In order to avoid any dependencies of the results on
density hypotheses, the comparison is restricted to
the QG domain.



2 Astrogeodetic Observations

In autumn 2005, the Digital Zenith Camera Sys-
tem TZK2-D was used for extensive vertical deflec-
tion measurements at 103 new stations which are ar-
ranged in a profile. It is oriented in good approxima-
tion in North-South direction. Located in the Isar val-
ley near the Ester mountains, the profile starts at the
lake Walchensee, crosses Mittenwald and ends near
the German-Austrian borderline. The profile length
is about 23.3 km and the average station spacing is
approximately 230 m.
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Figure 1. Observed vertical deflection data (left: original
data, right: data centered to mean values)

The collection of the vertical deflection data was
completed during a total observation period of 4
weeks. The observed data sets were processed
using the Hannover astrogeodetic processing sys-
tem AURIGA (Hirt 2004). The celestial refer-
ence was provided by the new high-precision UCAC
and Tycho-2 star catalogues (for details see e.g.
Zacharias et al. 2000). The campaign and processing
statistics are given in Table 1.

Due to the good weather conditions during the
campaign, about 38 stations were observed twice in
different nights. The standard deviation obtained
from the differences is found to be � ��.��� both for
� and �. These accuracy estimates agree well with
values from other astrogeodetic measurement cam-
paigns with the same instrument, cf. Hirt and See-
ber (2005) or Hirt (2006). The distribution of TZK2-
D stations and the acquired ��� ��-data is shown in

Station count 103
Double occupations (in different nights) 38
Station count per night 5-17
Single observations (total) 6700
Single observations (per station) 48
Processed UCAC stars (total) 589000
Processed UCAC stars (per station) 4180

Table 1. Statistics of the astrogeodetic measurement cam-
paign 2005 in the German Alps

Fig. 1 in vector representation. The vertical deflec-
tion field (left part) is obviously dominated by a
North-South trend showing the strong gravitational
influence of the masses of the central Alps located
South of the profile. The right part illustrates the
structure of the observations after centering to their
mean values. Thereby the largest portion of the at-
traction of the central Alps is removed and the grav-
itational attraction of the local topography becomes
visible, illustrating the ability of the high-precision
measurement system TZK2-D for observation of the
fine structure of the gravity field.

3 Astrogeodetic QG Computation
The basic principle of astronomical levelling is to in-
tegrate vertical deflections ��� �� along a path from
station 1 to station � (cf. Torge 2001):

� � � ��	�
 � 	��� (1)

��� � �

� ���

�

�� 
 ����

�
�	����� �
�

�� (2)

where � is the deflection component given in the az-
imuth � of the section �	 between adjacent stations.
The term 
�

��, referred to as normal correction or
normal height reduction, reduces the vertical deflec-
tion data to the QG with the result that QG height
differences ��� are obtained. Evaluating the inte-
gral given in Eq. 2 presupposes a dense coverage of
vertical deflection stations along the path so that the
deflection data may be interpolated linearly – with
sufficient accuracy – between adjacent stations (cf.
Torge 2001). Such a dense coverage is particularly
important in case of rough topography.

3.1 Interpolation of Deflection Data

The variation of observed vertical deflections ��� �����
originates to a large extent from the gravitational
forces of the local topographic masses (cf. Fig 1).
DTM data may be used for the computation of to-
pographic vertical deflections ��� ����	, e.g. by ap-
plying the prism method (cf. Forsberg and Tsch-
erning 1981, Denker 1988, Flury 2002). A topo-
graphically reduced set of vertical deflections shows



a much smoother behaviour than the observed sur-
face data. It is suited for interpolation of deflection
data ��� ��	
� at intermediate stations, applying tech-
niques such as least squares prediction.

For the topographic reduction of the observed de-
flection data ��� ����� a local high-resolution DTM
(spatial resolution of 50 m, area coverage of 50 km
x 60 km) was provided by the surveying authority of
the state Bavaria. It was used for the computation of
a set of topographic vertical deflections ��� ����	 at
the TZK2-D stations and, in addition, at 9 interme-
diate points between each pair of observed stations,
yielding an average station spacing of about 23 m. A
comparison between the least squares interpolation
and a simple linear interpolation of surface deflec-
tions (without using DTM data) yielded a QG differ-
ence of about 1 mm over a distance of 1 km at the
beginning of the profile where the topography is ex-
tremely rugged. Therefore the simple linear interpo-
lation approach does not meet the accuracy require-
ments of this work.

Fig. 2 (a) exemplarily shows the topographic de-
flection component ���	 as well as the ���� data de-
rived from the TZK2-D observations for a part of
the profile1. Note that both data sets show a high-
degree of correlation, reflecting the sensitivity of the
astrogeodetic observations for the attraction of the
local topographic masses. Fig. 2 (b) illustrates the
very smooth behaviour of the topographically re-
duced deflection � after removing the topographic
effect from the observations. Figure 2 (c) shows the
same quantity �, plotted however at a larger ver-
tical scale. The topographically reduced deflection
� serves as input data set for the least squares pre-
diction approach that decomposes the reduced de-
flection � into a filtered component ��� and a
residual noise vector ��. The residual noise vector
(Fig. 2 (d)) contains random errors of the astrogeode-
tic observations and uncertainties attributable to the
DTM data. The standard deviation computed from
the noise vector is found to be � ��.��� for � and ���.���
for �. It is considered to be a further confirmation of
the high accuracy of the astrogeodetic observations
presented in this paper.

For the set of intermediate points (about 900), the
described interpolation approach provides predicted
values �	
�. In the last step the topographic ef-
fect is restored. The obtained dense data set of pre-
dicted vertical deflections ��� ��	
� shows a linear
behaviour between each pair of adjacent stations (cf.
Fig. 2 (e)). It is suited for integration along the path

1Due to the restricted space, the prediction results for the com-
ponent � are not depicted. They are found in Hirt and Flury (2006).

using the basic equation 2. For a detailed study on
the combination of high-precision vertical deflection
data and DTM data the reader is referred to Hirt and
Flury (2006).
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Figure 2. Least squares interpolation approach. (a): ob-
served deflection ���� and topographic deflection ����. The
latter is shifted by 8�� for better visualization. (b): reduced
deflection �� � ���� � ���� (after removing the topo-
graphic influence from the observations). (c): reduced de-
flection � and predicted values at intermediate points. (d):
noise vector ��. (e): result of the restitution: a dense profile
of predicted surface deflection data ���� � ����� � ���� .
Note that the peaks, e.g. apparent in (a) and (e) at distances
0.4 km, 1 km or 1.8 km, originate not from density anoma-
lies but from azimuthal changes in the integration path. In
astronomical levelling, peak-like structures are typical fea-
tures when the stations are not exactly arranged in a straight
line.



3.2 Normal Correction

The normal correction 
�
��, which is also known

from geometric levelling, is applied for the rigorous
reduction of the vertical deflection data to the QG (cf.
Torge 2001, p. 251):


�
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� �

�

� � ����
���
�

��

�� � ����

���
�

��
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(3)
The computation of the normal correction 
�

�� re-
quires the knowledge of the surface gravity � along
the profile, the height above mean sea level of the
first station � and last station � and the height dif-
ferences �� between adjacent stations. The heights
�,� and �� may be derived from DTM data. The
mean normal gravity ��, �� at the profile’s first and
last station as well as ���� (arbitrary constant value)
are computed using standard formulae of the normal
gravity field (cf. Torge 2001, p. 106 and 112).

Today, the surface gravity � may be conveniently
derived from gravity databases because the corre-
sponding prediction accuracy of a few mgal meets
already the requirements as shown below, and gravi-
metric measurements would imply additional ex-
penses. Two different databases were used for pro-
viding the surface gravity � along the profile. The
first one was created at the Physikalisch-Technische
Bundesanstalt PTB (Braunschweig, Germany) and
is mainly based upon digitized Bouguer anomaly
contour maps. The second database is the one of
the IAPG (TU Munich) which consists of a very
dense set of gravity measurements (density of 2.5
points/km�) in the test area (cf. Flury 2002). A com-
parison between the predicted gravity values from
both databases with ground truth gravity at 30 sta-
tions yielded accuracy estimates of about 2 mgal
(PTB) and better than 0.5 mgal (IAPG). Fig. 3 shows
the two normal correction profiles 
�

�� (PTB) and

�
�� (IAPG), which were independently computed

based on gravity predictions from both databases.
The difference, depicted in the lower part of Fig. 3,
shows that the normal correction is accurate to 0.1-
0.15 mm. Hence the accuracy of the predicted grav-
ity is completely sufficient for the QG computation.

3.3 Astrogeodetic QG Profile

Following Eqs. 1-2, the astrogeodetic QG profile is
obtained. It is shown in Fig. 4.

4 Accuracy Assessment
Before doing the comparison with the gravity field
models it is useful to assess the accuracy of the as-
trogeodetic QG profile. The observed astrogeodetic
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Figure 3. Normal correction of the astrogeodetic profile

Figure 4. Astrogeodetic quasigeoid profile. The QG
height changes by about 1.3 m over a distance of 23 km
(upper part). The strong tilt of the QG in southern direc-
tion is due to the attraction of the central Alps. Detrending
the QG profile makes the fine structure visible (lower part).
The small peak-like features are due to azimuthal changes
in the integration path.

data set may be divided into two disjunct subsets in a
way that the first set consists of the odd station num-
bers and the second one of the even stations num-
bers. Therewith the station spacing of the resulting
profiles, each containing 51 stations, is 460 m. The
subsets serve as input data for the computation of two
independent astrogeodetic QG profiles. The differ-
ences give an empirical accuracy estimate of about
1-1.5 mm (cf. Fig. 5). Another assessment method is
a formal error estimation based on the error sources
affecting the computed QG undulations. Table 2 lists
the known error sources as well as their total impact
of about 2 mm on the computed QG. The impact of
the ��� ��- random error on the QG was estimated ap-
plying the error propagation law of astronomical lev-
elling, see Hirt and Seeber (2005). The systematic
UCAC error is on the order of 0��.01 due to Zacharias
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Figure 5. Differences between two quasigeoid profiles
computed from two independent data sets of astrogeode-
tic observations.

et al. (2000). The computed deflection data is as-
sumed to be affected by a systematic error of about
���.��� since the arithmetic mean from the UCAC and
Tycho-2 processing results is used. The uncertainty
of the normal correction is derived in section 3.2. It
should be noted that another error source in astro-
nomical levelling may be the influence of anomalous
refraction on the observed deflection data ��� ��, see
e.g. Hirt (2006). A small remaining refraction er-
ror cannot be excluded. However, it is assumed that
the largest portion of refraction is cancelled out due
to double observations on several stations and the
changing weather conditions during the campaign.

The general conclusion is that the astrogeodetic
QG computation is accurate to a few millimeters over
a distance of 23 km. Therefore it is considered to pro-
vide the reference for a comparison with the gravity
field models in the next section.

Source / Type ��� �� Æ��

��� �� random error ���.��� ���.�� 0.9-1.1 mm
systematic error
from UCAC ���.��	 0.5 mm
normal correction 0.1-0.15 mm
Total: � 2 mm

Table 2. Estimated error budget for the astrogeodetic QG.
The symbol Æ�� refers to the relative error of the QG
height difference �� over a profile distance of 23 km.

5 Comparisons
5.1 Astrogeodetic QG vs. GPS/levelling

A first comparison is carried out using a set of 5
GPS/levelling stations, covering the first half sec-
tion of the astrogeodetic profile. The GPS/levelling
data (Flury 2002) provides estimates for absolute
QG heights �. The RMS computed from the differ-
ences between GPS/levelling and the astro-solution
(Fig. 6) is 10 mm, and decreases to about 6 mm if
the first GPS/levelling station (located eccentrically
to the QG profile) is neglected. This very good agree-
ment of the astrogeodetic and GPS/levelling data is
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Figure 6. Comparison between GPS/levelling data and the
astrogeodetic quasigeoid profile

at the centimeter accuracy level, normally associated
with GPS height measurements.

5.2 Astrogeodetic QG vs. Gravimetric Grav-
ity Field Models

In the working area, three gravimetric gravity field
models are available: The German Combined Quasi-
geoid (GCG) 2005, computed as the average of
two independent solutions from the German Federal
Agency for Cartography and Geodesy (BKG) and the
Institut für Erdmessung (Liebsch et al. 2006). The
second model is the digital finite height reference
surface DFHRS (Jäger 2006) which is designed as
height surface at the 1-3 cm accuracy level. More-
over a gravimetric quasigeoid model for Bavaria, the
IAPG QG developed by Gerlach (2003), is also used
for a comparison.

The astrogeodetic QG solution does not provide
any information on the (absolute) height of the pro-
file. Therefore the comparison is done as bias-fit
where the QG height differences at the first sta-
tion are set to zero. The resulting difference pro-
files, the main result of this work, are shown in
Fig. 7 and the corresponding statistics are listed in
Tab. 3. Considering the location of the test area
near the German-Austrian borderline and its overall
mountainous character (e.g. inhomogeneous and in-
complete gravity data), the agreement between the
QG models and the astrogeodetic QG is surprisingly
good. The GCG2005 agrees with the astrogeodetic
QG better than 1 cm (RMS). The RMS difference
for the DFHRS amounts to 2 cm, thus remains com-
pletely within the associated accuracy specification.
An extremely good agreement is found between the
IAPG QG and the astrogeodetic QG. Here, the RMS
amounts to 4 mm as such reflecting the uncertainties
of both data sets. One reason for this excellent result
certainly is the much denser set of local input gravity
data used in the IAPG QG-computation in compari-
son to the GCG2005 and DFHRS models.

6 Conclusions

For the astrogeodetic validation of gravity field mod-
els, a new high-precision vertical deflection data set
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Figure 7. Comparison between the astrogeodetic quasi-
geoid profile and gravimetric gravity field models

Astro quasigeoid vs ...
GCG [m] DFHRS [m] IAPG [m]

Min -0.015 -0.033 0.005
Max 0.013 0.021 0.008
Mean -0.001 -0.009 0.002
RMS 0.008 0.020 0.004

Table 3. Statistics of the comparision between the astro-
geodetic quasigeoid profile and gravimetric gravity field
models GCG, DFHRS and IAPG quasigeoid.

was acquired in the German Alps using the Digital
Zenith Camera System TZK2-D. From repeated ob-
servations, the noise level of the vertical deflection
data is estimated to be about ���.��. An independent
confirmation, obtained by reducing the observations
with DTM data, provides an accuracy estimation for
the deflection data of about ���.��. The astrogeodetic
quasigeoid profile used in the comparison was com-
puted from a combination of the high-precision ver-
tical deflection data, DTM data and predicted surface
gravity data. A reasonable accuracy estimate for the
astronomical quasigeoid profile is considered to be at
the order of a few millimeters over a profile length of
23 km.

The comparison between the astrogeodetic QG
and three different gravimetric gravity field mod-
els (GCG2005, DFHRS, IAPG QG) reveals a good
agreement at the centimeter level. The agreement is
considered to be completely satisfactory when tak-
ing the mountainous character of the test area into
account. An extraordinary good agreement (RMS of
4 mm) is found between the IAPG QG and the as-
trogeodetic QG. As a general conclusion, this work
practically proves the capability of astronomical lev-
elling for the economic determination of quasigeoid
profiles with millimeter-accuracy over 10-20 km. To
the knowledge of the authors, this is the first time that
a consistency at the millimeter level is obtained bet-
ween an astrogeodetic and gravimetric gravity field
model in a mountainous region.
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Validation of marine geoid models in the North 
Aegean Sea using satellite altimetry, marine GPS 
data and astrogeodetic measurements  
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of Thessaloniki, Greece) 
 
Abstract. A dedicated measuring campaign for ge-
oid determination has been carried out in the North 
Aegean Sea, Greece, in May 2005. It was realized 
in the frame of a joint project between the Geodesy 
and Geodynamics Laboratory (GGL) of ETH 
Zurich, and the Department of Geodesy and Sur-
veying of the Aristotle University of Thessaloniki. 
The measurement area is part of the North Aegean 
Trough (NAT), which forms a continuation of the 
seismically active North Anatolian Fault Zone. Dif-
ferent methods for geoid determination have been 
applied, including astro-geodetic observations with 
the new Zenith Camera DIADEM in order to deter-
mine highly-precise Deflections of the Vertical 
(DoV), as well as GPS boat and buoy measurements 
to provide Sea Surface Heights (SSH). The data 
gathered during the campaign were compared to ex-
isting local gravimetric and altimetric geoid models. 
They helped to detect long wavelength errors in the 
gravimetric geoid model, which are mainly due to 
existing data gaps in the marine area.  
 
Keywords. Geoid determination, North Aegean 
Trough, Zenith Camera DIADEM, Deflections of 
the Vertical, Marine GPS, Sea Surface Heights 
 
1 Introduction 
 
From the early seventies on, systematic attempts for 
precise geoid determination have been carried out in 
the Hellenic area. The recent gravimetric geoid so-
lution HGFFT98 for the Hellenic area has been pre-
sented by Tziavos and Andritsanos (1999). In order 
to provide additional and independent data sets for 
an improved local geoid solution, a dedicated cam-
paign was carried out in May 2005. The area under 
study is situated within 38° < ϕ < 42° N. and 22° < 
λ < 27° E. The measurement area forms part of the 
North Aegean Trough (NAT), which is considered 
to be a continuation of the seismically active North 
Anatolian Fault Zone. Highly-precise Deflections of 
the Vertical (DoV) have been observed with the di-

gital Zenith Camera DIADEM, developed at GGL. 
Additionally, offshore GPS boat and buoy measure-
ments were carried out, thus scanning the sea sur-
face with high resolution and accuracy. Some of the 
marine GPS measurements were conducted along 
the Jason satellite subtracks for validation purposes. 
The Sea Surface Heights (SSH) were corrected for 
tidal effects by using a permanent tide gauge instal-
lation. Geoid height differences calculated from 
DoV and compared with GPS based SSHs showed a 
very good agreement. The comparison of these data 
sets with the gravimetric geoid model HGFFT98 re-
vealed significant disagreements. Apart from the 
gravimetric geoid model, a recent altimetric one 
based on SSHs from the Exact Repeat Missions 
(ERM) of ERS1, ERS2 and TOPEX/Poseidon has 
been employed for validation purposes (Tziavos et 
al. 2005). The comparison with the altimetric geoid 
model resulted in smaller differences, while it was 
also found that the altimetric, DoV and GPS models 
follow the same variations in the geoid height sig-
nal. Detailed validation tests of all existing data 
sources are presented and discussed in this paper. 
 

2 2 Available data sets 
 
2.1  Gravimetric model 
 
The development of the gravimetric geoid solution 
HGFFT98 was based on an optimal combination of 
free-air gravity anomalies and GPS/Leveling geoid 
heights available for the Hellenic area. The marine 
gravity data were taken from the digitisation of 
Morelli’s maps (Behrend et al 1996), so only few 
gravity observations were available for the area 
under study. The combined solution was determined 
using the Multiple Input – Multiple Output System 
Theory (MIMOST) presented by Andritsanos 
(2000), Andritsanos et. al. (2001). Due to the lack 
of specific information about the errors in both the 
gravimetric and GPS/Leveling input data, simulated 
noises were used as input error. Randomly distri-



buted fields were generated using a standard 
deviation of ±5 mGal for the gravimetric data and 
±5 cm for the GPS/Leveling ones. In the case of re-
peat altimetric missions an estimation of the input 
error Power Spectral Density PSD function can be 
directly evaluated using this successive information. 
The final solutions and the error PSD function of 
the MIMOST method were calculated according to 
the following equations: 
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(eq.2)  
where oN̂  is the combined geoid estimation, Ngr 
and NGPS are the pure gravimetric and 
GPS/Leveling signals respectively, No

gr and No
GPS 

are the gravimetric and GPS/Leveling observations, 
mgr and mGPS

 are the input noises, Hxy is the theore-
tical operator that connects the pure input and out-
put signals, 

o ox yĤ  is the optimum frequency im-

pulse response function, ˆˆeeP  is the error PSD 
function and e is the noise of the output signal.  

 
Fig. 1: A dual-input single output system for the prediction 
of geoid heights. 

An Input-Output system of the kind described a-
bove and used for the development of the gravi-
metric model HGFFT98 is given in Fig. 1. 
 
2.2 Altimetric model 
 
The altimetric geoid model used as validation data 
set was computed from a combination of altimetric 
data from the ERM missions of ERS1/2 and 
TOPEX/Poseidon (T/P) (AVISO 1998). The ERS1 
data (95576 point values) are taken from the 35-day 
ERM mission from April 14, 1992 to December 13, 
1993 and March 21, 1995 to May 16, 1995 phases c 
and g, respectively. From ERS2, six years worth of 
data have been used (368617 point values) covering 
the period from 1995 to 2001. Finally, nine years of 
the T/P SSHs were employed (488634 point values) 
covering the period from 1992 to 2001.  
 
The final altimetric model developed was a combi-
nation from all data sets employing least squares 
collocation (LSC) (Tziavos et al. 2005), by using a 
remove-compute-restore method. Hereby the global 
geopotential solution EGM96 and the effects of the 
bathymetry have been taken into account. In ad-
dition, the altimetric SSHs have been crossover ad-
justed and stacked. Thus, data over a much wider 
region than the area under study were used (Fig. 2). 
  

  
Fig. 2: Area under study for the development of the alti-
metric geoid and distribution of ERS1, ERS2 (gray) and T/P 
(black) tracks. 
 
Moreover, the altimetric data have been reduced 
from the sea surface to the geoid using a local sea 
surface topography model developed by Rio (2004). 
The final altimetric geoid model for the North 
Aegean Sea is depicted in Fig. 3. 



  
Fig. 3: The final LSC combined Mean Sea Surface model for 
North Aegean area. 
 
3 Field measurements  
 
3.1 DIADEM: Determination of Deflec-

tions of the Vertical  
 
The digital Zenith Camera DIADEM (Digital As-
tronomical Deflection Measuring system) deter-
mines the physical plumb line (Φ,Λ) by directional 
measurements to the stars using a CCD camera 
(Fig. 4). The NS and WE components of the DoV 
(ξ,η) are determined using the following equations: 
 

ϕξ −Φ=       (eq. 3) 
 

ϕλη cos)( −Λ=      (eq. 4) 
 
Differential GPS measurements have been carried 
out in order to provide geodetic coordinates with an 
adequate accuracy of better than 10 cm. The resul-
ting DoV show an accuracy of about 0.15 arcsec. 
For detailed information about the instrumentation 
and method refer to Müller et al. (2004). 
 
 The distribution of Astro-stations was mainly moti-
vated by the intention to cover the area around the 
North Aegean Trough (NAT), which is an impor-
tant geological feature of the test area (Fig. 5). The 
NAT is a zone of deep water with maximum depths 
of up to 1500 m, trending from northeast to south-
west across the North Aegean Sea. It forms the con-
tinuation of the seismically active North Anatolian 
Fault Zone. The NAT shows three distinctive de-
pressions: the Sporades basin in southwest, the 
Mount Athos basin near Chalkidiki and the trough 
between the islands of Samothraki and Limnos 
(McNeill et al. 2004).   

  
Fig. 4: DIADEM deployment. To determine the geodetic 
position the GPS antenna was put on the lens. For the astro-
observations it was removed.   

  
Fig. 5: Measuring area in the North Aegean Sea, Greece. 
The NAT as a zone of deep water is well recognizable.  
 
The observations were carried out along the shore-
line of the North Aegean Sea including the Spo-
rades islands (Skiathos, Skopelos, Alonissos, Kira 
Panagia, Psathoura) and the islands of Thassos, 
Samothraki, Limnos and Agios Efstratios. Totally, 
30 stations have been observed in 20 nights. In total 
80 to 120 single solutions per station have been 
used for the determination of the direction of the 
local plumb line. The standard deviation of a single 
observation is better than 0.2 arcsec. The resulting 
DoV are shown in Fig. 6.  

4 
 
Fig. 6: DoV determined with DIADEM. The vectors shown 
indicate the DoV projected into the horizontal plane (compo-
nents are equal to ξ and η). 



The vectors on the three peninsulas of Chalkidiki, 
on the Sporades islands and on the islands of Thas-
sos, Samothraki and Limnos clearly indicate the in-
fluence of the NAT representing a mass deficit with 
respect to the surrounding area. It is striking that on 
the island of Samothraki the DoV on the eastern 
station (Kipos) is about five times larger than on the 
western station (Kamariotissa) and nearly points to 
an opposite direction. This is mainly due to topo-
graphic and bathymetric features encountered there. 
The bathymetry at Kipos side shows a very steep 
gradient due to the trough between Limnos and 
Samothraki while at Kamariotissa the relief is much 
less inclined. The topography of the island is cha-
racterized by the Saos mountain, which reaches alti-
tudes of up to 1600 m. This topographic mass ex-
cess causes larger gravity effects in the SE than in 
the NW of the island. 
 
3.2 Marine GPS measurements:  

Determination of Sea Surface 
Heights  

 
Enhanced ground-based methods have been deve-
loped for the precise determination of Sea Surface 
Heights (SSH), consisting in shipborne multi-anten-
na GPS measurements and GPS equipped buoys 
(Fig. 6). The SSH data provide local-scale informa-
tion on the short-wave structure of the gravity field 
and can be used to improve local marine geoid so-
lutions. They also contain information on the local 
dynamic ocean topography (DOT) and can be used 
for the validation and calibration of radar altimeter 
satellites. In addition, they can provide a link bet-
ween offshore radar altimeter data and tide-gauge 
records.  

  
 
Fig. 6: Left: GPS equipped buoy (diameter 35cm) containing 
receiver, antenna and battery. Right: sailing boat equipped 
with four GPS antennas (arrows). 
 
Highly-precise GPS positioning of the buoys and 
the boat is achieved by simultaneously operating the 
buoy receivers, the receivers aboard the boat and se-
veral permanent terrestrial GPS reference stations, 
all operated at a sampling rate of 1 Hz. The coordi-

nates of the reference stations are first determined 
with respect to the ITRF reference frame. The kine-
matic positions of the buoys and the boat are then 
determined through differential GPS carrier phase 
processing with respect to the reference stations. In 
order to derive the Sea Surface Topography (SST) 
from the instantaneous SSHs, several corrections 
have to be applied, especially for tides and atmo-
spheric effects (inverse barometer effect). The tide 
corrections have been kindly provided by E.C. 
Pavlis from JCET using the GOT00.2 tide model. 
The local tidal effects have been determined by 
using own tide gauges installed in the survey area. 
The inverse barometer corrections have been com-
puted over the entire Mediterranean Sea using 
ECMWF atmospheric pressure data. 
 
Two GPS surveys have been carried out in 
2004/2005, totaling more than 1000 nautical miles 
of ship tracks (Fig. 7). For calibration and vali-
dation purposes of radar altimeter missions, the sur-
vey area has been chosen in the vicinity of Jason-1 
ground-tracks. Dedicated buoy measurements have 
been performed along these Jason-1 tracks, includ-
ing deployments with direct Jason-1 cross-overs, 
which provide precise ground-truth SSH infor-
mation during the overflight. 
 
The bathymetric low of the NAT is associated with 
a distinct depression of the SST, which reaches a 
minimum of 37.5 m above the WGS84 ellipsoid. 
The SST in the surrounding area is more than 39 m, 
reaching more than 40.5 m towards the north of the 
survey area (Fig. 7 and 8).   

 
 
Fig. 7: Boat tracks with SSH profiles from combined ship-
borne/buoy GPS observations. Black lines: Jason-1 ground-
tracks. Background: bathymetry. 
 



  
Fig. 8: Preliminary SST obtained by griding the shipborne/-
buoy GPS data from the 2005 campaign (white lines). Iso-
lines interval: 0.05 m. (Note that parts of the surface are 
extrapolated). 
 
4 Results 
 
4.1 Conversion of Deflections of the 

Vertical to geoid height differences  
 
To compare DoV with SSH, they were transformed 
to geoid height differences ∆N using the principle 
of astronomical leveling. The average of the vertical 
deflections (ξ,η) between neighbouring stations Pi 
and Pi+1 results in the component εi :  
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The vertical deflection ε describes the inclination of 
the equipotential surface in azimuth α. The equi-
potential profile ∆N is obtained by integrating 
single height increments ii s⋅ε  from the first to the 
last station (n) of the profile: 

∑
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n
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where si is the distance between the two stations. 
 
4.2  Comparison of different data sets 
 
The GPS based SSHs have been converted from the 
tide free to the mean tide system, and then corrected 
for the Mean Dynamic Sea Surface Topography 
(MDSST), yielding geoid heights in the mean tide 
system. These were re-converted to the tide free 
system, as the AUTH geoids are defined in this sys-
tem. The overall corrections for the MDSST and the 
permanent tide effects were +5 cm and +1.4 cm, 
respectively, for the Northern Aegean Sea. By 
gridding the geoid heights, a preliminary shipborne 
geoid model (Limpach geoid) was obtained. For a 

comparison, the Limpach geoid as well as the gravi-
metric and altimetric geoids were interpolated onto 
profiles through selected DIADEM stations.  Fig. 9 
shows a representative example for a profile bet-
ween Skiathos, Glossa, Skopelos, Patitiri, Gerakas, 
Kira Panagia South, Kira Panagia North and 
Psathoura. It presents the geoid height differences 
obtained from DoV, SSH, altimetric and gravi-
metric geoid. For a local comparison, all heights 
have been referenced to the same level based on the 
gravimetric solution. Concerning the relative geoid 
undulations, the GPS, DIADEM and altimetric data 
show a very good agreement. In contrast, the gravi-
metric geoid model reveals a significant discre-
pancy in the end of the profile (Patitiri-Gerakas-
Kira Panagia-Psathoura) as evidenced by the rela-
tively small slope between 60 and 80 km distance of 
the profile.   

  
Fig. 9: Comparison between geoid height differences calcu-
lated from a) DoV  b) SSH c) Altimetric geoid and d) Gravi-
metric geoid. 
 
For a statistical approach, the gravimetric and the 
altimetric geoid models were interpolated onto the 
ship tracks. The heights obtained have been com-
pared with the shipborne data. The mean difference 
between shipborne and gravimetric geoid heights is 
70 cm with a standard deviation of about 21 cm. 

 
Fig. 10: Difference between Limpach geoid and gravimetric 
geoid model (HGFFT98) along boat tracks.  



Fig. 10 illustrates the differences between the ship-
borne and the gravimetric geoid heights along the 
boat tracks. They range between –1.4 m and –0.2 m. 
The largest differences were found in the region of 
the NAT. This attributes to gravity data gaps in the 
marine area and the use of different reference sur-
faces where the available gravity data bases refer to. 
A comparison of shipborne and altimetric geoid 
heights showed a significant better agreement with 
a mean difference of about 4 cm and a standard 
deviation of 14 cm.  
 
5 Conclusions 
 
A dedicated astro-geodetic and marine GPS cam-
paign in the North Aegean Sea has been conducted 
in order to validate and improve existing geoid 
models in this area. The marine GPS data yield in-
stantaneous Sea Surface Heights of high spatial 
density that enables the determination of a Sea Sur-
face Topography. The SST contains information on 
the local dynamic ocean topography and can be 
used to validate and calibrate satellite radar alti-
metric measurements. The highly-precise Deflec-
tions of the Vertical observed by the digital Zenith 
Camera DIADEM on several isles and at the coast-
line of the North Aegean Sea provide local geoid 
structures. They are helpful not only on islands but 
also in coastal areas, thus reinforcing the geoid de-
termination in the crucial transition zone from the 
coast to the open sea. Geoid height differences, cal-
culated from both data sets and compared along 
several profiles, showed a very good agreement 
within a few centimeters. The data helped to detect 
long wavelength errors in the gravimetric geoid 
model HGFFT98 from the Aristotle University of 
Thessaloniki. These errors are mainly due to a lack 
of marine gravity data in the area under study. 
Another reason may be the fact that the available 
gravity data bases refer to different reference 
surfaces. For the future it is planned to compute a 
new geoid solution by optimally combining all the 
available terrestrial and satellite data sources. In 
terms of the gravity data, a new high accuracy and 
resolution gravity data base for the entire Greece is 
under preparation. 
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Abstract. Considerable investigations were 
conducted in Poland on the determination of precise 
gravimetric quasigeoid model using terrestrial and 
marine gravity data, geopotential models and height 
data. Quality of the model was evaluated using 
precise GPS/levelling data. Precise gravimetric 
quasigeoid model makes possible to transform 
ellipsoidal heights to normal heights, what is 
required for using GPS heighting in surveying 
practice. To determine transformation parameters, 
the gravimetric quasigeoid model needs to be fitted 
to GPS/levelling heights in the area of interest. In 
order to eliminate datum shift, residual long-
wavelength gravity errors, as well as possible 
systematic errors in levelling, the residual height 
anomalies at GPS/levelling sites were modelled by 
a smooth function consisting of a trend function and 
a residual. The parameters of the model were 
determined using least-squares collocation. In 
practice, a trend was modelled by a plane function, 
and the residuals were modelled by Hirvonen’s 
covariance function. For Poland the a priori error of 
37 mm and the correlation length of 70 km were 
used. Obtained results show that the fit of 
gravimetric geoid to vertical datum, measured by 
the standard deviation of residuals at the 
GPS/levelling control traverse sites, is at the level 
of ±1.5 cm. 
 
Keywords. Quasigeoid, fit modelling, covariance 
models, corrector surface 
_________________________________________ 
 
1. Introduction 
Observed elevation differences between points on 
the Earth's surface are traditionally obtained by 
spirit levelling, however, with the advent of 
satellite-based global positioning systems (GPS, 
GLONASS, and the forthcoming GALILEO) the 

ability to obtain accurate heights at virtually any 
point on land or at sea has in fact been 
revolutionized. 

The fundamental relationship that ties ellipsoidal 
heights obtained from global navigation satellite 
system (GNSS) measurements and heights with 
respect to a vertical datum established using spirit 
levelling and gravity data, is to the first 
approximation given by (Heiskanen and Moritz, 
1967) 

0=−− NHh   (1) 

where h is the ellipsoidal height, H is the 
orthometric height, and N is the geoid undulation.  

The implementation of (1) is in practice more 
complicated due to numerous factors that cause 
discrepancies when combining different heights. 
The main factors that cause those discrepancies are 
as follows: 
- random errors in the derived heights h, H, and N, 
- datum inconsistencies inherent among the height 

types, 
- systematic effects and distortions in the height 

data, 
- assumptions and theoretical approximations made 

in processing of observed data, 
- instability of reference station monuments over 

time. 
The combined effects of these factors could be 

modelled by the use of a corrector surface. Thus the 
theoretical relationship between the three types of 
height data and the incorporation of an appropriate 
corrector surface model can be written as follows: 

cNHh =−−  (2) 

where c is the correction due to errors. 
A variety of data that became available in Poland 

made possible to develop a number of different 
quasigeoid models such as astro-gravimetric, 



gravimetric quasigeoid models, GPS/levelling 
quasigeoid models as well as the integrated 
(combined) quasigeoid model and the best-fitted 
quasigeoid model (Krynski and Lyszkowicz, 2006). 

iiiiii xxxxt ϕλϕλϕ sinsincoscoscos 4321 +++=
 (5) 

An extended version of the above model is given 
with adding a fifth parameter as follows (Kotsakis 
et al., 2001): 

Gravimetric quasigeoid model quasi05c computed 
in 2005 using upgraded gravity data from Poland 
and GGM02S/EGM96 global geopotential model 
seems presently the best pure gravimetric 
quasigeoid model for Poland. The experience with 
comparing of GPS/levelling heights and quasigeoid 
heights (Łyszkowicz, 2000) has shown long to 
medium wavelength discrepancies. It has been used 
to develop an empirical corrector surface which 
relates the quasi05c gravimetric quasigeoid model 
to the reference system of GPS/levelling heights. 
The advantage of such fitted quasigeoid model is 
that it will support direct conversion between the 
ellipsoidal reference system and vertical datum with 
normal heights, even if they are not defined on a 
common reference. 
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Many researchers have opted for applying 
anyone of the aforementioned trend surfaces and 
then modelling the remaining residuals using least-
squares collocation (e.g. Milbert, 1998; Forsberg, 
1998; Denker et al., 2000) as follows: 

)()( 1T tLDCCs −+= −
∧

PP  (7) 

where CP is the covariance matrix between the 
computed signal and observations, C is the 
covariance matrix between observations, D is the 
covariance matrix of observations errors, usually 
diagonal and constant: , and (L – t) is the 
vector of observations from which the trend was 
removed.  
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2. Corrector surface models 
The choice of the parametric form of the corrector 
surface model is not a trivial task. In fact, the list of 
potential candidates for the “corrector” surface is 
extensive (Zhiheng and Duquenne, 1995). The 
selection process is arbitrary unless some physical 
reasoning can be applied to the residuals between 
the GPS-derived geoid heights (h – H) and the 
geoid heights from the gravimetric geoid model N, 
which fulfills 

Equation (7) is usually implemented using one of 
Markov covariance models of the form 

( ) νdCdC −= e0  (8) 

( ) vd

ν
dCdC /

0 e1 −





 +=  (9) 

iiii NHhl −−=  (3) 

In the past, a simple tilted plane-fit model (3-
parameter model) that in many cases satisfied 
accuracy requirements has frequently been used 
(Sideris, 1993; Milbert, 1995) 

or Hirvonen’s model 

( ) ( )( )2
0 /1/ νdCdC +=  (10) 

where C0 is the variance and ν is the correlation 
length, which are empirically determined from the 
actual data for each case, and d is the distance 
(Forsberg, 1998). The use of other types of 
covariance functions has also been investigated 
(e.g. Milbert, 1995). 

iiiiii xxxt ϕλϕλϕ sinsincoscoscos 321 ++=  (4) 

where the trend t represents the correction c in (2), 
and φ, λ are respectively the latitude and longitude 
of GPS/levelling point. However, as the achievable 
accuracy of GPS-derived as well as geoid heights 
improves, the use of such a simple model may not 
be sufficient, in particular in the region of larger 
size. The problem is further complicated because 
selecting the proper correction model type depends 
on data distribution, its density and quality, that 
vary for each case. 

 
3 Assessing the parametric model 
performance 
The most common method used in practice to 
assess the performance of the selected parametric 
model is based on the statistics for the adjusted 
residuals after the least-squares fit. Those residuals 

 are computed for each GPS/levelling site as 
follows: 

iv
∧

Another family of models is based on the general 
similarity datum shift transformation, with the 
simplified classic 4-parameter model (Heiskanen 
and Moritz, 1967) given by 



iiiii cNHhv −−−=
∧

 (11) 

The model that results in the smallest residuals is 
considered the most appropriate one; it exhibits the 
best fit. A typical series of residuals reflecting 
differences between the original height misclosures 

li (3) and the adjusted residuals v  after the fit (11) 
is shown in Figure 1. Of note is the reduction in the 
average value to zero imposed by the least-squares 
adjustment. The values after fit give an assessment 
of the precision of the model as they indicate how 
well the data sets fit each other. Therefore, this 
method is valid for testing the precision of the 
model, but it should not be interpreted as the 
accuracy or the prediction capability of the model. 

i
∧

 

 
Fig. 1. Example of height misclosures before and after fitting 
parametric model 

In order to estimate the accuracy of the predicted 
model, the model computed using the heights of the 
GPS/levelling POLREF sites will be checked at the 
sites of the GPS/levelling control traverse 
established for that purpose in Poland. 

 
4 Results for the parametric model 
surface fits to the POLREF network 
330 co-located GPS/levelling POLREF network 
points distributed throughout Poland (Zieliński et 
al., 1997) were used for the numerical tests. The 
distribution of height misclosures computed at each 
point using (3) is presented in Figure 2.  

Statistics of those height misclosures are given in 
Table 1. The average misclosure equals -13.1 cm 
while an overall empirical standard deviation equals 
3.7 cm. 
 
Table 1. Statistics of the original height misclosures at the 
POLREF sites [cm]  

Mean Std dev. Min Max 
-13.1 3.7 -23.3 -3.5 

 
The POLREF network provides an excellent test 

field for different parametric models as the data 

distribution is relatively consistent throughout the 
country with an average spacing of approximately 
30 km between control points. In general, the 
dispersion of height misclosures at the POLREF 
sites is considerably smaller (ranges within 27 cm) 
than the respective one at other GPS/levelling 
networks investigated in the literature (e.g. Milbert, 
1998). 
 

 
Fig. 2. Original height misclosures at the POLREF sites 

 
Gravimetric quasigeoid model quasi05c was 

calculated using the remove-restore strategy as a 
sum of three components that represent global, 
regional and local effects, respectively. The first 
component was calculated using the coefficients of 
the GGM02S/EGM96 global geopotential model, 
the second one – using mean Faye anomalies Fg∆ , 
and the third one – using topography (Krynski and 
Łyszkowicz, 2005). 

The assessment procedure of the parametric 
model was tested using two pre-specified families 
of corrector surfaces, namely: 
- tilted plane-fit model (4) and similarity-based 

transformation models (5) and (6),  
- least-squares collocation model (7). 

The trend t and de-trended residuals (l – t) of 
height misclosures shown in Figure 2 have been 
modelled with the use of corrector surface models 
(3), (4) and (5). Their statistics are given in Table 2. 
Figure 3 shows the trend for the models considered.  

What could be expected, the empirical standard 
deviation of residuals (l – t) for the models 
investigated gets smaller with growing number of 
parameters in the model. Its value getting reduced 
from 3.56 cm for 3-parameter model to 2.75 cm for 
5-parameter model indicates that the 5-parameter 
model approximates best de-trended residuals (l – t) 
(Table 2). Thus, when fitting the gravimetric 



quasigeoid to the POLREF sites with the use of 
modelling the trend only, the 5-parametr model is 

recommended to be applied. 

 
Table 2. Statistics for trend and de-trended residuals of height misclosures [cm] 

3-parameter model 4-parameter model 5-parameter model 
 trend t (l – t) trend t (l – t) trend t (l – t) 

Mean -13.20   0.00 -13.10  -0.05 -13.54  0.39 
Std dev.    1.07   3.56    1.24    3.51     2.50  2.75 

Min -15.60 -9.19 -17.22  -8.86 -20.00 -7.11 
Max -11.20 11.81 -11.58 12.78  -6.52  9.37 

 

 

Fig. 3. The trend computed from the 3-, 4- and 5-parameter models 

 

In the next step the least-squares collocation 
approach was investigated. After modelling the 
trend with the use of the 3-, 4- and 5-parameter 
models, the empirical covariance functions of de-
trended residuals were computed. The variances C0 
and the correlation lengths ν computed for each 
case are given in Table 3. 
Table 3. Empirical variance C0 and the correlation length ν 
of de-trended residuals (l – t) 

Model C0 
[cm2] 

ν   
[degrees] 

3-parameter 12.67 0.632 
4-parameter 12.28 0.627 
5-parameter   7.54 0.446 

 
In the following step the empirical covariance 

function was compared with three analytical models 
of covariance function given by (8), (9) and (10). 
The results obtained show that Hirvonen’s model 
suits best to empirical data. Figure 4 illustrates the 
covariance functions using the trend for the 3-
parameter model. 
 

 
 

Fig. 4. Empirical covariance function of de-trended residuals 
(l – t) versus three analytical covariance functions  

 
Based upon the set of de-trended residuals the 

least-squares collocation was used to predict the 
signal for the 3-, 4- and 5-parameter trend models 
with the use of empirical standard deviation σ0 of 
observations equal to 3.7 cm (Table 1). The results 
of computations are summarized in Table 4. The fit 
is the same when the trend modelled by the 3- and 
4-parameter surface and equals to 1.41 cm, while 5-
parameter trend applied to signal prediction gives 
only slightly worse results. 

The final corrector surface was thus computed 
using least-squares collocation. The trend was 
modelled by the plane (4) and the signal (Fig. 5) by 



least-squares collocation with the accuracy of 
observations (GPS, levelling and geoid data) 
assumed as 3.7 cm. The precision of such fitted 
surface was estimated as ±1.41 cm (Table 4). 
 
Table 4. Statistics of residuals (l – t – s) for trend model by 
3-, 4- and 5-parameter surface at the POLREF sites [cm] 

 3-param. 4-param. 5-param. 

Mean -0.02  0.00  0.02 
Std dev.  1.41  1.41  1.46 

Min -6.63 -6.63 -6.42 
Max  6.82  7.01  7.29 

 
 

 
Fig. 5. Signal component (contour interval 1 cm) 

 
5 Accuracy of corrector surface model 
The accuracy of final corrector surface was checked 
on the GPS/levelling control traverse established in 
Poland in 2003 –2004. The traverse contains 224 
stations of precisely determined ellipsoidal and 
normal heights. The stations were located at the 
benchmarks of the 1st or 2nd order vertical control, 
or in their close vicinity. 77 stations of the traverse 
considered as the 1st order control were surveyed in 
one or two 24h sessions. The remaining 147 stations 
considered as densification points were surveyed in 
4h sessions (Krynski et al., 2005). The coordinates 
of 77 1st order control stations were determined 
using the EPN strategy with the Bernese v.4.2 
software. Accuracy of the coordinates determined is 
at the level of single millimetres for most of the 
stations. The coordinates of densification points 
were calculated using the Pinnacle program with the 
1st order control stations as reference. 

In recent test only 77 stations of superior 
accuracy were used to estimate the accuracy of the 
corrector surface model computed using least-

squares collocation with Hirvonen’s covariance 
function and the trend obtained with the 3-
parameter model. The statistics of the results at the 
sites of the control traverse are given in Table 5. 
 
Table 5. Statistics of the trend t, the signal s, and residuals l 
and (l – t – s) for trend model by 3-parameter surface at the 
sites of the control traverse [cm] 

 l t s l – t – s 
Mean -15.9 -13.0 -0.3 -2.6 

Std dev.    2.3    0.4  1.6  1.5 
Min -21.5 -13.5 -3.8 -6.9 
Max -11.1 -12.4  2.1  0.4 

 
Table 5 shows that by applying the corrector 

surface, computed using least-squares collocation 
with Hirvonen’s covariance function, the standard 
deviation of absolute normal height determined 
from GPS observations improves from 2.3 cm to 
1.5 cm. Figure 6 shows that the accuracy, with 
respect to the heights of the control traverse sites of 
gravimetric quasigeoid model quasi05c, improved 
by the use of corrector surface.  
 

 
Fig. 6. Accuracy with respect to the heights of the control 
traverse sites of gravimetric quasigeoid model quasi05c 
improved by the use of corrector surface  

 
Conclusions  
Various methods of fitting the gravimetric 
quasigeoid model quasi05c to the vertical datum 
were investigated. The fit is based on the 
GPS/levelling POLREF network. It was assumed 
that the model which is characterized by the highest 
precision fits best to the vertical datum.  

The quality of the fitting was studied with the 
use of different models, i.e. 3-, 4- and 5-parameter 
model and the least-squares collocation approach. 
The result of investigations shows that amongst 
parametric models the 5-parameter model gives the 
best fit of de-trended residuals to GPS/levelling 
sites with the lowest standard deviation of 2.75 cm. 



In order to fit of quasi05c model by least-squares 
collocation, the empirical covariance function was 
computed with three analytical models: two Markov 
models and Hirvonen’s model. It appeared that 
Hirvonen’s model fits best to the empirical 
covariance function. 

The final corrector surface was computed by 
least-squares collocation with Hirvonen’s analytical 
covariance function where the trend was modelled 
by the plane (3-parameter model). The accuracy of 
observations derived from GPS/levelling data and 
geoid equal to 3.7 cm was used in the calculations, 
as the result of numerical tests. The precision of 
such computed corrector surface equals 1.25 cm, 
while its accuracy tested on the control traverse is 
estimated to be 1.5 cm. 
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Abstract. Different approaches for combining the
gravity field wavelengths in geoid computations have
been investigated during the last two decades. The
window technique has been suggested to get rid of
the double consideration of the topographic-isostatic
masses within the data window in the framework of
the remove-restore technique. The modified Stokes’
kernel has been suggested to possibly combine the
local data signals with the global geopotential mod-
els. Both techniques have been used in comput-
ing a gravimetric geoid for Austria. A wide com-
parison between modified Stokes’ kernel and win-
dow techniques has been carried out within this in-
vestigation in the framework of the geoid compu-
tation. The results proved that the reduced grav-
ity anomalies using the window technique are the
smoothest, un-biased and have the smallest range.
The modified Stokes kernel technique gives the best
fit to the GPS/levelling derived geoid. The window
technique gives, however, fairly better results than
the Stokes’ un-modified kernel technique.

Keywords. Modified Stokes kernel, window tech-
nique, remove-restore technique, geoid determina-
tion.

1 Introduction

The optimum combination of gravity field wave-
lengths in the framework of geoid computation still
remains a hot research topic. There are different
approaches for such a combination of the wave-
lengths. The current investigation considers a com-
parison of three approaches, namely the traditional
un-modified Stokes’ kernel technique, the modified
Stokes’ kernel technique and the window technique

(Abd-Elmotaal and Kühtreiber, 2003).
The used data sets are described. The Stokes’

technique of geoid determination, within the remove-
restore scheme, with un-modified and modified
Stokes’ kernel, after Meissl (1971), is described. The
window technique (Abd-Elmotaal and Kühtreiber,
2003) within the remove-restore scheme has been
outlined. The harmonic analysis of the topographic-
isostatic potential is then given. The reduced gravity
using both techniques under investigations are then
computed and compared. A gravimetric geoid for
Austria has been computed by the three different ap-
proaches considered within the current investigation.
A wide comparison among these approaches has
been carried out in the framework of the geoid com-
putation. The comparison is made on two different
levels; the residual gravity anomalies after the re-
move step and the computed geoid signals.

It should be noted that many scholars have sug-
gested different modifications of the Stokes’ kernel
and have studied the topic of the optimum combina-
tion of gravity field wavelengths. The reader may
refer, e.g., to (Sjöberg and Hunegnaw, 2000; Novák
et al., 2001; Sjöberg, 2003a; 2003b; 2004; Vanı́ček
and Featherstone, 1998; Featherstone, 1999; 2003;
Huang et al., 2000; Silva et al., 2002).

2 The Data

2.1 Gravity Data

The gravitational data set for this investigation is a
set of free-air gravity anomalies at 5796 stations in
Austria and neighbouring countries (Fig. 1). Figure 1
shows, more or less, a homogeneous data distribu-
tion within Austria. The gravity data outside Austria



have been included to correct the edge effect in the
computed gravimetric geoid. The gravity data cov-
ers the window (45.7◦ N ≤ φ ≤ 49.7◦ N and 8.5◦ E ≤

λ ≤ 18.2◦ E).
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Figure 1. Distribution of the used gravity data set.

2.2 GPS Benchmarks

Figure 2 shows the distribution of the available GPS
benchmarks (referred to ITRF96) with known ortho-
metric heights (referred to UELN98) in Austria. It
shows that most of the stations are located in the east-
ern part of Austria. Only few stations are located at
the mountainous western part of Austria.
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Figure 2. Used GPS benchmarks with known orthometric
heights.

2.3 Digital Height Models

Two different Digital Height Models are available.
A coarse model of 90′′ × 150′′ resolution in the
latitude and the longitude directions, respectively,
and a fine model of 11.25′′ × 18.75′′ resolution.
The fine DHM covers the window 44.75◦ N ≤ φ ≤

50.25◦ N;7.75◦ E ≤ λ ≤ 19.25◦ E. The coarse DHM
covers the window 40◦ N ≤ φ ≤ 52◦ N;5◦ E ≤ λ ≤

22◦ E.
The coarse DHM has been created by integrating

the Austrian fine DHM with GTOPO30 (30′′× 30′′)
(Gesch and Larson, 1996) and global bathymetry
model provided by the Naval Oceanographic Office
(1′ × 1′). Figure 3 shows the coarse digital height
model used for this investigation. It shows the high
mountainous structure of the Alps.
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Figure 3. The coarse (90′′×150′′) digital height model.

3 Traditional Remove-Restore
Technique

Within the well-known remove-restore technique,
the effect of the topographic-isostatic masses is re-
moved from the source gravitational data and then
restored to the resulting geoidal heights. For exam-
ple, in the case of gravity data, the reduced gravity
anomalies in the framework of the remove-restore
technique are computed by

∆gred = ∆gF −∆gGM −∆gh , (1)

where ∆gF stands for the free-air anomalies, ∆gh is
the effect of topography and its compensation on the
gravity anomalies, and ∆gGM is the effect of the ref-
erence field on the gravity anomalies. Thus the final
computed geoid N within the remove-restore tech-
nique can be expressed by:

N = NGM +N∆g +Nh , (2)

where NGM gives the contribution of the reference
field, N∆g gives the contribution of the reduced
gravity anomalies, and Nh gives the contribution of
the topography and its compensation (the indirect
effect).



4 Stokes’ Integral with Stokes’
Un-modified Kernel

The contribution of the reduced gravity anomalies
N∆g can be given by Stokes’ integral (Heiskanen and
Moritz, 1967, p. 94)

N∆g =
R

4πγ

∫∫

σ

∆gred S(ψ)dσ , (3)

where γ is the normal gravity, R is the mean earth’s
radius and S(ψ) stands for the Stokes un-modified
kernel given by (ibid., p. 94)

S(ψ) =
1
s
−4−6s+10s2

−
(

3−6s2) ln
(

s+ s2) (4)

with
s = sin

ψ
2

, (5)

and ψ is the spherical distance between the computa-
tional point P and the running point Q.

It is believed that using classical un-modified
Stokes kernel in the remove-restore technique im-
plies a wrong combination of gravity field wave-
lengths.

5 Stokes’ Integral with Stokes’
Modified Kernel

The contribution of the reduced gravity anomalies
N∆g can be given by

N∆g =
R

4πγ

∫∫

σ

∆gred SME(ψ)dσ , (6)

where SME(ψ) is the modified stokes’ kernel after
Meissl (1971) given by

SME(ψ) = S(ψ)−S(ψ◦) for (0 < ψ ≤ ψ◦) , (7)

where the optimal cap size ψ◦ is empirically de-
termined through the comparison of the computed
gravimetric geoid to the GPS/levelling geoid.

6 The Window Technique

The conventional way of removing the effect of the
topographic-isostatic masses faces a theoretical prob-
lem. A part of the influence of the topographic-
isostatic masses is removed twice as it is already in-
cluded in the global reference field. This leads to
some double consideration of that part of the topo-
graphic-isostatic masses. Figure 4 shows schemat-
ically the conventional gravity reduction for the

effect of the topographic-isostatic masses. The
short-wavelength part depending on the topographic-
isostatic masses is computed for a point P for the
masses inside the circle. Removing the effect of the
long-wavelength part by a global earth’s gravitational
potential reference field normally implies remov-
ing the influence of the global topographic-isostatic
masses, shown as a rectangle in Fig. 4. The double
consideration of the topographic-isostatic masses in-
side the circle (double hatched) is seen.

P

EGM96

TI

Figure 4. The traditional remove-restore technique.

A possible way to overcome this difficulty in is
to adapt the used reference field due to the effect
of the topographic-isostatic masses for a fixed data
window. Figure 5 shows the advantage of the win-
dow remove-restore technique schematically. Con-
sider a measurement at point P, the short-wavelength
part depending on the topographic-isostatic masses
is now computed by using the masses of the whole
data area (small rectangle). The adapted refer-
ence field is created by subtracting the effect of
the topographic-isostatic masses of the data window,
in terms of potential coefficients, from the refer-
ence field coefficients. Thus, removing the long-
wavelength part by using this adapted reference field
does not lead to a double consideration of a part of
the topographic-isostatic masses (no double hatched
area in Fig. 5).

 adapted EGM96

P

data area

TI

Figure 5. The window remove-restore technique.

The remove step of the window remove-restore



technique can then mathematically be written as

∆gred = ∆gF −∆gGM Adapt −∆gh , (8)

where ∆gGM Adapt is the contribution of the adapted
reference field. The restore step of the window
remove-restore technique can be written as

N = NGM Adapt +N∆g +Nh , (9)

where NGM Adapt gives the contribution of the adapted
reference field. It should be noted that the contri-
bution of the topography and its compensation (the
indirect effect) Nh is computed using the Stokes’ in-
tegral (3) using the un-modified Stokes’ kernel given
by (4).

7 Harmonic Analysis of the
Topographic-Isostatic Potential

The harmonic coefficients of the topography and its
isostatic compensation as well as the harmonic se-
ries expansion of the topographic-isostatic potential
can be expressed by (Abd-Elmotaal and Kühtreiber,
2003, pp. 78–79; Hanafy, 1987, P. 80):

TT I(P) =
GM
rP

∞

∑
n=0

(

R
rP

)n n

∑
m=−n

T̄nmR̄nm(P) , (10)

where

T̄nm =
R3

M(2n+1)(n+3)

∫∫

σ

{

ρQ

[

(

1+
HQ

R

)n+3

−1

]

+δρQ

(

1−
T◦
R

)n+3
[

(

1−
tQ

R−T◦

)n+3

−1

]}

× R̄nm(Q)dσQ , (11)

where T◦ is the normal crustal thickness, H is the to-
pographic height, t is the compensating root/antiroot
and M denotes the mass of the earth, given by

M .
=

4πR3

3
ρM , (12)

where ρM denotes the mean earth’s density and ρ is
given by

ρ = ρ◦ for H ≥ 0 ,

ρ = ρ◦−ρw for H < 0 ,
(13)

where ρ◦ denotes the density of the topography and
ρw is the density of ocean’s water. The density
anomaly ∆ρ is given by

∆ρ = ρ1 −ρ◦ , (14)

where ρ1 is the density of the upper mantle.

Table 1. Statistics of the reduced gravity after each reduc-
tion step

statistical parameters
reduced gravity min. max. average st. dev.

mgal mgal mgal mgal
∆gF −154.16 187.15 9.70 42.16

∆gF −∆gGM −210.72 132.27 −12.91 37.60
∆gF −∆gGM −∆gT I −123.66 81.97 −20.09 25.88
∆gF −∆gGM Adapt −194.55 204.99 −1.46 44.43

∆gF −∆gGM Adapt −∆gT I Win −62.39 71.60 0.23 20.32

8 Gravity Reduction

The following parameter set has been used during the
gravity reduction and the geoid determination as they
empirically proved to fit the Austrian gravity field to
a good extent (Kühtreiber and Abd-Elmotaal, 2001):

T◦ = 30 km , (15)

ρ◦ = 2.67 g/cm3
, (16)

∆ρ = 0.20 g/cm3
. (17)

The EGM96 geopotential model has been used
for the traditional remove-restore technique. An
adapted reference field has been created by sub-
tracting the potential coefficients of the topographic-
isostatic masses of the data window (40◦ N ≤ φ ≤

52◦ N;5◦ E ≤ λ ≤ 22◦ E) computed by (11) from the
EGM96 coefficients. This adapted reference field
has been used for the window remove-restore tech-
nique.

Table 1 shows the statistics of the gravity reduc-
tion after each reduction step for the traditional and
window remove-restore techniques. It should be
noted that the reduced anomalies for Stokes’ integral
with modified Stokes’ kernel are the same as those
for the Stokes’ kernel with un-modified Stokes’ inte-
gral (the upper part of Table 1).

Table 1 shows that using the window technique
gives the best reduced gravity anomalies. The range
has dropped by its one-third and the standard devia-
tion drops by about 20%. Also the reduced anoma-
lies are perfectly centered (un-biased). This prop-
erty makes the window-technique reduced anomalies
suite best for interpolation and other geodetic pur-
poses.

9 Geoid Computation

The contribution of the gravity anomalies on the
geoid undulation N∆g has been computed by 1D-FFT
technique using the FFTGEOID program by Sideris



Table 2. Statistics of the empirical tests for the cap size ψ◦

for the Stokes/Meissl geoid
Differences to GPS/levelling geoid

Cap size min. max. average st. dev.
m m m m

ψ◦ = 0.5◦ −4.58 −1.31 −2.57 0.81
ψ◦ = 1.0◦ −2.73 −1.28 −1.90 0.40
ψ◦ = 1.5◦ −1.69 −1.09 −1.30 0.14
ψ◦ = 1.7◦ −1.37 −0.91 −1.08 0.10
ψ◦ = 2.0◦ −1.10 −0.44 −0.78 0.14

and Li (1993). Three methods are used in the cur-
rent investigation to compute a gravimetric geoid for
Austria. They are:

◦ Stokes’ integral using classical un-modified
Stokes’ kernel (classical Stokes geoid),

◦ Stokes’ integral using Meissl’s modified
Stokes’ kernel (Stokes/Meissl geoid),

◦ Stokes’ integral using window technique (Win-
dow geoid).

All computed geoids are compared to the GPS/lev-
elling geoid.

Figure 6 shows the absolute geoid differences
between the classical Stokes geoid and the
GPS/levelling geoid. Figure 6 shows a high-
order polynomial structure of the differences. The
range of the differences is quite large (about 2 m).
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Figure 6. Absolute geoid differences between classical
Stokes geoid and GPS/levelling geoid. Contour interval:
5 cm.

As mentioned earlier, the optimum cap size ψ◦

can be empirically determined. This is achieved by
comparing the computed Stokes/Meissl geoid to the
GPS/levelling geoid. Table 2 shows the statistics
of the empirical tests for the cap size ψ◦ for the
Stokes/Meissl geoid. It shows that ψ◦ = 1.7◦ gives
the optimum cap size in view of the standard devia-
tion of the absolute differences to the GPS/levelling
geoid.

Figure 7 shows the absolute geoid differences be-
tween the Stokes/Meissl geoid (cap size ψ◦ = 1.7◦)
and the GPS/levelling. Figure 7 shows better polyno-
mial structure of the differences than that in the case
of Stokes geoid. The range of the differences drops
to about 45 cm.
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Figure 7. Absolute geoid differences between
Stokes/Meissl geoid (cap size ψ◦ = 1.7◦) and
GPS/levelling geoid. Contour interval: 5 cm.

Figure 8 shows the absolute geoid differences
between the window and the GPS/levelling geoids.
Figure 8 shows better polynomial structure of the
differences than that in the case of Stokes geoid. The
range of the differences drops to about 1 m.
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Figure 8. Absolute geoid differences between window
geoid and GPS/levelling geoid. Contour interval: 5 cm.

Table 3 illustrates the statistics of the ab-
solute geoid differences between the computed
geoids within the current investigation and the
GPS/levelling geoid. Table 3 shows that the Stokes
geoid has the worst differences to the GPS/levelling.
This confirms what has been stated earlier that us-
ing the classical un-modified Stokes kernel in the
remove-restore technique implies a wrong combina-
tion of gravity field wavelengths. Table 3 shows
also that either using the window technique or the
modified Stokes kernel gives better differences to
the GPS/levelling geoid (in terms of either the mean
difference or the range/statndard deviation).



Table 3. Statistics of the absolute geoid differences be-
tween the computed geoids and the GPS/levelling geoid

statistical parameters
geoid technique min. max. average st. dev.

m m m m
Stokes 2.10 4.16 3.27 0.52

Stokes/Meissl −1.37 −0.91 −1.08 0.10
Window −0.89 0.24 −0.44 0.27

Table 4. Statistics of the geoid differences between the
computed geoids and the GPS/levelling geoid after remov-
ing a trend function

statistical parameters
geoid technique min. max. range st. dev.

cm cm cm cm
Stokes −22.1 16.7 38.8 7.3

Stokes/Meissl −25.3 12.5 37.8 6.9
Window −21.3 14.8 36.1 6.6

Table 4 illustrates the statistics of the geoid
differences between the computed geoids within the
current investigation and the GPS/levelling geoid af-
ter removing a third order surface polynomial trend
function. Table 4 shows that the window technique
gives the minimum range and standard deviation of
the remaining differences.

10 Conclusions

Stokes technique, within the remove-restore scheme,
with un-modified stokes kernel cannot correctly han-
dle the combination of the geoid wavelengths. A
modification of the kernel or a new technique should
be introduced. Both the modified Stokes kernel and
the window technique can handle the combination
of the geoid wavelengths within the remove-restore
scheme. The modified Stokes kernel technique gives
the best fit to the GPS/levelling derived geoid. The
reduced gravity anomalies using the window tech-
nique are the smoothest (20% less in the standard
deviation), un-biased and have the smallest range
(one-third less). This property makes the window-
technique reduced anomalies suite best for interpola-
tion and other geodetic purposes.
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Abstract. The latest Austrian geoid has been 
computed by a combination of deflections of the 
vertical and gravity anomalies using least squares 
collocation. The computation results revealed 
regions with large discrepancies between the 
gravimetric and astro-geodetic geoid solution. One 
interesting region is the southeast of Austria. 
Investigations based on Least Squares Collocation 
have been conducted for this area. The solutions 
indicate potential reasons for these discrepancies 
and furthermore, define the criteria for the selection 
of additional measurement points of deflections of 
the vertical. 
For these new measurements the software package 
ICARUS, developed by Beat Bürki, ETH Zürich, 
will be used. 
 This paper gives a first overview of the 
investigations up to summer 2006 which have been 
performed using a dataset of the southeast of 
Austria. The simulations clearly indicate erroneous 
measurements and regions with an insufficient 
distribution of measured points (deflections of the 
vertical). 

Keywords. Local geoid, deflection of the vertical, 
Least Squares Collocation, ICARUS 

1 Data 

1.1 Input Data 

Starting in 1978, astro-geodetic deflections of the 
vertical have been determined at 362 stations by the 
universities of Graz, Vienna and Innsbruck. At 
additional 202 stations astro-geodetic measurement 
campaigns to determine the deflections of the 
vertical have been conducted by the Federal Office 
of Metrology and Surveying (BEV). Austrian 
surveying points of first order in a distance of 10 to 
15 kilometres have been used for those 
measurements. The deflections of the vertical have 

been measured using the Zeiss Ni2 Astrolabium. 
Additionally Graz University of Technology used a 
zenith-camera in parallel sessions. The deflections 
of the vertical refer to the local Austrian datum of 
the Military Geographic Institute. Later on, the 
observations have been transformed to the 
geocentric system WGS84. The precision for the 
deflections of the vertical components ξ and η are 
given as ±0.2 arcsec and ±0.3 arcsec respectively.  
 The Institute for Meteorology and Geophysics 
(University of Vienna), the Institute of Geophysics 
(Mining University Leoben), the OMV, and also the 
BEV has provided gravity measurements within 
Austria. At the moment about 86000 gravity 
observations exist in the local Austrian datum. For 
the simulations the gravity measurements have been 
transformed to the geocentric system WGS84. The 
precision for the gravity anomalies is assumed to be 
±1.0 mgal. This value for the precision is defined 
based on measurement errors, errors due to the 
remove-restore procedure and based on the results 
of case studies in Kühtreiber (2003).  
 The height system used is the Austrian 
orthometric height system based on the tide gauge 
Triest.  

1.2 Reductions 

To remove the long and short wavelength effect of 
the gravitational potential from the gravity 
anomalies and the deflections of the vertical a 
remove-restore procedure has been applied. To 
compute the long wavelength part in the remove-
restore procedure the adapted EGM96 (Abd-
Elmotaal and Kühtreiber, 2001) was used. For the 
short to medium wavelengths, a topographic 
isostatic reduction was performed using the adapted 
technique and a detailed height model with the 
resolution 11.25’’ x 18.75’’. For the isostatic model 
an Airy-Heiskanen approach with a standard 
constant density of 2.67 g/cm3, a normal thickness 
T of 30 km and a crust-mantle density contrast of 
0.4 g/cm3 were used (Kühtreiber, 2003). 

http://dict.leo.org/ende?lp=ende&p=/ende?lp=ende&p=/gQPU.&search=insufficient


1.3 Austrian Geoid Solutions  

Based on the data sets described in section 1 an 
astro-geodetic and a gravimetric geoid solution 
were computed by Kühtreiber (2003).  
 The comparison of the astro-geodetic with the 
gravimetric geoid solution reveals regions with 
large discrepancies. The reasons for these 
discrepancies are manifold: the sparse distribution 
of the deflections of the vertical in combination 
with a complex geology in this region; furthermore 
erroneous measurements and unknown trend 
components might have resulted in these 
discrepancies as well. 
 Kühtreiber (2003) assumes that the sparse 
distribution of deflections of the vertical is mainly 
responsible for these differences. 

 
Fig. 1 Gravimetric minus astro-geodetic geoid solution given 
in cm 

2 Simulations 

The main objective of following simulations is to 
identify erroneous measurements and to highlight 
regions with an insufficient distribution of 
measured points.  

2.1 Least Squares Collocation 

The simulations have been done using the well-
known Least Squares Collocation approach with: 

  (1) lDCCs llsl
1)(ˆ −+=

where l is the vector of the observations, D is the 
error covariance matrix. The matrix Cll is the 
covariance matrix of the observation and Csl is the 
cross-covariance matrix of the observations and the 
estimated parameters s.  

 The basic covariance function of the disturbing 
potential is given by:  
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where P and Q are the observation points, σn(TP,TQ) 
denotes the degree variances of the disturbing 
potential, R is the radius of the Bjerhammar sphere, 
rP, rQ are the geocentric radii to the observations P 
and Q, which are separated by a spherical radius ψ. 
 The degree variances are obtained by an anomaly 
degree-variance model of Tscherning and Rapp 
(1974): 
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The covariance function of the gravity anomalies, 
the geoid undulation and the deflections of the 
vertical are derived by covariance propagation. 
These quantities are linear functionals of the 
anomalies potential T. 
 For the Austrian geoid computation the 
parameter B has been fixed to 24. The model 
parameters A and s are determined through an 
iterative adjustment procedure. By a recursive 
process the covariance model is fitted to the 
empirically determined covariance function of the 
gravity anomalies, which is given by its three 
essential parameters (the variance, the correlation 
length and the variance of the horizontal gradient). 
This fitting procedure was performed by Kühtreiber 
(2003) using 2489 gravity stations in Austria. The 
computation gave the following Tscherning-Rapp 
degree-variance model parameters: A = 777.608 
mgal2; B = 24; s = 0.997002. In the following 
simulations the model is used as local covariance 
function. This means that all degree variances up to 
a certain degree N are equal to zero. The value of N 
results also from the above described estimation and 
is set to 79. 
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2.2 Implementation 

The simulations were done using only selected data 
points in the southeast of Austria as shown in 
Figure 2. The used 192 measurements of deflections 
of the vertical are restricted to the Austrian territory, 
while the 1240 gravity data points are given in 
Austria and the neighbouring countries (Hungary 
and Slovenia). 

 
Fig. 2 Test area and input data 

In the first investigation the quality of the measured 
deflections of the vertical is evaluated. Therefore 
deflections of the vertical have been predicted using 
least squares collocation. The prediction was done 
either by using deflections of the vertical only 
(without using the value at the prediction point), or 
by using gravity measurements only as 
observations. The differences between the measured 
and the predicted deflections of the vertical 
components ξ and η are shown in Figure 3 for the 
case of the prediction based on deflections of the 
vertical only and Figure 4 where for the prediction 
only gravity anomalies were used. As the scaling of 
the two figures is equal the comparison between the 
both allows identifying three main features. 
 First of all, big differences are visible in both 
figures, especially at the measurement points with 
the numbers 416, 421 and 698. The interpretation is 
that the measurements are erroneous. This result 
confirms the computation in Kühtreiber (2003) 
where the measurements at these points have been 
omitted. Secondly big discrepancies, which are 
obvious in the northeast in Figure 3, cannot be seen 
in Figure 4. That means while the prediction using 

gravity anomalies only gives good results problems 
exist if only deflections of the vertical are used for 
the prediction. This leads to the following 
interpretation: It is assumed for the moment that the 
faulty measurements have already been detected 
(see above). Under the latter assumption it is very 
probable that the bad configuration is the reason for 
these discrepancies. Keep in mind that for the 
simulations using deflections of the vertical the 
input data are even less, as the measurement at the 
point of prediction is omitted. Last but not least 
there exist regions were both figures show good 
results. Of course this is the optimal case, which 
needs no further investigation.  
 Edge effects in the southeast of the test area need 
not to be discussed. 

 
Fig. 3 Differences [arcsec] between the predicted and the 
measured values of the deflections of the vertical shown as 
colored filled contours. Prediction using existing 
measurements of deflections of the vertical only. The black 
contour lines represent the gravity anomaly field. 
3A: Deflections of the vertical component ξ 
3B: Deflections of the vertical component η 



  
Fig. 4 Differences [arcsec] between the predicted and the 
measured value of the deflections of the vertical. Prediction 
using gravity anomalies only  
4A: Deflections of the vertical component ξ 
4B: Deflections of the vertical component η 

 Based on the above investigation it was decided 
to re-measure the deflections of the vertical at the 
points 416, 421 and 698. In addition, a densification 
of the deflections of the vertical is needed. Further 
simulations were done to identify the number and 
the position of points for additional measurements. 
The values ξ and η at these densification points (see 
triangles in Figure 5) are predicted by collocation 
using gravity anomalies only. The improvements 
we get by introducing these new stations are 
verified by repeating the above investigation. The 
difference between the predicted and the measured 
values of ξ and η are shown in Figure 5. If Figure 3 
is compared to Figure 5 it is obvious that the big 
discrepancies in the northeast of the test area have 
vanished. The determination of the standard 
deviation of the Least Square Collocation is mainly 
influenced by the configuration of the input data. 
Figure 7 shows the error plots of the prediction of ξ 
using deflections of the vertical only. Figure 7A 
shows the error plot of the prediction using the old 

dataset of deflections of the vertical, Figure 7B 
shows the error plot of the prediction after including 
the simulated values of deflections of the vertical at 
new stations. The improvement due to the better 
configuration is obvious. The error plot of η shows 
a very similar behaviour and will not be given. 

 
Fig. 5 Improvement by including additional points (marked 
with a triangle). Differences [arcsec] between the predicted 
and the measured values of the deflections of the vertical, 
prediction using deflections of the vertical only 
5A: Deflections of the vertical component ξ 
5B: Deflections of the vertical component η 

  
Fig. 6 Components of the measurement system ICARUS 



 
Fig. 7 Error plots of the prediction of ξ [arcsec] 
7A: Prediction using the old dataset of deflections of the 
vertical 
7B: Prediction including the simulated values of the 
deflections of the vertical 

3 New Measurements 

3.1 Measurement system ICARUS 

The new measurements will be performed using the 
system ICARUS, which represents an online 
observation system for rapid and easy determination 
of the direction of the plumb line in terms of 
astronomical latitude and longitude as needed for 
the computation of deflections of the vertical. This 
software package has been developed at the 
Geodesy and Geodynamics Lab (GGL) at ETH 
Zurich (Bürki, 2005).  
 The system is based on the star catalogue 
FK5. A theodolite, which is driven by servo motors, 
is used to point towards the approximate position of 
the stars automatically. When the star transits 
through the horizontal reticle line that represents the 
fixed zenith angle, a measurement is manually 
triggered. In conjunction with the zenith angle the 
system measures the exact transit time which is 

acquired from a GPS receiver that has been 
especially developed for time synchronisation and 
event marking. The astronomical coordinates are 
finally computed applying the method of reciprocal 
bearing together with a least squares adjustment. It 
proofed to be useful to measure about 25 stars (each 
star to be measured 6 times) for each observation 
point. The measurement period at one station lasts 
about 1 to 1 ½ hours. 

3 Summary 

Due to the results of this investigation in the 
southeast of Austria it could be shown that the 
differences between the astrogeodetic and the 
gravimetric solution is mainly influenced by the 
distribution of the deflections of the vertical. It’s 
expected that the planned new measurements 
confirm this results. 
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Realization of a Global Vertical Reference System 
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Abstract. The basic concepts for the realization of 
a world height system and the unification of 
existing vertical reference systems will be 
presented. To proceed towards a unified physical 
height system at the centimetre accuracy level a 
unique global height datum, consistent parameters, 
models and processing procedures of the Terrestrial 
Reference Frame (TRF) and gravity field, a closed 
theory for the combination of parameters (space 
techniques, gravity), consideration of time 
depended influences, and concepts for the 
realization are needed.  
 
Keywords. Global vertical reference fame, 
numerical conventions, tide gauges 
 

1 Introduction 

The Earth’s surface may be characterized by its 
geometry and the potential of the Earth gravity 
field. The determination of heights includes both of 
these aspects, the geometric part and the 
geopotential part. Presently, space geodetic 
techniques allow an accuracy in geometric 
positioning of about 910−  in global and continental 
scales. Gravity field parameters, including the 
physical height components, can at present be 
determined only 2 to 3 orders of magnitude less 
accurate than the geometric parameters. The current 
height reference frames around the world differ in 
their vertical datum and in the theoretical 
foundations of the height systems.  
 
In the last 20 years several concepts for definition 
and realization of World Height systems were 
discussed (Rummel, R., Teunissen, P., 1988, Rapp, 
R. H., Balasubramania N., 1992, Balasubramania, 
N., 1994, Ihde, J., Augath, W., 2002. Rummel, R., 
Heck, B., 2001, Burša, et.al 2002.). However, at 
present here is no global height reference system 
defined and realized comparable the International 
Terrestrial Reference System (ITRS). 
 

A considerable progress in the definition and 
realization of a Global Vertical Reference System 
(GVRS) will be attained from the data of the new 
satellite gravity field missions.  
 
In 2003 IAG installed an Inter-Commission Project 
(ICP) of Commission 1 and Commission 2 of 
Vertical reference Frames. Based on the classical 
and modern observations, ICP1.2 on Vertical 
Reference Frames shall study the consistent 
modeling of both, geometric and gravimetric 
parameters to provide the fundamentals for the 
installation of a unified global vertical reference 
frame. 

2 Relationship between Gravity Field, 
and Geometric Reference 

Height determination in general and therefore the 
realization of a Vertical Reference System is a 
natural combination of space geodesy and the Earth 
gravity field determination. 
 
Between the geopotential scalar field W(X) and the 
outer Earth gravity vector field g(X) the following 
relationship is valid: 
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with the natural coordinates astronomical latitude 
Φ , astronomical longitude Λ  and the potential of 
Earth gravity field W. 
 
In a very general notation the relationship can be 
expressed by 
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The two fields are functions of time in a Euclidian 
affine space. Therefore we have to consider the 
time dependence t: 

.)()(

,)()(

,)()(

000

000

000

ttXXtX

ttggtg

ttWWtW

PPP

PPP

ppp

−+=

−+=

−+=

&

&

&

 (3) 

Height determination is the determination of the 
geo-potential Wp and a combination of positioning 
XP and gravity gP . 
 
The potential of the Earth gravity field is not 
directly measurable, but can derived by integration 
of gravity over 
− the height h with leveling 

∫−=−=
p
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− or the Earth surface σ by solution of the 
geodetic Boundary Value Problem (BVP) in 
connection with precise geometrical positions 
(GNSS/leveling) 
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where cp is the geopotential number, T the 
disturbance potential, U the normal potential, Δg 
the gravity anomaly, G1 the first term of the of 
the Molodenskij series, and ST the Stokes 
function. 

3 General Concept for the Definition 
of a Global Vertical Reference System 

Vertical Reference Systems (VRS) are related to 
the Earth gravity field on or outside the solid Earth 
body. A Vertical Reference System is a 
geopotential reference system co-rotating with the 
Earth in its diurnal motion in space. In such a 
system, positions of points attached to the solid 
surface of the Earth have geopotential values and 
corresponding coordinates in a defined Terrestrial 
Reference System (TRS). A Vertical Reference 
Frame (VRF) is a set of physical points with 
precisely determined geopotential values WP  or 
differences cP to a geopotential reference value W0. 

The positions P of the points are given as 
coordinates X in a specific spatial coordinate 
system attached to a Terrestrial Reference System. 
Such a VRF is said to be a realization of the VRS. 
The disturbance potential undergo only small 
variations in time, due to geophysical effects (mass 
transports and tectonic or tidal deformations). 
 
Ideal Vertical Reference Systems. An ideal 
Vertical Reference System is defined by values 
W(X) of the geopotential scalar field of the outer 
Earth gravity vector field g(X) in relation to a 
position given with coordinates X in the Euclidian 
space of an ideal Terrestrial Reference System co-
rotating with the Earth. For the Terrestrial 
Reference System the Conventions of the 
Conventional Terrestrial Reference System and 
Frame (CTRS, CTRF) of the IERS Conventions 
2003 are fully valid. 
 
For practical use the geopotential values WP in a 
point P(X) may be related to a physical reference 
level represented by an equipotential surface of the 
Earth gravity field with a value W0.  
 
The height components are differences ΔWP 
between the potential WP of the Earth gravity field 
through the considered point P and the potential of 
the VRS zero level W0 . The potential difference -
ΔWP is also designated as geopotential number  

.0 PPP WWWc −=Δ−=  (6) 

The geopotential numbers cP are related to a 
conventional zero level W0, which is the vertical 
datum of the VRS. 
 
We have to consider separately Vertical Reference 
System and Frame: 
 
– Definition of a GVRS with conventions for 

datum, codes, time dependent variations, 
parameters 

– Realization of a GVRS with conventions and 
specification for procedures of computations 
(data reductions, selections of alternative 
procedures), selection of data, and station 
distribution.  

4 Definition of a Global Vertical 
Reference System 

In alignment to the Conventions of the International 
Earth Rotation and Reference System Service 



(IERS) 2003 (IERS, 2003) the definition of a 
Global Vertical Reference System (GVRS) fulfils 
the following four conditions: 
 
1. The vertical datum is defined as the 

equipotential surface with the Earth gravity 
field potential: 

 W0 = const.  (7) 

The vertical datum defines the relationship of 
the physical heights to the Earth body. W0 shall 
be conventional. The relation to the Earth body 
shall be reproducible. 

2. The unit of length is the meter (SI). The unit of 
time is second (SI). This scale is consistent with 
the TCG time coordinate for a geocentric local 
frame, in agreement with IAU and IUGG 
(1991) resolutions. This is obtained by 
appropriate relativistic modelling. 

 
3. The height components are the differences 

- ΔWP between the potential WP of the Earth 
gravity field through the considered points P 
and the potential of the GVRS conventional 
zero level W0. The potential difference - ΔWP is 
also designated as geopotential number cP: 

.0 PPP WWcW −==Δ− 1 (8) 

4. The CVRS is a zero tidal system, in agreement 
with the IAG Resolution No 16 adopted in 
Hamburg in 1983. 
 
Not necessary is a no-net-rotation condition for 
the case, that W0 = const. is fixed to a 
conventional value and therefore time 
independent.  

 
Necessary is to relate W0 to the Earth body. The 
determination of W0 is connected with the 
determination of the mean geoid following the 
Gauss/Listing definition to the mean sea surface.  
 
For the realization of the Gauss/Listing geoid 
definition with geodetic measurements and models 

                                                 
1 In practical use are several kind of types of heights on the 
basis of geopotential numbers: The normal height can be 
derived by γ/P

N
P cH = , where γ  is the mean normal gravity 

between the level ellipsoid and the related point PQ in the 
height N

PH . The orthometric height can be derived 
by gcH PP /0 = , where g is the mean gravity between geoid 
and Earth surface. 

are different options under discussion which needs 
specifications e.g. the area of the free oceans and 
time period over which the potential values of the 
sea surface WS to be averaged. Details will not be 
discussed here. 
 
It is the question how to select the conventional W0. 
It makes sense to consider the selection of W0 in 
connection with other fundamental parameters 
(Yurkina, M. I., 1996, Burša, M.et. al, 1998, Burša, 
M, et. al, 2002). 

5 Numerical Standards 

The Geodetic Reference System 1980 (GRS 80, 
1980) defines major parameters for geodetic 
reference systems in form of a level ellipsoid. It is 
agreed by International Union of Geodesy and 
Geophysics (IUGG), International Association of 
Geodesy (IAG) and International Astronomical 
Union (IAU). The GRS80 parameters are 
recommended by IAG for the conversion of ITRF 
Cartesian coordinates in ellipsoidal coordinates. It 
is used worldwide for many map projections. 
Million of coordinates are related to it. 
 
At the IUGG General Assembly 1991 in Vienna 
new values for geocentric gravitational constant 
GM and the semi major axis a of the level ellipsoid 
were recommended. Since this time these 
parameters were used in global gravity models e.g. 
EGM96. The two other defining parameters were 
not changed. 
 
In the IERS 2003 conventions (IERS, 2003) in 
Table 1.1 numerical standards are listed. Below it 
are the four defining parameters of the mean a 
Earth ellipsoid. The value of the geocentric 
gravitational constant GM has not changed since 
1991. The parameters in Table 1.1 have the status 
of standards. In parallel in chapters 4.1.4, and 4.2.5 
the GRS80 is recommended for transformations. 
 
Table 1 contains parameters of different level 
ellipsoids. The gravitational constant GM of 
GRS80 and IERS 2003 conventions differs in the 
metric system by about 0.9 m. The semi major axis 
of both standards differs by 0.4 m. 
It has to be stated, that IERS 2003 conventions 
recommends different level ellipsoid parameters for 
different applications 
 
While for geometrical applications GRS80 is 
recommended and mainly used, since more than 10 



years for global gravity models divergent values are 
in the practical use. 
 
IAG has to be remove this inconsistency for 
integrated geodetic applications (see e.g. Hipkin, 
R., 2002). 
The datum parameter W0 of a Global Vertical 
Reference System defines the relationship of the 
physical heights to the Earth body. The relation to 
the Earth body shall be reproducible. 
 
The W0 value can defined and determined as mean 
value of the Earth gravity potential of the mean sea 
surface WS over a defined area S of the open sea: a 
defined time period and related to an epoch: 

∫∫=
S

SS dSWSW /10 . (9) 

WS of mean sea surface can be derived using a 
Global Gravity Model (GGM) expressed by a 
spherical function and sea surface heights hS 
derived by satellite altimeter observations (ALT) 
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If the sea level is long term changing it is useful to 
fix W0 of the GVRS. W0S can be observed against 
the conventional W0 of the GVRS. 

Table 1. Level ellipsoid parameters  

Ellipsoid 
 

Semi-major axis 
a 

in m 

Flattening 
 

f -1 

Geocentric gravitational constant 
GM  

in 108m3s-2 

U0/W0 

 
in m2 · s-2 

γe 

 
in m · s-2  

Int. Ell. 1930 (Hayford) 6 378 388 297 3 986 329   
GRS 67 6 378 160 298.247 3 986 030   

GRS 80 6 378 137 298.257222101 3 986 005 6 263 6860.850  
9.78032677 

IUGG 91 6378136.3 
0.5  3 986 004.41 

0.01   

IERS 2003 Conventions 
(zero tide) 

6378136.6 
0.1 

298.25642 
0.00001 

3986004.418 
0.008 

62636856.0 
0.5 

(9.78032666) 
 

      
Angular velocity of the Earth rotation ω  10-11 rad s-1 7 292 115   
 

6 The Realization and Unification of 
Vertical Reference Systems 

In general the determination of potential values or 
potential differences of the Earth gravity field is 
possible by integration of gravity over the height in 
form of levelling or over the Earth surface by 
solution of the geodetic BVP. 
 
Most of the classical VRS were realized by 
levelling. The zero level of the VRS is derived by 
long term observations of the sea level at tide 
gauges. Normally the W0 value of the zero level of 
the classical levelling networks is not known. The 
regional VRS differs in the height by the stationary 
sea surface topography in the tide gauges and 
possible for definition reasons. Globally there are 
differences of by the stationary sea surface 
topography up to 2 m. 

 
In the past the GGM were not accurate enough to 
realize a global VRS or to unify regional VRS in a 
global level with an sub-decimetre accuracy level. 
The satellite gravity missions CHAMP, GRACE, 
and GOCE will bring a big progress in the 
approximation accuracy of long wave length parts 
of the Earth gravity field. In combination with 
geodetic space techniques the GGM of new 
generation will provide the basis for VRS 
realization and unification in a one-centimetre 
accuracy level. 
 
Practical possibilities 
 
There are two general possibilities for the 
realization and three for the unification of VRF 



i. For VRS realizations on continents the usual 
method is the geometric levelling. For 
unifications common adjustment of existing 
levelling networks over continents is suitable. 

ii. The general case for realization and unification 
is the combination of GNSS positioning or 
GNSS/levelling with a GGM. 

iii. For the unification of VRS  a combination of 
tide gauge observations with sea surface 
topography information . 

 
A combination of the different cases is useful. 

i  Levelling and common adjustments of 
existing levelling networks 

This procedure is mainly used for the realization of 
VRS and unification of existing VRF. This case can 
not be used for the realization of a GVRF.  
 

A classical example is the realization of the 
European Vertical Reference System (EVRS) (Ihde, 
J., Augath, W., 2001, 2002) by the United European 
Levelling Network (UELN, Fig. 1), which is the 
result of a common adjustment of 26 national 
European 1st order networks. Characteristic 
parameters are: No. of measurements: 9542, 
degrees of freedom: 2318, a-posteriori σ 1 km 
levelling distance in kgal·mm: 1.07, mean value of 
σ of adjusted cP (heights), in kgal · mm: 17.19, 
average redundance: 0.24.  

ii  General case for realization and 
unification: combination of GNSS and 
GNSS/levelling with a GGM 

The VRS realization at single points P is very 
simple and wellknown:   

GGMPITRFP ThhUUW +⋅∂∂+= /00  (11) 

or 

GGMPITRFP NhH −=  . (12) 

 
Fig. 1: United European Levelling Network (UELN), 
common adjustment of 1st order levelling networks of 
European  

In many cases the geoid heights N or the 
disturbance potential T bases on a GGM which is 
improved by local gravity and related to 
GNSS/levelling data. With such regional geoidal 
solutions a unique (GVRS) can not realized. 
 
The transformation of geopotential numbers of 
regional VRF in a  GVRF is possible if the level 
W0k of a regional VRF k is known: 

PkkP cWW −= 0  (13) 

With a GGM and GNSS positions, the potential of 
levelling points can determined in a global system 

hhUUUTUW PGGMPPP ⋅∂∂+=+= /with 00  

GGMPITRFP ThhUUW +⋅∂∂+= /00  (14) 

The mean potential of the zero level of the regional 
VRF k and the difference to a global level W0 can 
derived by: 
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By combination with geopotential numbers of the 
regional VRF, the level of a regional VRF k can be 
derived in single points i 

iPkGGMPiITRFiiik cThhUUW ,00,0 / ++⋅∂∂+=  

The height of the zero level of the regional VRF can 
derived for single points by 

GGMiVRFiITRFiVRF NHhH ,,,,0 −−= . (16) 

To reach globally a one-centimetre accuracy level, 
the GGM has to be increased local or regional with 
gravity data. To guarantee a homogenous 
unification the GGM shall be conventional: CGGM. 
h and N shall global. (Fig. 2) 

 
Fig. 2: Principle of GRF unification using GNSS/levelling 
and CGGM  

iii. Unification by tide gauge observations 

To use tide gauge observations for VRF unification, 
information about the absolute sea surface 
topography (SST) model and additional local 
modification of SST around the tide gauges are 
necessary. At coasts the SST is influenced by local 
effects and satellite altimeter observations at present 
can not be used with high precision. Therefore the 
use of offshore tide gauges should be considered. 
Of course a precise geoid on the basis of a CGGM 
is necessary to connect the offshore tide gauges 
with the VRF. Similar to the relationship (16) the 
height of the zero level of the regional VRF can 
derived for single points by (Fig. 3): 
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Fig. 3:  Principle of GRF unification using tide gauge 
observations and a global model of sea surface topography 

7 Role of Integrated Networks  

Recently under discussion and partly in realization 
are integrated networks which combines at 
terrestrial reference stations geodetic space 
techniques, high precise absolute and relative 
gravity, levelling, and tide gauges with permanent 
or episodically observations and supplementary 
information (meteorological parameters, 
surrounding information of the stations e.g. 
eccentricities and ground water level). It is the basis 
to combine the geometric and height reference 
systems with Earth gravity field parameter 
estimation. These activities are in agreement with 
the IAG project of a Global Geodetic Observing 
System (GGOS, Rummel et al., 2002). In Europe 
the IAG project of the realization of a European 
Combined Network (ECGN) is in progress (Ihde et 
al., 2005, 2006). 
 
The objectives of ECGN as Integrated European 
Reference System for Spatial Reference and 
Gravity are 

• maintenance of long time stability of the 
terrestrial reference system with an accuracy 
10-9 for Europe especially in the height 
component 

• in-situ combination of geometric positioning 
(GPS) with physical heights and other Earth 
gravity parameters at 1 cm-accuracy level 

• modelling of influences of time dependent 
parameters of the solid Earth of the Earth 
gravity field, the atmosphere, the oceans, the 



hydrosphere for different applications of 
positioning 

• contribution to the European gravity field 
modelling as part of a global gravity model. 

 
It is the goal to use the available infrastructure, data 
bases and standards as far as possible. 
 
Combination of various geodetic methods 
contributes especially to the vertical component and 
the determination of vertical velocities v. 
 
In a first approximation we can assume that the 
disturbance potential is time independent, it means 

vhi = vHi (18) 

The velocities of the physical heights H can be 
derived from time series of the ITRFxx heights h:  

)()( 000 tthHtH PPP −+= & . (19) 

An integrated GVRF network which combines the 
IGS Tiga Pilot Project with the network of the super 
conducting gravimeter of the Global Geodynamic 
Project (GGP) could be a begin of an GVRF. 
(Fig. 4) 

 
Fig. 4 GVRF an integrated network 

8 Summary and Outlook 

The realization of a Global Vertical Reference 
System bases on combinations of positioning by 
geodetic space techniques, levelling, gravity and 
tide gauge observations with a global gravity model 
(GGM).  
 
The used GGM should be a satellite only solution to 
exclude inconsistencies from local gravity data. It 
should be international agreed and conventional 

(CGGM). To reach a one centimetre accuracy level, 
the GGM has to be increased local or regional with 
gravity data. 
 
To use tide gauge observations for VRF unification 
information about the absolute sea surface 
topography (SST) around the tide gauges are 
necessary. If the SST at coasts is influenced by 
local effects and satellite altimeter observations at 
present not can used with high precision, the use of 
offshore tide gauges should be considered. Of 
course a precise geoid on the basis of a CGGM is 
necessary to connect the offshore tide gauges with 
the VRF. For further consideration: The integration 
of worldwide GNSS Tsunami early warning system 
buoys for long term control of mean sea surface and 
connection to satellite altimeter observations can 
provide an additional progress. 
 
The processing of contributing geodetic space 
techniques in ITRF solutions makes sure a global 
homogeneity for VRS realization and unification. 
 
The instantaneous mean sea surface should 
observed against a conventional W0 value, which is 
agreed for a GVRS as zero level. A conventional 
W0 value has to be consistent with other defining 
parameters of Earth models. IAG shall agree unique 
sets of parameter. 
 
Furthermore the different processing procedures of 
the relevant techniques for VRS realization and 
unification shall to be used agreed models e.g. tidal 
systems. 
 
A GVRS should realized in context with a global 
integrated network, which combines at terrestrial 
reference stations geodetic space techniques, high 
precise absolute and relative gravity, levelling, and 
tide gauges  with permanent or episodically 
observations. 
 
ICP1.2 Vertical Reference Frames will propose 
2007 conventions for definition and realization of a 
IVRS. 
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Abstract. Satellite altimetry missions, in particular 
the TOPEX/POSEIDON and Jason 1, have enabled 
a new realization of a World Height System. From 
altimetry data and precise global gravity models, 
one can determine a geopotential value W0, which 
best fits the world’s oceans. W0 specifies the geoid 
and it can also represent the WHS height datum. 
During the past 12 years, we have monitored the 
stability of the geopotential W0 and proposed a 
rounded value of W0 = 62 636 856.0 m2s-2 that 
reflects the formal and calibration uncertainties. 
However, for WHS, W0 can be chosen arbitrarily. A 
methodology of connecting regional vertical datums 
and the proposed WHS has also been developed. 
The proposed approach, which requires vertical 
datums with sufficient numbers of GPS/levelling 
points, covering sufficiently large areas, has been 
successfully used to connect vertical datums in 
many parts of the world. The fundamental 
relativistic constant, required for relativistic time 
transformation, adopted by IAU, is based on our 
value of W0. Since future precise clocks may be 
capable of “measuring” geopotential differences 
(heights) with respect to the fundamental relativistic 
constant (and W0), it is essential that the future 
WHS, W0 and the relativistic transformation are 
mutually consistent. 
__________________________________ 

1 Introduction 

Satellite altimetry missions, in particular the 
TOPEX/POSEIDON and Jason 1, have enabled a 
new realization of a World Height System (WHS). 
From altimetry data and precise global gravity 
models, one can determine a geopotential value  W0,  
which best fits the world’s oceans [Gauss (1828),   
Bessel (1837),  Listing (1873)  and  Helmert (1884)] 

 
 
 
 
 
 
W0 specifies the geoid and it can also represent the 
WHS height datum. 

2 Present stay of determination of W0 
value by the SSG GGSA 

In the past 12 years we monitored the geopotential 
value W0 to use it in establishing the world height 
system. 

 
Fig. 1 Long term variation of W0, no IB  correction 
applied. 

 
Fig. 2  Long term variation of W0, IB  correction 
applied (model AVISO). 
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Proposed a rounded value of  

                   W0 = 62 636 856.0 m2 s-2  

reflects  the  formal   and   calibration uncertainties. 
The above mentioned W0 value has been included in 
the IERS Conventions. This W0 value has been used 
for the determination of  the defining constant   

               LG  = W0/c2 = 6.969 290 134 × 10-10 , 

required for relativistic time transformations in 
astronomy (LG is also included in the IERS 
Conventions). 

3 Last improvements of W0 value 

Although the fact that W0 could be chosen 
arbitrarily for WHS, we have improved its value in 
the last period:  
- we have investigated the influence of the ice-
coverage on W0 
- we have corrected the weighting of altimeter data  
- we have corrected the ellipsoidal height of T/P by 
value -0.13 m (J. C. Ries, personal comm.). 

3.1 Elimination of the influence of ice-coverage 
in W0 determination by using of corrected weight 
of altimeter data and corrected altimeter height 

From Fig. 3 it is evident that the ice-free area of the 
world oceans increases every year. In Fig. 3 there 
are depicted the ice boundary for years 1993, 2000, 
2005 only. 
 

 
Fig. 3 The ice-free area of the world oceans in years 
1993, 2000, 2005. 

For determination of a “realistic” W0 value the 
largest possible ice-free ocean area (the last 
altimetry data = 2006) should be used. Of course 
this ice-free area is not identical with the boundary 
φ∈<+60o, +60 o> which Laura Sanchez [2005] used 
for determination of W0 value. We suggest that the 
conventions of ICP 1.2 (φ∈<+60o, +60o>, year 2000 
as a reference year) for determination of W0 value 
should be changed. For studies of “relative” value 
W0, ie. for studying of the long term variation of W0 

(e.g. for a finding of the rate of the increase  of the 
ocean levels, etc.) it is necessary to use identical 
areas of ocean which are covered by altimeter data 
and which was never covered by ice. This area is 
depicted at Fig. 4.  
 
 

 
Fig. 4 Ice-free area of the world oceans from  T/P 
data - years:  1993 – 2005. 

Adopting the convention above for determination a 
“realistic” W0 values (yearly ice-free area for each 
year used) we determined the values depicted in 
table 1 and at fig. 5. 

Table 1 Yearly “realistic” W0 and R0 from ice-free 
T/P data  

 
 

 

 

 

 

 

 
  
 

Fig. 5  Yearly “realistic” W0 and R0 from ice-free 
T/P data. 
 

Year Number
of points

(all/without ice)

W0
[m2s-2]

rms
[m2s-2]

R0
[m]

rms
[mm]

1993 204 909/141 148 62 636 854.720 0.013 6 363 672.6898 1.3
1994 208 022/143 740 62 636 854.687 0.013 6 363 672.6932 1.3
1995 206 794/139 146 62 636 854.590 0.012 6 363 672.7030 1.3
1996 205 004/138 786 62 636 854.636 0.013 6 363 672.6983 1.3

      1997 217 888/143 682 62 636 854.624 0.012 6 363 672.6996 1.2
      1998 207 850/139 235 62 636 854.592 0.012 6 363 672.7029 1.3
      1999 204 868/143 407 62 636 854.720 0.013 6 363 672.6898 1.3

2000 209 991/140 796 62 636 854.556 0.012 6 363 672.7065 1.2
2001 209 053/161 009 62 636 855.000 0.013 6 363 672.6613 1.3
2002 198 543/139 804 62 636 854.764 0.013 6 363 672.6854 1.3
2003 180 380/154 505 62 636 855.064 0.013 6 363 672.6548 1.3
2004 127 752/109 256 62 636 855.215 0.016 6 363 672.6396 1.6
2005 135 937/ 116 837 62 636 855.062 0.015 6 363 672.6551 1.5

1993-2005 2 516 991/ 1 181 351 62 636 854.787 0.004 6 363 672.6830 0.4
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As a control of the determination of W0 value from 
T/P data we used new altimetric data of Jason 1 
from years 2003-2005. The result of this 
compaarison is depicted in table 2 and at fig. 6. 

Table 2  Yearly “realistic” W0 and R0 from ice-free 
Jason 1 data 

  
 

 

 

 

 

 

 
 
 
Fig. 6 Yearly “realistic” W0 and R0 from ice-free 
Jason 1 data.  
 

 

4 Conclusios 
Rounded value 

                W0 = 62 636 855.0 m2 s-2  

could be  adopted because the difference between 
average  “realistic”  value  W0  =  62 636 854.784 
m2 s-2 from ice-free T/P  and  average “realistic” 
value  W0 = 62 636 854.586 m2 s-2 from ice-free 
Jason 1 is ≈ 2 cm only.   
      Alternatively, to be consistent with IAU (Intern. 
Astron. Union) and since increase of ice-free oceans 
is evident, causing an increase of W0 value from 
ice-free data area, then old  
                W0 = 62 636 856.0 m2 s-2  
could also be adopted. Such a “dateless” value will 
be valid for the Earth, sooner or later with a very 
high probability. Moreover, more complete ocean 
coverage causes higher value of W0. And it is also 
highly probable that such a coverage will be 
available in near future.   
      A future in the developments of W0 and World 
Height System: 
- adoption of a W0  

- monitoring of W0 stability from Jason 1 data using 
new geopotential models like as EGM06,  GOCE 
- practical applications of the developed technology 
for connections of Local Vertical Datums to the 
WHS. 
 
References 
Burša M., J. Kouba, K. Raděj, S. A. True, V. Vatrt 

and M. Vojtíšková (1999a). Determination of the 
geopotential at the tide gauge defining the North 
American Vertical Datum 1988 (NAVD88). 
Geomatica, 53, pp. 459-466. 

Burša M., J. Kouba, M. Kumar, A. Müller, K. 
Raděj, S. A. True, V. Vatrt and M. Vojtíšková 
(1999). Geoidal geopotential and World Height 
System. Stud. Geophys. Geod., 43, pp. 327-337.  

Burša M., J. Kouba, A. Müller, K. Raděj, S.A. True, 
V. Vatrt and M. Vojtíšková (2001). 
Determination of geopotential differences 
between local vertical datums and realization of 
a World Height System. Studia Geophys. Geod., 
45, pp. 127-132.  

Burša M., S. Kenyon, J. Kouba, K. Raděj, J. Šimek, 
V. Vatrt and M. Vojtíšková (2002) World height 
system  specified by Geopotential at tide gauge 
stations. IAG Symposium, Vertical Reference 
System. Cartagena, February 20-23, 2001, 
Colombia, Proceedings, Springer Vlg. 2002, pp. 
291- 296.  

Burša M., E. Groten, S. Kenyon, J. Kouba, K. 
Raděj, V. Vatrt and M. Vojtíšková (2002). 
Earth’s dimension  specified by  geoidal 
geopotential. Studia Geophys. Geod., 46, pp. 1-8.   

Burša M., S. Kenyon, J. Kouba, K. Raděj, Z. Šíma, 
V. Vatrt and M. Vojtíšková (2002). Dimension 
of the Earth’s generated ellipsoid. Studia 
Geophys. Geod., 46, pp. 31-41.  

Burša M., S. Kenyon, J. Kouba, K. Raděj, Z. Šíma, 
V. Vatrt and M. Vojtíšková (2004). A Global 
Vertical Reference Frame based on four regional 
vertical datums. Studia Geophys. Geod., 48, pp. 
493-502. 

Burša M., S. Kenyon, J. Kouba, A. Müller, K. 
Raděj, V. Vatrt, V. Vítek and M. Vojtíšková 
(2004). Long-term stability of geoidal 
geopotential from Topex/Poseidon Satellite 
altimetry 1993-1999. Earth, Moon and Planets, 
84, pp. 163-176.  

Sánchez, L. (2005). Definition and Realisation of 
the SIRGAS Vertical Reference System within a 
Globally Unified Height System. Dynamic 
Planet, Cairns, 2005, oral presentation. 

 
 
 
 
 
 
 

Year Number
of points

(all/without ice)

W0
[m2s-2]

rms
[m2s-2]

R0
[m]

rms
[mm]

2003 350 573/292 579 62 636 854.471 0.009 6 363 672.7158 0.9
2004  391 371/341 696 62 636 854.663 0.009 6 363 672.6963 0.9
2005  414 586/344 512 62 636 854.623 0.009 6 363 672.7003 0.9

2003-2005  1 156 530/978 787 62 636 854.586 0.005 6 363 672.7041 0.5

W0 = (62 636 854.51±0.09) m2s-2 + (0.08±0.07) m2s-2y-1
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Abstract EUREF, the Subcommission for the 
European Reference Frame within IAG 
Commission 1 in cooperation with the European 
Geoid and Gravity Project (EGGP) is developing a 
homogeneous continental GPS/leveling database. 
EUVN_DA, the Densification Action of the EUVN 
(European Unified Vertical Reference Network) 
project is designed to support the development of 
the new European geoid solutions and to contribute 
to the realization of an accurate continental height 
reference surface. The cm-accuracy GPS/leveling 
database could also be used for future realizations 
of the European Vertical Reference System (EVRS) 
and for the analysis of the national height networks. 

The establishment of the EUVN_DA network 
was started in 2003 and the first version of the 
database will be released in 2007. The database now 
consists of more than 1200 GPS/leveling points 
contributed from 20 countries. The GPS coordinates 
are referred to ETRS89 and the leveling data to 
EVRS2000. The EUVN_DA benchmarks are 
integrated into UELN (United European Leveling 
Network) to assure the long term homogeneity. 
Because of the large number of points, a continental 
coordinated GPS campaign could not be planned. 
The GPS database mostly relies on existing 
measurements, which should fulfill the quality 
requirements.  

This paper introduces the activities within the 
EUVN_DA project, gives an overview on the actual 
status and presents the first results on the analysis of 
the continental geoid solutions. 
 
Keywords. GPS/leveling, geoid, reference network, 
EUREF, geoid evaluation 
 
 

1 Overview of EUVN 
 
The initial aim of the EUVN project was to support 
the unification of the different European vertical 
datums at the few cm accuracy level and to prepare 
the realization of the European Vertical Kinematic 
Network. Details can be found in Ihde et. al (2000). 
In order to achieve this aim, a GPS campaign was 
organized in 1997 involving 196 points from all 
European countries covering the continent and the 
larger islands. The network incorporated selected 
leveling nodal points (54), permanent EUREF (66) 
and national (13) GPS stations and tide gauges (63). 
Tide gauges were included to connect the European 
tide gauge benchmarks for monitoring absolute sea 
level height variations. The GPS measurements 
have been processed by 10 analysis centers and a 
careful combination of the subnetwork solutions 
was prepared. The EUVN markers were connected 
to the nearest nodal points of the UELN 95/98 
network. The results of the connection leveling 
were provided in geopotential numbers. 

The final product of the EUVN project was an 
open database, where all markers were associated 
with cm-accuracy 3D coordinates in ETRS89 
(ETRF96 epoch 1997.4) and geopotential numbers 
related to EVRS2000 zero level, which were used to 
derive normal heights.  

Based on the available ellipsoidal and normal 
heights and the EGG97 continental geoid solution, 
see Denker and Torge (1997), a comparison was 
performed, see Ihde et al. (2000). The differences of 
the EGG97 and the EUVN height anomalies are 
plotted in Fig.1. Generally, the EGG97 and EUVN 
geoids agree within 2 dm and mostly the variation 
of their differences - within a certain limit – seems 
to be random, where several points are suspected as 
outliers. There are a few regions (Alps, SE-Europe, 



Baltic, Central Scandinavia, Atlantic coastline), 
where systematic, large scale trends and/or biases 
are clearly observable. Among them, the most 
significant is the Alpine region, where the 
discrepancies go up to 40 cm. The Anatolian part of 
Turkey also shows significant variation of the 
differences, which is due to lacking gravity and 
terrain data in the EGG97 model. 

Considering the systematic differences at that 
stage, it was not clear whether the long wavelength 
discrepancies were due to geoid errors (resulting 
from corresponding errors in the terrestrial gravity 
data or geopotential models) or due to leveling 
errors. One conclusion was that both EGG97 and 
EUVN were not sufficient to allow the 
determination of precise heights by the GPS 
technique . 
 

Figure 1. Differences between the EUVN GPS/leveling 
geoid and EGG97 
 
2 EUVN_DA: densification of EUVN 

The analysis of the EGG97 and EUVN data has 
clearly shown that significant inconsistencies exist 
between the two datasets, therefore its modeling or 
removal cannot be a straightforward task. In order 
to distinguish, identify and/or eliminate the 
inconsistencies, a more accurate continental geoid 
solution and a denser GPS/leveling network are 
inevitable. The denser the network is, the easier is 
the separation between outliers and long wave 
trends. However, the densification must also be 

supplemented with an updated continental geoid to 
improve the separation of the various error 
components. 

The difference map in Figure 1 also suggests that 
an improvement of the leveling networks (re-
measurements or re-adjustment using homogenized 
standards and reductions) on national and 
continental scales would also be desirable.  
However, due to the high cost and manpower 
demands, this work cannot be done within a 
reasonable time frame. Instead of a regional 
activity, coordinated national actions were preferred 
to clarify the discrepancies observed in the current 
solution.  

At the geoid development, a substantial 
improvement was expected thanks to the results of 
the new satellite missions (GRACE, CHAMP) and 
the updated marine and terrestrial gravimetric 
databases. In 2003 the former IAG European 
Subcommission IGGC (International Gravity and 
Geoid Commission) in cooperation with EUREF 
initiated the EUVN densification project. A parallel 
development was started targeting at the 
establishment of a homogeneous, cm-accuracy 
continental GPS/leveling database and a new 
improved European geoid solution.  
The responsible national institutions and mapping 
agencies were asked to provide a set of benchmarks 
with high quality GPS derived coordinates and 
leveling data. The expected site separation is 50 – 
100 km as a compromise between the spatial 
resolution of the global geopotential models and the 
data preparation costs. In order to get the one cm 
accuracy for the ellipsoidal heights, optimally 24 
hours of GPS measurements, processed by a 
scientific software package (e.g. Bernese) were 
asked. Most of the countries could meet this 
requirement, if not, a denser data set was provided 
(e.g. Great Britain, Italy).  

The reference system of the GPS coordinates is 
ETRS89 and for the leveling data it is EVRS2000. 
The submitted geopotential differences should 
directly refer to a UELN (United European 
Leveling Network) marker. Those benchmarks are 
integrated into UELN to assure the long term 
homogeneity. When a direct connection was not 
available, the submitted heights were transformed to 
EVRS2000 with existing transformation 
parameters. The leveling data validation and the 
sequential UELN adjustments are being done at the 
UELN/EUVN Data Centre in Leipzig. The timing 
of the project was perfect as several countries 
(Norway, Sweden, Finland, Poland, Spain) just 
completed the re-leveling of their networks.  



In theory, the reference epoch of the ellipsoidal 
and leveled heights is 2000.0, but practically the 
data refer to the epoch of the observations. 
Especially the age of the leveling data is very 
variable, ranging from 0 – 50 years. The oldest 
leveling data is from Spain, but a re-leveling will be 
completed this year, and therefore new data will be 
available soon.  

The weak point of the EUVN_DA database is 
that the validity of the height information relies on 
the assumption of the long term site stability. The 
Nordic countries are exceptional, where due to the 
glacial-isostatic adjustment (GIA) the heights 
should have been transformed to the epoch 2000.0 
using the latest GIA model NKG2005LU (Agren 
and Svensson, 2006). 
The EUVN_DA database now consists of more than 
1200 GPS/leveling points contributed from 20 
countries. For 5 additional countries the data 
preparation is in progress. The point distribution is 
shown in Figure 2. 
 

Figure 2. Distribution of the EUVN (blue dots) and 
EUVN_DA benchmarks (black dots) as of August 2006. 
 
The available GPS and leveling data is being 
transformed to the common reference frames, then 
it is submitted to a detailed internal consistency 
check and external comparisons. The latter is being 
done in cooperation with EGGP. Both, EUREF and 
EGGP benefit from the cooperation. The European 
geoid may be used for identifying outliers in the 

GPS/leveling data and EUVN_DA is used for the 
validation of the new European geoid solutions.  
 
3 Analysis of the GPS/leveling data 

The comparison of GPS/leveling derived height 
anomalies and independent geoid solutions is useful 
to check data consistency of both data sources. In 
this connection, leveling datum misalignments and 
gross errors can be easily found by geoid 
comparisons. This is especially important in our 
case, where the databases are built up from separate 
national contributions. In order to accommodate the 
comparisons, a uniform MS Excel worksheet has 
been developed, which includes all GPS leveling 
information, geoid tests and the derived statistics. 
The comparisons presented here are preliminary; 
the validation of the GPS and leveling data is not 
yet completed for all countries. 
The 1st external test was the comparison of 
EUVN_DA and EGG97 height anomalies (see 
Fig.3). 
 

Figure 3. Height anomaly differences of EUVN_DA and 
EGG97. 
 
Figure 3 shows several interesting features. 
Comparing with Figure 1, this is more or less the 
densification of the main long wavelength 
structures, but now they show up more clearly. The 
continental scale structures mainly result from the 
gravimetric geoid (see also below). The Spanish 
data shows higher scatter, because at this 



comparison we could only use the old leveling 
dataset. In Italy only the Northern part is used, the 
Southern part needs further checking. The Alpine 
region and the High Tatras in Slovakia show higher 
discrepancies, which could come from EGG97 
and/or EUVN_DA. The follow-on EGG solutions 
clarified this feature (see Fig. 4 and 5). The higher 
differences at the Mediterranean coastline are also 
remarkable. 
At the British Isles, the map shows negative 
differences (higher EGG values with an average of 
-54 cm) and a clear negative trend (70 cm) against 
the continent, but this already starts on the territory 
of France. This feature is so relevant that it is 
present in all EGG comparisons. As the Ordnance 
Survey's leveling network is only connected to the 
continent by hydrographic leveling (the connection 
through the Eurotunnel is not yet finalized), a datum 
offset may exist. Additionally a tilt may exist in the 
UK network as suspected by Edge (1959) from the 
results of the 2nd and 3rd leveling. This topic needs 
further investigations. 
 

Figure 4. Height anomaly differences of EUVN_DA and 
EGG03C2. A bias of 35 cm was subtracted from the 
differences as zero undulation term. 
 
Figure 4 shows the comparison with an updated, but 
not officially released test EGG solution, where the 
marine data was updated, the EIGEN-CG03C 
geopotential model was used instead of EGM96, 
but the terrestrial gravity data remained the same as 
in EGG97 (Denker et al., 2005). EGG03C2 was not 

fitted to the European height reference systems; the 
comparison statistics suggests a zero order 
undulation term of around 35 cm.  
According to the expectations we observe a 
significant improvement (see some statistics in 
Table 1) all over Europe; the rms of the differences 
dropped about 50%! The large Alpine feature 
disappeared, but the effect of the High Tatras 
remained – this clearly suggests that the data in this 
area is insufficient in the EGG computation. The 
large negative offset of Sardinia Island has also 
disappeared, so there was a negligible height datum 
offset. The Iberian part shows no improvement at 
all, only the mean offset changed – this may reflect 
the weakness of the present leveling data. The new 
Spanish leveling data under preparation will 
hopefully improve the picture. The higher offset for 
Poland may be caused by the fact that the new 
Polish leveling data is not yet integrated into 
UELN. 
Finally, the analysis of the latest test EGG solution, 
EGG06 is presented in Figure 5 and Table 1. In this 
quasigeoid solution, the gravimetric data for Central 
Europe (latitude 40-60; longitude -10 – 25) has 
been updated completely. 
 

Figure 5. Height anomaly differences of EUVN_DA and 
EGG06. 35 cm zero undulation term was also subtracted 
from the differences. 
 
We observe further improvements especially in 
three areas: in Spain the rms scatter decreased (but 
we have here less data); the High Tatras feature 
diminished, the cause of the discrepancy was 



obviously the local gravimetric/terrain data; the 
Mediterranean/Adriatic coastline offsets also 
diminished, especially at the Croatian coastline.  
At some smaller regions (e.g. S-France, SE-
Hungary) the differences became larger, suggesting 
that the database may need further improvement 
and with a completely revised dataset they should 
disappear. 
 
Table 1. Comparison statistics of EUVN_DA and the 
EGG solution differences for some countries. 
 

RMS [cm] MAX-MIN range[cm] nat. 
code 

no. of 
pts 

EG97 EG03 EG06 EG97 EG03 EG06 

AUT 17 11 6 5 33 19 17 

CRO 20 20 17 7 80 74 29 

FRA 168 12 8 8 70 42 48 

GER 75 10 4 4 46 15 15 

GBR 189 19 13 11 74 59 56 

HUN 20 9 4 5 40 20 20 

SVK 28 17 13 4 57 49 16 

SUI 20 10 6 5 31 23 16 

SWE 84 12 5 - 54 27 - 

 
The statistics in Table 1 well summarizes the 
improvement and well indicates the effect of the 
different data upgrades. Obviously we get better 
and better results, where the earlier gravimetric and 
terrain databases were sparse or erroneous. The 
RMS values indicate that the latest EGG solution 
already has the potential to serve as a dm-accuracy 
continental height reference surface in areas with a 
good coverage and quality of the input data. 
Morever, high difference range values reflect tilts in 
the differences, which can be easily modeled. 
 
4 Summary and outlook 
 
In cooperation of EUREF and EGGP, with the 
support of the European mapping agencies, the 
creation of a regional GPS/leveling database is in 
progress. The current database includes some 1200 
EUVN_DA points, where existing and new data, 
which fulfilled strict quality requirements, are 
collected. The submitted data is carefully tested and 
transformed to common reference systems 
(ETRS89/GRS80 for the GPS and 
EVRS2000/UELN for the leveling data). The 
uniform and homogeneous database is of great 
value for practical GPS-leveling applications. The 
first version of the database will be ready in 2007 

and will be available for the data providers and for 
scientific, non-commercial users.  
The target of these preliminary comparisons was to 
give a general overview of the project and 
demonstrate its potential for geoid testing at the cm 
to dm level. More detailed studies will come soon, 
where the potential for the analysis of the leveling 
networks and for the improvement of the 
continental geoid will be treated.  
An important product could be the computation of a 
combined gravimetric-GPS/leveling geoid as a 
realization of a uniform and accurate European 
height reference surface. First investigations have 
already started to test the mathematical models (e.g. 
FEM, neural networks, splines) for the selection of 
the most feasible method. 
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Abstract. Height determination, like geoid 
modelling, is directly dependent on the gravity field. 
Hence it would be natural to link them for a 
comprehensive solution. It is known that the 
traditional methods for determining orthometric 
heights suffer from adopted approximations. In order 
to arrive at a more rigorous orthometric height, one 
must also account for the effects of the geoid-
generated gravity disturbance, the shape of the 
topographical surface, and the density variations 
within topography. These effects are also considered 
for regional gravimetric geoid models. As a 
consequence, the implementation of the rigorous 
orthometric heights is simplified, further on, the 
heights become more compatible with regional 
geoid models. However, the two research areas have 
usually been discussed separately, and therefore the 
interrelation between them has only been vaguely 
considered. This contribution focuses on common 
features of geoid modelling and rigorous height 
determination. Relevant numerical results are 
discussed.  
 
Keywords: mean gravity, Stokes-Helmert, upward 
continuation   
_________________________________________ 
 
1  Introduction 
 
The geoid plays an essential role in the national 
geodetic infrastructure, as the topographic heights 
and the depths of water bodies are reckoned from it. 
Over the past years, University of New Brunswick’s 
geodesy group has been using Stokes-Helmert’s 
method for regional geoid determination. Nowadays, 
many geodetic and engineering applications require 
that the two essential components of the vertical 
positioning – the height and the corresponding 
reference surface (geoid), are determined precisely. 
They both depend on the gravity field. It is thus 
appealing to examine the geoid and height 
computation issues together. With this in mind, we 
are herewith revisiting the principles of height 
determination.  

In the past, three main approximations have been 
applied in practice to evaluate the orthometric 
heights. The Helmert method, as described in 
Heiskanen and Moritz (1967, Chap. 4), applies the 
Poincaré-Prey vertical gradient of gravity in 

conjunction with the measured gravity (at Earth’s 
surface) for an estimation of the mean gravity. The 
Helmert height correction is simply proportional to 
the topographic heights. Niethammer (1932) and 
Mader (1954) refined the Helmert model by 
including the effect of the local shape of the 
topography. For a recent review of the three methods 
see Santos et al. (in press).  

The simplest of the three – the Helmert 
orthometric height – has been adopted as the basis of 
the national vertical datum in many countries. 
Tenzer et al. (2005) showed that this commonly used 
method contains inadmissible approximations. 
Santos et al. (in press) presented the complete 
methodology with which to convert Helmert’s 
heights to the rigorous orthometric heights.  

It should be noted that the computation of the 
new rigorous heights is more involved, especially 
compared with the traditional Helmert approach. 
Indeed, as will be shown later, a number of 
components are needed to calculate the rigorous 
orthometric height. More specifically, one must 
account for the effect of the gravity disturbance 
generated by the geoid (Vaníček et al., 2004), the 
shape of the topographical surface, and the effects of 
density variations within topography.  

The present contribution aims at demonstrating 
that the computations of the rigorous heights can be 
significantly simplified, if the Stokes-Helmert geoid 
modelling results are available. This is because 
several terms in this modelling are the same as those 
needed for computing the orthometric heights. Due 
to space limitations, however, the present 
contribution discusses only the most important 
causal relationships between the two research fields.  

As such, this paper could also be considered as a 
complement to the earlier contributions by Tenzer et 
al. (2005), Kingdon et al. (2005) and Santos et al. (in 
press). Discussion on the relations between the 
normal heights (adopted in some countries) and the 
rigorous orthometric heights is considered to be 
outside the scope of the present contribution, but it 
can be found in Tenzer et al. (2005).    

In Section 2 we continue with a brief 
recapitulation of the Stokes-Helmert geoid 
modelling principles. Section 3 is a review of the 
theory behind the rigorous orthometric heights. 
Section 4 deals with the assessment of components 
of the rigorous mean gravity. The relations between 



the constituents of Stokes-Helmert’s geoid 
modelling and those needed for the rigorous heights 
are spelled out as well. Section 5 presents the results 
of the numerical investigations along a profile in the 
Canadian Rockies. A brief summary concludes the 
paper.  
 
2  Helmert’s condensation and solution 
to Stokes’s boundary value problem 
 
The solution of the boundary value problem by 
Stokes’s (1849) method requires gravity to be 
known on the geoid, while in reality gravity 
measurements are taken at the topographic surface. 
Thus to satisfy the boundary condition gravity 
anomalies need to be downward continued to the 
geoid level. Harmonic quantities are needed for 
downward continuation; thus a number of different 
corrections related to the existence of topographic 
masses need be accounted for very carefully. 
[Strictly speaking, the effect of the atmospheric 
masses should also be considered in the geoid and 
rigorous orthometric height computations. Due to 
space limitations, however, these small effects are 
not discussed in this contribution]. One way of 
estimating the effect of topographical masses is to 
use Helmert’s (1890) second condensation model. 
According to this model the Earth’s topographical 
masses are replaced by an infinitesimally thin 
condensation layer on the geoid. So constructed 
gravity field becomes slightly different from the 
actual gravity field. The resulting Helmert 
anomalies, ( ),hg r∆ Ω , differ from the commonly 
used free-air anomalies, ( ),g r∆ Ω . The relation 
between the two anomaly types can be expressed as 
(cf. Vaníček et al., 1999) 
 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

, ,
, ,

2 , , ,

T CT
t th

t t

T CT
t t ellips t

t

V r V r
g r g r

r

V r V r r
r

ε

 ∂ Ω − Ω ∆ Ω = ∆ Ω +
∂

 + Ω − Ω + Ω Ω

   

,  (1) 
 
where VT(r,Ω) and VCT(r,Ω) are the potentials of 
topographic masses and condensation layer, 
respectively. The geocentric position (r,Ω) is 
represented by the geocentric radius  r(Ω) and a pair 
of geocentric spherical coordinates Ω = ( ),φ λ , 
where φ  and λ  are the latitude and longitude, 
respectively. All the quantities in Eq. (1) are referred 
to the surface of the Earth, ( ) ( ) ( )o

t gr r HΩ = Ω + Ω , 

where ( )gr Ω  is the geocentric radius of the geoid 

surface and ( )oH Ω  is the orthometric height. The 

term ( ),ellips trε Ω  represents the ellipsoidal 
correction needed to account for the deviation of the 
actual shape of the Earth from the spherical 
approximation employed in fundamental gravimetric 
equation (Vaníček et al., 1999). The topographic 
terms in Eq. (1) can be evaluated by using the 
topographic elevation/density models in numerical 
quadrature methods (see e.g., Martinec, 1998). For 
more details on estimation of the components of Eq. 
(1), see e.g., Vaníček and Martinec (1994), Martinec 
(1998), Vaníček et al. (1999) and references therein. 
A recent review can also be found in Ellmann and 
Vaníček (in press). 

Importantly, the product of corresponding 
Helmert anomaly and geocentric radius, ∆gh⋅ r, is 
harmonic above the geoid (Vaníček et al., 1996), and 
therefore such a field can be continued downward to 
the geoid level (note that this is not the case for the 
free-air anomalies!). For more details the reader is 
referred to (Vaníček et al., 1996). Thereafter the 
Helmert gravity anomalies serve as an input when 
solving the Stokes boundary value problem. The 
geoidal heights, N(Ω), after the application of the 
Helmert condensation are expressed as follows:  
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where R is the mean radius of the Earth, 

( )( ),S ψ ′Ω Ω  is Stokes’s function (Heiskanen and 

Moritz, 1967, Eq. 2-164), ( ),ψ ′Ω Ω  is the 
geocentric angle between the computation Ω and 
integration points Ω´;  ( )0γ φ  is the normal gravity 
(a function of latitude) at the reference ellipsoid, dΩ´ 
is the area of the integration element. 

The geoid determination by the original Stokes 
formula requires the global coverage of gravity 
anomalies, 0 / 2, / 2 , 0, 2φ π π λ πΩ =  ∈ − ∈   . 
Nowadays it is customary to use modifications of 
Stokes’s formula (originally proposed by 
Molodensky et al., 1960) in conjunction with some 
global geopotential model. Here we skip the aspects 
of our usual modification scheme, since these are not 
relevant in the context of the present paper. For 
more details the interested reader is referred to 
Vaníček and Sjöberg (1991). 

Recall that Stokes’s integral employs Helmert’s 
gravity anomalies. Note that Eq. (2) consists of two 
parts. The Stokesian integration (i.e. the first term on 



the right hand side of Eq. (2)) over these Helmert’s 
anomalies results in the Helmert co-geoid. The 
Helmert condensation of the topographic masses 
yields the co-geoid which does not coincide with the 
actual geoid. The effect causing this change is called 
the primary indirect topographic effect (PITE). 
Accordingly, the last term in the right hand side of 
Eq. (2) is PITE, which transfers the Helmert co-
geoid into the real geoid.  
 
3  Theoretical background of the 
rigorous orthometric heights 
 
The orthometric height ( )oH Ω  of a point on the 
Earth’s surface is defined as the length of the 
somewhat curved plumb-line (reckoned from the 
geoid!) and is given by (e.g., Heiskanen and Moritz 
1967, Eq. 4-21): 
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where ( )g Ω  is the mean value of gravity between 
the geoid and the Earth’s surface (along the plumb-
line). C(rt,Ω) is the geopotential number (see e.g. 
Heiskanen and Moritz, 1967, Chap. 4-2), which can 
be deduced from gravity measurements and spirit-
levelling. Hence, the problem reduces to the 
determination of the mean gravity. The mean gravity 
is defined in an integral sense (e.g., Heiskanen and 
Moritz 1967, p. 166): 
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where dr is an element of the plumb-line. Note that 
the integral is taken in radial direction, rather than 
along the (curved) plumb-line. This simplification is 
admissible, since this has a negligible influence (< 1 
mm) on the orthometric height (Tenzer et al., 2005). 
Because the actual values of gravity g(r,Ω) cannot 
be measured inside the topographic masses, the 
integral-mean gravity ( )g Ω  has to be computed 
from the observed surface gravity g(rt,Ω), using a 
realistic and physically meaningful model of the 
vertical gravity gradient. For instance, in the 
computations of Helmert’s mean gravity, ( )Hg Ω , 
the approximate Poincaré-Prey vertical gradient is 
adopted as follows (Heiskanen and Moritz, 1967, 
Eq. 4-25):  
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where / hγ∂ ∂  is the linear vertical gradient of 
normal gravity (evaluated at the surface) and 0ρ  is 
the mean topographic density (2670 kg/m3). The 
Poincaré-Prey constant (= 0.0424 mGal/m) is thus 
obtained as a sum of the attraction of the Bouguer 
plate (+0.1119 mGal/m) and a half of the (negative) 
linear vertical gradient (-0.3086 mGal/m) of normal 
gravity. Consequently, the corresponding “Helmert 
correction to the measured surface gravity” is 
directly proportional to the topographic heights. 

On the other hand, when computing the mean 
gravity rigorously one has to consider several terms. 
The gravity at a point g(r,Ω) can be decomposed 
into two terms; one comprising gravity generated by 
the masses inside geoid, gNT(r,Ω) (in accordance 
with Vaníček et al. (2004) we call it NoTopography 
(NT) gravity, since the effect of the global 
topography has been subtracted from the “full” 
gravity), and another part, the gravity generated by 
the topography gT(r,Ω). The geoid-generated gravity 
can be further decomposed into the contribution of 
the normal gravity and that of gravity disturbance 
caused by the masses inside the geoid (i.e. the 
NoTopography gravity disturbance, cf. Vaníček et 
al. 2004). Finally, the mean gravity is decomposed 
as follows (cf. Tenzer et al., 2005): 
 

( ) ( ) ( ) ( ) ( ) ( )
NTNT T Tg g g g gγ δΩ ≈ Ω + Ω ≈ Ω + Ω + Ω

,    (6) 
 
where the approximate sign is due to neglecting the 
contribution of the atmosphere. Tenzer et al (2005, 
Appendix 1) have shown that this contribution is 
insignificant and can be neglected. To distinguish 
between ( )g Ω  and the approximate Helmert mean 
gravity (Eq. (5)), the former will be referred to as  
‘rigorous mean gravity’.  
 
4  Components of the rigorous mean 
gravity 
 
The computation of the integral-mean (along the 
plumb-line) value of normal gravity, ( )γ Ω , in Eq. 
(6) is a rather trivial task. It can be evaluated 
accurately enough using a second-order Taylor 
expansion for the analytical downward continuation 
of normal gravity from the Earth’s surface to the 
geoid. The final expression for computing the mean 



normal gravity can be found in Santos et al. (in 
press, Eq. 19).  

It can be shown that the mean value of the 
topography-generated gravity can be evaluated (cf., 
Tenzer et al. 2005, Eqs. 16-18): 
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In other words, the estimation of the ( )Tg Ω  term 
reduces to the evaluation of the topographic 
potential at two points in the space: one at the 
surface of the earth and another one on the geoid 
level. Note that the terms in the numerator of Eq. (7) 
are already estimated during the Stokes-Helmert 
geoid determination, see Eqs. (1) and (2). If these 
terms (usually given on a grid) are made available, 
then evaluating Eq. (7) is quite straightforward.  

Now we focus on the mean NT-gravity 
disturbance, the estimation of which is somewhat 

more involved. ( )NT
gδ Ω  is also evaluated as the 

integral mean in the radial direction, i.e. analogically 
to Eq. (4). Further on, since the geoid-generated 
gravity disturbance ( ),NTg rδ Ω  multiplied by r is 
harmonic above the geoid (because the NT-
quantities by definition do not contain the 
contribution of the topographical masses), then 

( )NT
gδ Ω  can be evaluated by making use of 

Poisson’s integral for upward continuation (Kellogg, 
1929). Applying the integration limits the definite 
integral can be simplified (Santos et al., in press, Eq. 
37) as  
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where [ , ( , '), ]tK r Rψ Ω Ω  stands for the averaged 
Poisson’s kernel. This new kernel is a function of 
two inverse distances relating: (i) the computation 
point (on the geoid level) and the integration 
element; and, (ii) the surface computation point and 
the integration element on the geoid (see also Santos 
et al., in press, Eq. 38). Therefore, by no means this 
new kernel can be considered as an upward 

continuation of δgNT(rg ,Ω) to some location in the 
space (e.g. geometrical mean between the geoid and 
the earth’s surface), but just an integral average of 
δgNT(r ,Ω) in radial direction. The complete 
derivation of Eq. (8) can be found in Santos et al. (in 
press, Appendix A).  

Equation (8) requires that the NT gravity 
disturbance be known on the geoid, which it is 
usually not. To get it we make use of the Helmert 
gravity anomaly. The geoid-generated gravity 
disturbance δgNT(rg ,Ω) for Eq. (8) is obtained (cf. 
Vaníček et al., 1999; Vaníček et al., 2004) 
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As this expression shows, the NT-disturbance can be 
expressed as a collection of different terms, all 
related to the geoid level.  

Considering the well-known Bruns (1878) 
formula, ( ) ( )0, ( )gT r N γ φΩ = Ω ⋅ , the disturbing 

potential T(rg,Ω) can be taken from a regional geoid 
model. By denoting the PITE (the last term in Eq. 
(2)) as δNI (Ω) Eq. (9) takes the following form:  
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Note that the three first terms on the right hand side 
are intermediate results of the Stokes-Helmert geoid 
determination. The remaining term in Eq. (10), the 
attraction of the condensation layer, need be 
evaluated on the geoid level (a suitable form of 
numerical expression can be deduced from Martinec, 
1998). However, the latter term can also be 
computed as a geoid determination by-product. For 
this a relatively simple sub-routine can be added into 
the computer codes used in the Stokes-Helmert 
geoid modelling. 

The resulting δgNT(rg ,Ω) values are inserted into 
Eq. (8), providing the needed integral mean 

( )NT
gδ Ω . This completes the methodology of 

linking the Stokes-Helmert geoid determination 
theory/results with the determination of rigorous 
orthometric heights. We see, that the availability of 
the Stokes-Helmert geoid results has important 



implications in the computational aspects of the 
rigorous orthometric heights.  
   
5  Numerical Investigations 
 
Using Canadian gravity and topographic data 
(provided by the Geodetic Survey Division of 
Natural Resources Canada), we have computed the 
rigorous mean gravity (cf. Eq. (6)) along a profile 
across the Canadian Rocky Mountains. This profile 
coincides with the parallel 51°N and spans the 
longitudes between 235°E and 245°E. The 
topographic heights (with a spacing of 5 arc-
minutes) range from 510 to 2384 m (with a mean of 
1524 m). Due to high topographic elevations and 
very rugged landscape the mean gravity variations 
are expected to become significant.  

Most of the terms in Eqs. (7) and (10) were 
‘borrowed’ from the Stokes-Helmert geoid 
modelling results  (Ellmann and Vaníček, in press). 
We discuss only a few important aspects of the 
numerical estimation of Eq. (8), since it is the most 
laborious part of approach. Note that generally, the 
NT-gravity disturbances are negative over 
mountainous regions (as a rule of thumb, the larger 
the average of the local topography the larger the 
negative NT-disturbance). The δgNT(rg ,Ω) is also 
very smooth (for an illustration see Kingdon et al., 
2005, Fig. 4, erratum). Therefore, in spite to the high 

elevations, the mean ( )NT
gδ Ω  values are 

numerically very close to the initial δgNT(rg ,Ω) field. 

The differences ( ) ( ),
NT NT

gg g rδ δΩ − Ω  along the 
test profile do not exceed 10 mGal. At the same time 
the maximum upward continuation effect of 
δgNT(rg,Ω) from the geoid level to the earth’s surface 
by using the Poisson integral formula remained 
smaller than 15 mGal. The further discussion on the 
numerical evaluation of Eq. (6) is spared for a 
forthcoming paper.  

The estimated Helmert mean gravity agrees 
generally well with ( )g Ω . Nevertheless, in most 
cases ( )Hg Ω  appears to be slightly weaker than the 
rigorous mean gravity (a few exceptions can be 
found inside of deep valleys). Along the selected 
profile the differences ( ) ( )Hg gΩ − Ω  range 
between –21 and +30 mgal (with a mean of +6 
mGal). These gravity differences can be then 
converted into the differences between the rigorous 
and Helmert orthometric heights (e.g. by using an 
approach in Heiskanen and Moritz, 1967, p.169). 
The height differences vary from –3.5 to +6.1 cm 
(with a mean of +1.1 cm). According to Kingdon et 
al. (2005) the differences at the higher elevations (> 

3 km) may easily exceed a dm level. In a few 
extreme cases (at high elevations and very rugged 
areas), however, the relative height differences (due 
to ( ) ( )Hg gΩ − Ω ) disagree in about 7-8 cm for 
points located only some 10 km apart.  

In most of the cases, especially over the mountain 
peaks, the Helmert orthometric heights appear to be 
higher than the corresponding rigorous mean 
heights, i.e. ( ) ( )o o

H rigH HΩ > Ω . This is due to the 
fact that the mean gravity has a ‘reverse’ effect on 
the height: the larger the mean gravity in the 
denominator the smaller the resulting height. As 
mentioned above, inside of some deep valleys we 
have ( ) ( )Hg gΩ > Ω , yielding thus 

( ) ( )o o
H rigH HΩ < Ω . Intuitively, this can be 

explained by the fact that in the Helmert approach 
the roughness of the surrounding topography is 
entirely neglected (cf. Eq. (5)). In other words, the 
contributions due the mass deficiencies and excesses 
(with respect to the Bouguer plate, which is 
embedded in the Poicaré-Prey gradient) around the 
computation points are not accounted for. For 
instance, in the case of a computation point located 
on a mountain top it is easy to see that due to the 
mass deficiency the magnitude of ( )Hg Ω  becomes 
underestimated (in Eq. (5) note the opposite signs 
for the constants in the brackets). This gives an 
unreasonable rise to the resulting Helmert height. 
Conversely, the mass excess (with respect to the 
Bouguer plate) exists for the computation points 
inside of deep valleys. The magnitude of ( )Hg Ω  is 
overestimated, the resulting Helmert height thus is 
lower than it should be. 

Note that approaches by Mader (1954) and 
Niethammer (1932) attempt to improve the Helmert 
heights by accounting for the roughness of the 
topography. The resulting heights are more 
compatible with the rigorous orthometric height, see 
a numerical study by Santos et al. (in press).   
  
6  Summary and conclusions 
 
The aim of this paper is to demonstrate that the 
computations of the rigorous orthometric heights can 
be significantly simplified by making use of the 
typical by-products of the Stokes-Helmert geoid 
determination. More specifically, several Stokes-
Helmert geoid modelling terms are exactly the same 
as needed for the orthometric height determination.  

Accordingly, the implementation of the rigorous 
height system becomes a relatively simple and 
straightforward task. An additional bonus is that the 
resulting orthometric heights are more compatible 



with regional gravimetric geoid models. Let us hope 
that these circumstances encourage those who 
currently use Helmert’s approximate orthometric 
heights to upgrade them to a more rigorous height 
system.  

The improved orthometric heights have a wide 
range of the practical and engineering applications. 
Therefore, the national agencies and organisations 
currently holding the Stokes-Helmert geoid 
determination results, should make them available to 
the users. For instance, both the Stokes-Helmert 
geoid methodology and the orthometric height 
system are adopted by the national agencies of the 
three North-American countries: Canada (Huang et 
al., in press), the U.S.A. (Roman et al., 2004) and 
Mexico (Hernandez, 2003). The existence of the 
needed components would allow the North-
American users more easily to implement the 
rigorous orthometric heights, without having to 
recreate many of the results already calculated and 
held by their government agencies. 

Note that the concept of the NT-gravity (as 
introduced in Vaníček et al., 2004) is exploited in 
this study. Hence, the usage of the NT-quantities, 
besides of its obvious value for different geophysical 
studies, has very promising geodetic applications as 
well.  
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Abstract. Transforming geoid heights between dif-
ferent geodetic reference frames (GRFs) is an es-
sential task in gravity field modeling and its proper 
implementation is crucial for many applications 
involving the use of the geoid. In this paper an at-
tempt is made to investigate the problem of geoid 
height transformation between different GRFs, 
without considering other variations in the auxiliary 
geophysical or geodynamical hypotheses that may 
be a-priori specified for the desired geoid type (e.g. 
variations in the values of M and/or Wo, variations 
in terms of treatment of permanent tidal effects). 
The aim here is to present the required methodology 
to deal with the problem: “how should we transform 
geoid heights, referring to a fixed equipotential sur-
face (W = Wo), from a given GRF to another GRF 
when we know the seven similarity transformation 
parameters linking the two frames?”. Special em-
phasis is given on the effect of GRF scale variations 
in coordinate transformations involving reference 
ellipsoids, for the particular case of geoid heights. 
Since every Cartesian coordinate system “gauges” 
an attached ellipsoid according to its own particular 
scale, there will exist a small contribution from the 
scale variation between the involved GRFs on the 
relative size of their adopted reference ellipsoids. 
Neglecting such a scale-induced indirect effect cor-
rupts the values for the curvilinear geodetic coordi-
nates obtained from a similarity transformation 
model, and significant errors can be introduced in 
the transformed geoid heights. The paper explains 
the above issues in detail and presents the necessary 
mathematical framework for their solution.  
 
Keywords. Geoid, similarity transformation, refer-
ence frame, reference ellipsoid, datum scale. 
 

 
 
1 Introduction 
 
High-precision studies in Earth gravity field model-
ing require a careful treatment of several reference 
frame issues in order to ensure a coherent frame-
work for data analysis and to avoid datum-related 
biases and artifacts in the results. Transforming 

geoid heights, for example, between different geo-
detic reference frames is an essential and necessary 
component in gravity field modeling, and its proper 
implementation is crucial in many scientific appli-
cations involving the direct or indirect use of the 
geoid (e.g. consistent combination of ellipsoidal, 
orthometric and geoid height data for GPS-based 
leveling, external validation of gravimetric geoid 
models with GPS and leveling data, datum-
consistent comparison between old and recent gra-
vimetric, satellite-only or combined geoid models, 
update of existing geoid models to comply with 
current definitions and realizations of global geo-
detic reference systems, reduction of sea surface 
heights obtained from satellite altimetry data to a 
preferred geodetic reference frame, and proper utili-
zation of geoid height information in datum trans-
formation studies). 
 
By definition, geoid heights refer to a specific geo-
detic reference system (GRS). Available geoid 
models (e.g. EGM96) or individually computed 
geoid height values (e.g. from GPS and leveling 
data) ought to be consistent with a particular reali-
zation of such a GRS, namely a geodetic reference 
frame (GRF). In this way, a gravimetric geoid de-
termined through the generalized Stokes’ formula 
(Heiskanen and Moritz 1967) 
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δ
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MG

N  )( 
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                    (1) 

 
will be consistent with the geocentric GRF in which 
the spatial positions and the values of the gravity 
anomaly data ∆g refer to, whereas a geoid obtained 
through a spherical harmonic series expansion re-
fers to the GRF that is realized by the positions of 
the satellite tracking stations which were estimated 
at the time of the model development (Pavlis 1998, 
Lemoine et al. 1998). On the other hand, geoid 
heights that are computed directly from GPS and 
leveling data, according to N = h – H, refer to the 
same GRF implied by the GPS coordinates of the 
evaluation point, while the use of the orthometric 
height in this case fixes (in principle) the particular 



Figure 1. Geoid height transformation between different 
geodetic reference frames. 

equipotential surface W = Wo that we should treat as 
“the geoid”. 
 
Apart from the chosen spatial reference frame in 
which the relative position of the geoid with respect 
to a reference ellipsoid shall be expressed (at a par-
ticular epoch), there are additional aspects affecting 
the adopted GRS with respect to which a final geoid 
model can be delivered. Such aspects involve the 
treatment of the permanent tidal effects on the grav-
ity field and the Earth’s crust (zero-frequency ge-
oid, non-tidal geoid, mean geoid), the consideration 
of other loading effects on the solid and liquid parts 
of the Earth, the adoption of specific numerical val-
ues for fundamental GRS parameters (or “con-
stants”) such as the Newton’s gravitational constant 
G, the Earth’s (including its atmosphere) mass M, 
the normal gravity potential value on the reference 
ellipsoid Uo, the gravity potential value on the geoid 
Wo, the semi-major axis and the flattening of the 
reference ellipsoid, the mean angular velocity of the 
Earth, etc.; see Groten (2004). 
 
In this paper an attempt is made to highlight the 
essential points related to the problem of geoid 
height transformation between different GRFs, 
without considering other variations in the auxiliary 
geophysical or geodynamical hypotheses that may 
be a-priori specified for the desired geoid type (e.g. 
variations in the values of M and/or Wo, variations 
in terms of treatment of permanent tidal effects, 
etc.). Our objective is to present the methodology 
and the required formulae to deal with the following 
problem: “how should we transform geoid heights, 
referring to a fixed equipotential surface (W = Wo), 
from a given GRF to another GRF when we know 
the seven similarity transformation parameters link-
ing the two frames?”; see Fig. 1. 
 
 
 
 
 
 
 
 
 
   
 
 
 
  
 
 
 
 
Special emphasis is given on the effect of GRF 
scale variations in coordinate transformations in-

volving reference ellipsoids, which is an important 
issue that has not been sufficiently stressed in the 
geodetic literature; see Soler and van Gelder (1987). 
Since every Cartesian coordinate system “gauges” 
an attached reference ellipsoid according to its own 
particular scale, there will be a small contribution 
from the scale variation between the involved GRFs 
on the relative size of their adopted reference ellip-
soids. For example, if the same ellipsoid (in terms 
of physical dimensions) is attached to two different 
GRFs, we should generally assign different values 
to its semi-major axis in each case if the GRFs are 
connected through a non-zero scale change factor. 
Neglecting such a scale-induced indirect effect cor-
rupts the resulting values for the curvilinear geo-
detic coordinates obtained from a similarity trans-
formation model, and significant errors can be in-
troduced in the transformed geoid heights (Soler 
and van Gelder 1987).  
 
To clarify these points, an extended similarity trans-
formation model is presented which provides a 
proper “de-coupling” of the geoid height variation 
arising from (i) the GRF scale difference and (ii) the 
actual change of the physical size of the reference 
ellipsoid. 
 
 
2 Similarity transformation model for 

geoid heights 
 
Let us consider the well known Euclidean similarity 
transformation model which is used to convert Car-
tesian coordinates between two geodetic reference 
frames that generally differ in terms of three trans-
lation parameters (tx, ty, tz), three orientation pa-
rameters (εx, εy, εz) and a factor of uniform spatial 
scale change (δs) 
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Note that the above model corresponds to a first-
order linear approximation of the rigorous vector 
transformation formula  
 

GRF1GRF2  ),,( )(1      xRtx zyxδs εεε++=′            (3) 
 
with R being the total rotation matrix that performs 
three successive rotations around the axes of GRF1 
so that they become parallel to the corresponding 
axes of GRF2, t is the Cartesian coordinate vector 
of the origin of GRF1 with respect to GRF2, and δs 
is the scale difference factor between the two refer-
ence frames (see Fig. 1). The use of the approxi-
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mate model (2) instead of the rigorous expression in 
(3) has a negligible effect on the transformed coor-
dinates and it is justified for most geodetic applica-
tions where the rotation angles do not exceed a few 
arc seconds and the differential scale factor is of the 
order of 10−5 or less; for more details, see Hofmann-
Wellenhof and Moritz (2005, ch. 5). 
 
In order to derive the expression for the similarity 
transformation of geoid heights between the refer-
ence frames GRF1 and GRF2, we need also to con-
sider the relationship between Cartesian and curvi-
linear geodetic coordinates 
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where N (to be distinguished from the symbol N that 
denotes the geoid height) is the prime vertical ra-
dius of curvature, given by the formula 
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The quantities a and e2 correspond to the length of 
the semi-major axis and the squared eccentricity of 
the adopted reference ellipsoid which is used for the 
definition of the curvilinear geodetic coordinates φ, 
λ and h in (4). 
 
By differentiation of (4), we get 
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where the Jacobian matrix J has the following form 
(Soler 1976) 
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and 32 /)1( a  We−=M  is the meridian radius of 
curvature.  
 
Substituting the left hand-side in (6) according to 
the similarity transformation model given by (2), 
and then solving for dh, we obtain the following 
formula that corresponds to the similarity transfor-

mation model for ellipsoidal heights (Soler and van 
Gelder 1987)  
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where 
 

λϕcoscos    )( xx ttδh =                                           (9) 

λϕ sincos    )( yy ttδh =                (10) 

ϕsin    )( zz ttδh =                     (11) 

λϕϕεε sincossin    )( 2
 eδh xx N−=                 (12) 

λϕϕεε coscossin    )( 2
 eδh yy N=                 (13) 

δshWδsδh  )  a(    )( +=                                  (14) 
 
Note that the rotation angle εz does not affect the 
change of the ellipsoidal height from GRF1 to 
GRF2 due to the rotational symmetry of the refer-
ence ellipsoid. 
 
The above formulae perform the similarity trans-
formation of ellipsoidal heights between two arbi-
trary GRFs at any point in space whose initial curvi-
linear coordinates (with respect to GRF1) are φ, λ 
and h. If we assume, in particular, that the point 
whose ellipsoidal height being transformed is lo-
cated on the geoid (see Fig. 1), then (8) is reduced 
to the similarity transformation model for geoid 
heights  
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where δN(tx) = δh(tx), δN(ty) = δh(ty), δN(tz) = δh(tz), 
δN(εx) = δh(εx) and δN(εy) = δh(εy).  
 
It is important to mention that the ellipsoidal height 
of the evaluation point in this case is identical to the 
geoid height, and thus the scale-dependent term 
δN(δs) should take the form   
 

δsNWδsδN  )  a(    )( +=                                  (16) 
 
Remark 1. In the special case where tx = ty = tz = 0 
and εx = εy = εz = 0, the previous geoid transformation 
model yields 
 

δsNWδsδNNN  )  a(    )(    +==−′                 (17) 
 
or equivalently 
 



sWδNδsN a  )(1    ++=′                                  (18) 
 
The interesting point in this particular case is the 
presence of the additional term ‘aWδs’ in (18), 
which can be understood as the effect of an “appar-
ent” change in the physical dimensions of the refer-
ence ellipsoid due to the scale difference between 
the involved GRFs. The magnitude of this term can 
be quite significant, reaching more than 6 m when 
δs = 10−6 (1 ppm) and dropping to about 1 cm for δs = 

10−9 (1 ppb). 
 
If the reference ellipsoid remains the same in terms 
of its physical dimensions in both GRFs, then the 
geoid height change (when tx = ty = tz = 0 and εx = εy = 

εz = 0) should be given only by a simple re-scaling 
 

NδsN )(1    +=′                                              (19) 
 
since the same physical length (i.e. the distance 
between a point on the geoid and its orthogonal 
projection on the single reference ellipsoid) is 
“measured” with respect to two coinciding GRFs 
which differ only by a uniform scale factor δs.  
 
In order to counter balance the effect of the term 
‘aWδs’ in (18), and also to properly account for an 
actual change in the physical size of the reference 
ellipsoid, the similarity transformation model for 
geoid heights in (15) needs to be extended as de-
scribed in the following section. 
 
 
 
3 Considering the effect of the           

reference ellipsoid change 
 
Let us adopt the length of the semi-major axis (a) 
and the flattening (f) as the two fundamental pa-
rameters that uniquely define the geometrical size 
of a reference ellipsoid.  
 
In order to account for a possible change in the 
physical dimensions of the reference ellipsoid in 
geoid height transformation problems, we need first 
to differentiate the vector formula in (4) as follows 
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where the first Jacobian matrix J1 is identical to the 
matrix J given in (7), while the analytical form of 
the second Jacobian matrix J2 can be found in Soler 
(1976); see also Soler and van Gelder (1987). Set-
ting the left-hand side in (20) equal to zero, and 

then solving for dh, we obtain the ellipsoidal height 
variation only from the change of the reference el-
lipsoid which, in conjunction with (8), leads to the 
following extended similarity transformation model 
for ellipsoidal heights 
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where the additional terms δh(δa) and δh(δf) are 
given by the equations (Soler and van Gelder 1987)   
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The quantities δa = a' – a and δf = f''– f correspond to 
the variation of the numerical values for the semi-
major axis and the flattening of the reference ellip-
soid, as these are used in the respective geodetic 
reference frames, GRF1 and GRF2. 
 
With the exclusion of the terms δh(εx), δh(εy) and 
δh(δs), the model in (21) is identical to the standard 
Molodensky transformation formula (Molodensky 
et al. 1962) which has often been used for trans-
forming ellipsoidal heights between different geo-
detic datums (see, e.g., National Imagery and Map-
ping Agency 1996, pp. 7.3-7.4) and for determining 
the Earth’s mean equatorial radius and center of 
mass through the joint analysis of geometrically 
derived and gravimetric geoid heights (see, e.g., 
Grappo 1980). 
 
Taking into account (21), the corresponding ex-
tended similarity transformation model for geoid 
heights is obtained 
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where δN(δa) = δh(δa) and δN(δf) = δh(δf). The 
translation, rotational and scale-dependent terms in 
(24) have already been defined and explained in the 
previous section. 
 
 
 
4 What should we use for δa ? 
 
An important issue that remains to be clarified, in 
the context of geoid transformation, is the proper 



Figure 2. Each geodetic reference frame “gauges” the at-
tached reference ellipsoid according to its own particular 
scale. 

a' 

GRF2 

a 

GRF1 

usage of the term δN(δa) = −W δa which gives the 
geoid height variation due to the difference δa = a' – 

a in the numerical values of the semi-major axis for 
the reference ellipsoids adopted by the frames 
GRF1 and GRF2. 
 
In general, the length of the semi-major axis of the 
reference ellipsoid attached to GRF2 can be ex-
pressed as 
 

a  a )(1    a δδs ++=′                                        (25) 
 
where a is the length of the semi-major axis of the 
reference ellipsoid attached to GRF1, δs is the scale 
change factor between the two frames, and aδ  cor-
responds to the actual change of the physical length 
of the semi-major axis of the GRF2 ellipsoid with 
respect to the physical length of the semi-major axis 
of the GRF1 ellipsoid (see Fig. 2). 
 
In this way, we have that 
 

a   a    a  a    a δδsδ +=−′=                       (26) 
 
and thus the geoid height variation term δN(δa) be-
comes 
 

a  a    )a( WδδsWδδN −−=                                     (27) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark 2. Let us consider again the special case 
where tx = ty = tz = 0 and εx = εy = εz = 0, and addition-
ally δf = 0. Based on these assumptions, the ex-
tended similarity transformation model for geoid 
heights in (24) yields 
 

)a(  )(    δδNδsδNNN +=−′                       (28) 
 
Using (16) and (27), the last equation can be written 
in the equivalent form 
 

a  )(1    WδNδsN −+=′                                  (29) 
 
In contrast to the transformation formula obtained 
by the simple (non-extended) similarity transforma-

tion model in (18), the above result complies with 
geometrical intuition which dictates that the trans-
formed geoid height should be determined by a 
simple re-scaling of the initial geoid height value if 
the underlying GRFs have the same origin and ori-
entation and also use the same reference ellipsoid in 
terms of physical dimensions (δf = 0, 0  a =δ ). Note 
that the elimination of the “apparent” geoid varia-
tion term ‘aWδs’ that emerged in (18) has been in-
herently achieved by the inclusion of the term 
δN(δa) as given in (27). 
 
 
 
5 Summary – Open problems 
 
When a GRS is used in practice via an established 
and accessible GRF, the adopted reference ellipsoid 
that is required to define and quantify several im-
portant geodetic quantities does not refer to an 
“ideal” scale unit (e.g. the light-based meter stan-
dard) but rather to the best scale which geodesists 
are able to reproduce by means of their current data, 
measurement techniques and optimal combination 
procedures (Soler and van Gelder 1987). Therefore, 
any GRF “detects” an attached reference ellipsoid, 
as well as every length-type quantity that depends 
on it (e.g. ellipsoidal height derived from known 
Cartesian coordinates with respect to a given ITRF), 
according to its own particular scale. 
 
Taking into account the above considerations, we 
have investigated the problem of geoid height con-
version between different GRFs by providing a 
general transformation model that incorporates the 
contribution of GRF scale variation on the relative 
size of the reference ellipsoids adopted by each da-
tum. Specifically, if we know the seven similarity 
transformation parameters between two given 
GRFs, then the conversion of the geoid height from 
one GRF to another can be implemented through 
the formula 
 

)a,(  )f( 

)(  )( 

)(  )(  )(    

δδsδNδδN

δNδN

tδNtδNtδNNN

yx

zyx

++

++

++=−′

εε                (30) 

 
The critical point in the above model is the treat-
ment of the last variation term, which contains the 
combined effect due to the GRF scale variation and 
the change of the semi-major axis of the reference 
ellipsoid. As explained in the previous sections, the 
combined term δN(δs,δa) = δN(δs) + δN(δa) can be 
expressed in the form 
 

a   )  a(    )a,( WδδsNWδδsδN −+=                       (31) 



or, taking into account (26), 
 

)a(a   )a(    )a,( δδsWδsNWδδsδN +−+=           (32) 
 
where aδ  is the change of the physical length of 
the semi-major axis of the reference ellipsoid. 
 
In practice, there are two basic options for the im-
plementation of the geoid height transformation 
model in (30). Both of these options relate to the 
evaluation of the term δN(δs,δa) and they essen-
tially correspond to choosing how to treat the 
physical size of the reference ellipsoid with respect 
to the underlying GRFs. 
 
One alternative is to select 0  a =δ , which implies 
that the physical length of the semi-major axis of 
the reference ellipsoid is invariant within the under-
lying GRFs. In this case, we have 
 

sNδδδsδN     )a,( =                                               (33) 
 
which is a negligible geoid correction for all pur-
poses (i.e. less than 1 mm even for δs = 10 ppm). 
Note, however, that all numerical calculations in-
volving the semi-major axis of the reference ellip-
soid with respect to the GRF2 frame (e.g. conver-
sion of Cartesian coordinates to curvilinear coordi-
nates and vice versa) should be made using the new 
value 
 

a )(1    a δs+=′                                                     (34) 
 
and not the initial value ‘a’ which is used for similar 
calculations with respect to the GRF1 frame; see 
also Soler and van Gelder (1987). 
 
The other alternative for the evaluation of the term 
δN(δs,δa) is to set δa = 0, which implies that the 
same numerical value for the semi-major axis of the 
reference ellipsoid is used in both frames GRF1 and 
GRF2. In this case, the geoid height variation term 
δN(δs,δa) takes the form 
 

sWsNδδsδN δδ a      )a,( +=                                   (35) 
 
As already mentioned, the magnitude of the above 
correction is quite significant and it must always be 
considered since the term ‘aWδs’ can reach more 
than 6 m for δs = 1 ppm. Note that this alternative 
carries an inherent change in the physical dimen-
sions of the reference ellipsoid, since from (26) we 
have that 
 

δsδδ  a  a      0  a −=⇒=                                         (36) 

In closing, let us add a final remark. In contrast to 
δN(δa) given in (27), the term δN(δf) which repre-
sents the geoid height variation due to the flattening 
change of the reference ellipsoid, is insensitive to a 
uniform GRF scale difference (δs) since the ellip-
soid’s flattening f = (a – b)/a does not depend on the 
scale unit of the underlying GRF.  
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Abstract. The vertical datum and height system 
adoption is crucial in development of national 
geodetic reference.  

The gravity and height systems should be related 
with the geocentric geodetic coordinate system. In 
Lithuania such a system was adopted in 1994 as a 
Lithuanian Coordinate System (LKS 94). It consist 
with European Terrestrial Reference System 1989. 

Since 1998 the main Lithuanian geodetic 
activities were related to the development of the 
Lithuanian National Geodetic Vertical Network. 
The network should implement unified system of 
heights in the territory of Lithuania and guaranty 
reliable connection with other European height 
systems. Lithuania is participating in the United 
European Levelling Network and European Vertical 
Network project, and is planning to adopt the 
common European Vertical System. 

 
Keywords. Vertical datum, height system, levelling 
network, normal heights. 

 
 
1 Introduction 

 
The height systems adoption is crucial in 

development of national geodetic reference. 
Successful solution of this question guarantees the 
reliable determination of geopotential heights, 
usage of modern geodetic space techniques, 
maintenance of the navigation, geodetic and 
cartographic works, solution of geodynamic tasks, 
support the relations between the similar systems of 
other countries.  

The Baltic Sea height system defined by 
Kronstadt datum is still in use in Lithuania. 
Therefore Lithuania is participating in the United 
European Levelling Network (UELN) and 
European Vertical Network (EUVN) project, and is 
planning to adopt the common European Vertical 
System [1–3]. 

Since 1998 the main Lithuanian geodetic 
activities were related to the development of the 
Lithuanian National Geodetic Vertical Network 
(NGVN) [4–9]. The NGVN should implement 
unified system of heights in the territory of 
Lithuania and guaranty reliable connection with 

other European height systems. The NGVN should 
be continuously updated for the purpose of heights 
and their accuracy determination. Institute of 
Geodesy, VGTU is involved in establishment of 
National Networks. The main geodetic activities of 
Lithuania are supervised by the Department of 
Geodesy and Cadastre at National Land Service 
under Ministry of Agriculture. The development of 
NVGN is finished and it is planning to adopt 
Lithuanian vertical system in 2007. 

 
2 Background for height systems 
adoption 

 
In preparation to adopt the height system 

Lithuania have participated in the international 
projects as “United European Levelling Network” 
(UELN) [10–17], “European Vertical GPS 
Reference Network” (EUVN) [18–21]and “Baltic 
Sea Level” (BSL) [22–23]. 

The United European Levelling Network 
(UELN) is a continental height system, which was 
planned at first in 1955 as a levelling network for 
Western Europe with the reference point 
Amsterdam (NAP). The results of the first 
adjustment of 1960 were published as UELN-55 
[10].  

At present the work at the UELN was continued 
within the scope of the IAG Subcommission for 
Europe (EUREF) under the name of UELN-95. The 
development, results and status of UELN was well 
reported in each year [11−15]. In January of 1999, 
the results of the adjustment version UELN-95/13 
were handed over to the participating countries as 
the UELN-95/98 solution [16, 17]. 

Following the Resolution of the EUREF 
Symposium adopted in Bad Neuenahr–Ahrweiler in 
1998 requesting to extend and improve the vertical 
network around the Baltic Sea, Lithuanian 
geodesists prepared the data for connecting the state 
levelling network to UELN [16, 17]. 

The Lithuanian reference levelling network was 
included into UELN in 2000 (Fig. 1). 

The levelling data of different epochs fit to each 
other at 1 mm per kilometre accuracy. The 
connecting lines between national networks of 
neighbouring countries also coincide at the same 
accuracy level. The accuracy of Lithuanian 



levelling network is at the same level as that of the 
levelling networks of biggest part of other 
participating countries. To achieve a higher 
accuracy the observations of the Lithuanian 
fundamental network should be finished as soon as 
possible. Also, these data will improve the 
geokinematics height network and will be a basis 
for adoption of the European Vertical System 2000 
(EVS2000). 

 

 
 

Fig. 1. UELN in Lithuania 

 
EUVN was started to develop in 1997. It joins 

the European Reference Frame (EUREF) permanent 
GPS sites, UELN of Western Europe and United 
Precise Levelling Network (UPLN) of Eastern 
Europe points. EUVN campaign was supported by 
the 33 European countries. There are three points – 
VILNIUS, SIAULIAI and MOLAS – in EUVN.  

BSL project started in 1990. Participate all 
countries surrounding the Baltic Sea. Lithuania 
joined the GPS campaign of 1993. In 1997 was 
organized joined BSL and EUVN GPS campaign. 

As a result of EUVN the coordinates and 
ellipsoidal heights of the points in ETRS89 and the 
normal heights connected to UELN were obtained. 
So the points of EUVN were connected to 
Amsterdam datum and European Vertical Reference 
System.  

European Combined Geodetic Network (ECGN) 
should combine the spatial and height reference 
system with Earth gravity field parameter 
estimation [24, 25]. So the stations of ECGN shall 
combine the various geodetic techniques: GPS, 
levelling, gravity and tide gauge observations in 
costal zones. 

The Lithuania proposed for the ECGN stations 
VILNIUS and KLAIPEDA. VILNIUS is EUREF 
permanent GPS station, UELN and National 
vertical network node, absolute gravimetric 

measurements point. KLAIPEDA is European Sea 
Level Service observing site and International GPS 
service TIGA-PP project station, including tide 
gauge, meteorological sensors, permanent GPS 
station and absolute gravimetric measurements 
point. 

The data and results of the international projects 
create the good conditions for the adoption of the 
Lithuanian height system. The points VILNIUS, 
SIAULIAI, MOLAS, KLAIPEDA became the most 
accurate fundamental geodetic points. They will be 
the basis for the development of the modern 
geodetic reference of Lithuania. 

 
3 Existing levelling network analysis 

 
The present reference levelling network of 

Lithuania is combination of levelling line of 
different epochs, therefore its accuracy at the same 
level as that of the levelling networks of biggest 
part of other European countries. For example, the 
parameters of the adjustment are the following [16]: 

 

• Number of fixed points: 1, 
• Number of unknowns: 1466, 
• Number of measurements: 1490, 
• Minimum length of the loop: 14.2 km 
• Maximum length of the loop: 785.8 km 
• Average length of the loops: 303 km 
• Degrees of freedom: 24, 
• Standard deviation: 0.902 kGal×mm/km 
• A-posteriori standard deviation referred to a 

levelling distance of 1km: 0.92 kGal×mm, 
• Mean value of the standard deviation of the 

adjusted geopotential differences:               
1.41 kGal×mm, 

• Mean value of the standard deviation of the 
adjusted geopotential heights: 8.62 kgal×mm, 

• Biggest value of the standard deviation of the 
adjusted geopotential heights:                    
11.32 kGal×mm, 

• Average redundancy:   0.016. 
 

The adjustment of geopotential heights 
differences of enlarged UELN95/15, including 
levelling networks of Poland and three Baltic states, 
was performed as an unconstrained adjustment 
linked to the reference point 13600 in Amsterdam, 
geopo-tential height of which was set to 0.70259 
kGal×m, and normal height to 0.71599 m. The same 
network was adjusted with reference point of 
temporal Lithuanian height system 53V12421, 
geopotential height of which was set to 63.76000 
kGal×m, and normal height 64.963 m, and with 
reference point Kronstadt gauge, geopotential 
height and normal height of which was set to 0.000 
m. Normal heights received are presented in the 
Table 1 (accordingly H1, H2 and H3). 



Table 1. Normal heights of nodal benchmarks 
 

UELN  
ID 

National  
ID 

H1 

m 

H2 

m 

H3 

m 
12001 55S-0128 141.381 141.243 141.278 
12002 73S-0271 215.660 215.427 215.558 
12003 25S-1322  28.284  28.147  28.186 
12004 25S-1522   4.638   4.502   4.540 
12005 25N-0001   6.300   6.164   6.202 
12006 62N-4538  75.248  75.111  75.146 
12007 52V-4302 120.562 120.428 120.460 
12008 62V-2956 131.828 131.692 131.726 
12009 86N-2908 122.316 122.178 122.213 
12010 75N-2401  97.976  97.838  97.872 
12011 73V-2338 139.257 139.121 139.155 
12012 73V15007 140.556 140.420 140.454 
12013 26N-6237   9.590   9.456   9.494 
12014 26N-0001   7.884   7.748   7.786 
12016 95N--295 140.829 140.692 140.726 
12017 51V--317 133.655 133.520 133.553 
12021 56N--315  47.161  47.020  47.057 
12022 55N--522 131.245 131.107 131.143 
12023 64V--217  68.857  68.720  68.755 
12024 63V-3717  95.248  95.111  95.146 
12025 75N-1390 130.742 130.604 130.639 
12026 61V-0398 133.393 133.258 133.292 
12027 73V-0006 164.381 164.246 164.279 
12028 63V-3919  70.216  70.079  70.114 
12029 53V---71  37.753  37.616  37.651 
12030 53V12421  65.100  64.963  64.998 
12031 43N-4216  55.568  55.430  55.466 
12032 73V15100 147.169 147.033 147.066 
12033 34N--371  16.009  15.870  15.909 
12036 36N-1828  72.404  72.261  72.300 
12037 34N52079  52.046  51.908  51.946 
12038 52V-1021 131.986 131.854 131.884 
12041 36N-1609 106.758 106.614 106.653 
12042 36N-0553  98.622  98.478  98.517 
12043 36N-1681 116.478 116.342 116.378 
12044 65N-2304  58.826  58.688  58.723 
12045 55N--138 126.518 126.380 126.415 
12046 26N-1423  22.679  22.540  22.578 
12047 55N--311 130.762 130.624 130.660 
12048 44N-0020 112.382 112.244 112.281 
12049 34N-4016  36.766  36.627  36.665 
12050 84N---17 158.187 158.051 158.084 
12051 73V-4774 186.317 186.183 186.215 
12052 85N-0001 147.539 147.402 147.436 
12058 51V10019 142.208 142.067 142.106 
12064 73N-0705 122.287 122.154 122.185 

 
Average difference between H1 and H2 is 14 cm, 

that is well-known difference between UELN and 
UPLN normal heights. Therefore direct 
computation of normal heights from Amsterdam 
and Kronshdat  gives average difference about      
10 cm [16]. 

Normal height differences in different epochs for 
single line is presented in Table 2. 

The levelling line Mikytai–Klaipeda is in the 
south-west part of Lithuania. The normal height 
differences do not exceed the levelling accuracy. 
So, it is proofs, that the geodynamic processes in 
this part of Lithuania are not very significant.  
 

Table 2. Benchmarks heights of levelling line Mikytai – 
Klaipeda in different epochs [16, 25–28] 

 

ID 1888 1939 2000 
25N-7379 11.325 11.343 11.333 
25N-7378 12.118 12.147 12.106 
25N-7376 13.805 13.831 13.803 
25N-7375 20.444 20.421 20.386 
25N-7372 15.452 15.482 15.455 
25N-8151 16.225 16.256 16.240 
25N-8148 14.932 14.971 14.943 
25N-8147 13.148 13.187 13.317 
25N-8146 13.036 13.058 13.018 
25N-8144 14.158 14.237 14.221 
25N-8142 13.418 13.421 13.269 
25N-1458 16.347 16.382 16.354 
25N-1459  5.635 5.659  5.625 
25N-8141  4.436 4.485  4.477 
25N-1463  6.961 6.991  6.955 
25N-8137  9.228 9.262  9.227 
25N-1466  7.221 7.259  7.225 
25N-8135 11.746 11.781 11.747 
25N-1469 15.579 15.614 15.579 
24N-8134 15.346 15.379 15.344 
24N-8132  6.704 6.750  6.728 
24N-8131  9.538 9.571  9.534 
24N-8130  9.186 9.217  9.182 
24N-1481  9.296 9.322  9.286 
24N-1482  9.590 9.621  9.587 
24N-8124 15.564 15.602 15.561 
24N-8123 22.340 22.349 22.307 
24N-1489 16.172 16.184 16.148 
24N-8119 10.347 10.414 10.386 
34N-8118  8.599 8.607  8.589 
34N-8116 15.591 15.596 15.560 
34N-8115 12.918 12.916 12.878 
34N-8114 10.811 10.777 10.730 
34N-1501  9.462 9.465  9.427 
34N-1502  9.657 9.659  9.623 
34N-8111 10.030 10.032  9.998 
34N-8109 12.589 12.590 12.559 

 
4 Current status of Lithuanian National 
Geodetic Vertical Network 
 

Activities of Lithuanian National Geodetic 
Vertical Network (NGVN) establishment are going 
on since 1998. NGVN consists of five polygons 
(Fig 2). Perimeter of the network is ca. 1950 km. 
Mean distance between ground and wall 
benchmarks is 1.5 km, maximum distance between 
benchmarks does not exceed 2.5 km. Ground 
benchmarks are at least each 6 km, except of 
urbanised territories.  

Fundamental benchmarks are built at every 40–
60 km of levelling line. Connections of first order 
vertical network with vertical networks of 
neighbouring countries are foreseen. All this creates 
good preconditions for determination of relations 
between height systems and for introduction of a 
new Lithuanian height system, as well as for 
geodynamic research not only on Lithuanian 
territory but also on wider regions. 



 
 

Fig. 2 Scheme of Lithuanian National Geodetic Vertical Network 

 
Height differences between benchmarks of 

vertical network are determined by precise 
levelling. Two sets of digital levels Wild NA3003 
and precise bar coded invar staffs GPCL3 were 
used for height differences determination.  

Precise coded staffs GPCL3 are calibrated every 
year by vertical automated laser comparator at the 
Finnish Geodetic Institute. Digital levelling system 
calibration is performed since 2004. Results of 
levelling system calibration, refraction and tidal 
effects were taken into account.  

Accuracy characteristics of precise geometric 
levelling (standard deviations of 1 km double-run 
levelling) are presented in Table 2, and misclosures 
of loops are presented in Table 3. 

 
Table 2. Accuracy characteristics of levelling 
 

Year of levelling mkm , mm 
1998 0.48 
1999 0.42 
2001 0.39 
2002 0.41 
2003 0.43 
2004 0.47 
2005 0.44 
2006 0.46 

Table 3. Preliminary misclosures of network loops 
 
Loop 
No. 

Loop 
perimeter, 
km 

Preliminary 
actual 
misclosure,  
mm 

Allowable 
misclosure, 
mm 

1 491.1 +4.67 33.24 
2 517.8 +14.41 34.13 
3 575.6 –10.83 35.99 
4 451.1 +11.21 31.86 
5 499.9 –10.73 33.54 

 
Total number of points in the network is 1374. 

All ground benchmarks (totally 691) were observed 
by GPS campaigns, and ellipsoidal heights were 
computed. 

The vertical datum and type of state heights 
system is not adopted in Lithuania yet. Therefore it 
seems that Lithuania will follow the resolution of 
the EUREF Symposium in 1996 in Ankara, and the 
normal heights system will be adopted. The normal 
gravity field of the Geodetic Reference System 
1980 (GRS80) was adopted as part of Lithuanian 
Coordinate System 1994 (LKS 94). 

So the way to adobt the Lithuanian national 
height system (LHS) could be as follows: 



1. It should be realization of European Vertical 
Reference System based on UELN data. 

2. It should utilized normal heights. 
3. Apply the zero system for the permanent tide. 
4. Do not implement the land uplift model. Set the 

reference epoch to 2000.0.  
5. Obtain the geopotential number at VILNIUS 

(UELN ID 12002) site from a UELN 
adjustment relative to NAP. This is the vertical 
datum of LHS. 

6. Adjust the Lithuanian NGVN in this datum.  
 

5 Conclusions 
 

1. Lithuania participates in the all main 
European projects related to height system 
development. That creates the strong premises for 
the Lithuanian height systems adoption. 

2. The data of existing Lithuanian levelling 
network entered the UELN data base. It makes 
possible to integrate Estonian, Latvian and 
Lithuanian levelling networks into UELN. The 
accuracy of Lithuanian levelling network is at the 
same level as that of the levelling networks of 
biggest part of other participating countries.  

3. Observations of Lithuanian National 
Geodetic Vertical Network are finished. Total 
number of points is 1374. The average accuracy 
(standard deviation of 1 km double-run levelling) of 
0.44 mm was achieved. All ground benchmarks 
(totally 691) were observed by GPS campaigns, and 
ellipsoidal heights were computed. 

4. Lithuanian National Geodetic Vertical 
Network is completed in 2006 and the country is 
ready to introduce the national height system, which 
should be the realization of European Vertical 
Reference System. 
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Abstract. The present study aims at defining a 
national sea level reference in Algeria and can be 
integrated in other oceanographic projects for 
determination of the mean sea level. Whatever the 
principle of measure is, a tide gauge is able to 
provide a local information on the height of the sea 
referred to the chosen reference. 
    The main points of this study are: the calibration 
of the data of the electronic tidal gauge with an 
automatic data acquisition system installed in 
Algiers harbour; the comparison of these data with 
the data acquired from the analogical tidal gauge 
installed on the same site; and the determination of 
the mean sea level using the harmonic analysis. 
    The exploitation of the data recorded with the 
electronic tide gauge of Algiers during a period of 
two years provide an estimate of the mean sea level 
and the harmonic components which can be also 
used for the prediction. The estimated mean sea 
level differs by a few centimeters of the actual value 
currently used which was determined in a 
''arbitrary'' way. 
 
Keywords. Electronic tide gauge, analogical tide 
gauge, calibration, mean sea level, harmonic 
analysis. 

1 Introduction 

During the last two decades, the measurements of 
the height of seas using tide gauges have given 
acceptable results along the coastal lines. These 
data are used to predict a tide from harmonic 
components, and on the other hand, to validate the 
global models of tide and the observations provided 
by altimertic satellites. 
    Being aware of the interest to establish tide gauge 
sites, in framework of its activities, the National 
Institute of Cartography and Remote Sensing is 
currently planning a project to install new tide 
gauges with automatic acquisition along the 
Algerian coast line. A newly national altimetric 
referential will replace the existing reference 
defined from the tidal meter of La Goulette 
(Tunisia).   
    In this paper, we present the analysis of the data 
from the electronic tide gauges of Algiers to 
determine the mean sea level witch will serve as the 
reference point for the levelling network of Algeria.  

2 Description of the electronic tide gauge of 
Algiers 

The tide gauge for automatic data acquisition 
installed near the analogical tide gauge is a 
prototype conceived by Dr. Michel van Ruymbeke 
of the Royal Observatory of Belgium (ORB). This 
prototype records every minute the height of the sea 
as frequencies generated by a capacitive sensor.  
 

 
Fig. 1 Tidal gauge site of Algiers sheltering the two tide 
gauges electronic (in the left) and analogical (in the right). 

3 Tidal gauge data 

The electronic tide gauge with automatic data 
acquisition was installed in may 2003 in Algiers 
harbour. Due to technical problems, the store times 
series started in may 2004. 
    This electronic tide gauge is installed close to an 
analogical one in order to compare the observations 
produced form both sources. 
The data of the electronic tide gauge used in this 
study, are those collected during the period from 
March 29, 2004 to February 27, 2006 with a 
sampling rate of one minute. 
    A low pass filter was applied to the electronic 
tidal data  with a cadence of 60 readings (equivalent 
to one hour observation) using the software µDAS 
Grapher (ORB). 



 

 
Fig. 2 Raw Recordings of the electronic tide gauge of 
Algiers, Period: March  29, 2004 to February 27, 2006. 

 
Fig. 3 Filtering of the data of the electronic tide gauge. 

4 Calibration of the data automatic tide 
gauge 

The direct measurements of the sea level using a 
luminous probe provided the calibration factors of 
the tide gauge. A linear model has been used: 

            (1) 0 1h = a  + a   f
where a0 and a1 are calibration parameters, f the 
recorded frequency and h the height of sea observed 
referring to the reference of the hydrographic zero, 
deduced from the readings obtained by luminous 
probe. 
    The sea level referenced to the hydrographic zero 
is obtained by one of the following equations: 
 

          (2) 1 3 top of  the tube - sea surfaceN   N   height+ −
                       (3) 2 3 plateforme - sea surfaceN   N   height+ −
 

    where N1 is the height of the top of the water 
stabilizer tube referring to the Algerian General 
Level, N2 is the height of the plate-form referring to 
the Algerian General Level, N3 is the altitude of the 
zero point of the AGL referring to the altitude of the 

hydrographic zero which is fixed to 34 cm, and the 
,  are the 

readings obtained by luminous probe. 
t o p  o f  t h e  tu b e  -  s e a  s u r fa c eh e ig h t plateform e - sea surfaceheight

     The calibration parameters were calculated using 
this process for equivalent periods of one month. 

5 Validation with the data of the analogical 
tide gauge 

An external validation of the data of the electronic 
tide gauge measurements was carried out by 
comparing with the data from the analogical tide 
gauge measurements over the period of March 29 
2004 to February 21 2005:   
 

 
Fig. 4 Difference (in green) between the filtered and 
calibrated data of the electronic tide gauge (in yellow) and 
those stemming from the analogical tide gauge (in red). 
Period from March 29, 2004 till February 21, 2005. 

    The statistical results of this comparison are 
given in the following table: 

Table 1. Comparison between data stemming from the 
electronic tide gauge and from the analogical tide gauge. 
 

 
Tide gauge 

Min. 
value 
(cm) 

Max.  
value 
(cm) 

Average 
(cm) 

Standard 
deviation 

(cm) 
Electronic 4 82 38.76 11.17 
Analogical -3 68 39.40 11.36 
Difference -37 49 0.0011 8.27 

    Both systems present a good agreement only 
where the luminous probe calibration data are 
available. 

6 Tidal harmonic analysis 

The tide can be considered as the summation of a 
series of periodic functions and an error (ε ). 
 



          (4) ( ) ∑ +−+=
i

iii GVAZth ε)cos(0

    In this expression, Z0 is the mean level, Ai the 
amplitude, Vi the argument of the cosine in the 
harmonious development of the generative potential 
of the tide, and Gi the phase of the constituent i.  
    Z0, Ai and Gi are the harmonious constants in a 
given place. 
    The situation of a harmonic component of the 
tide represents its delay expressed in angle, 
regarding to the corresponding constituent of the 
potential (to obtain its delay expressed at time, it is 
enough to divide it by the angular speed dVi/dt). 
    Only Vi depends on time. Its expression is 
generally done by astronomical elements. 

7 Determination of the mean level  

The preliminary determination of the mean level of 
the sea at Algiers harbour by the harmonic analysis 
is done using the T_TIDE version 1.2b package 
under Matlab [R. Pawlowicz, R. Beardsley, S 
Lentz]. 
 
Table 2. Obtained mean level and difference regarding to the 
current reference of Algerian General Level. 
 
Tide gauge Period Mean 

level 
(cm) 

Diff. / 
current 

reference 
(cm) 

 
Analogical 

29/03/2004 
---- 

21/02/2005 

39.8 5.8 

29/03/2004 
---- 

21/02/2005 

39.1 5.1  
 
Electronic 

29/03/2004 
---- 

27/02/2006 

38.1 4.1 

This table shows that the results of the mean level 
obtained from the data of the electronic and 
analogical tide gauges during the same period of 
March 29 2004 to February 21 2005 are close near  
(39.1 cm and 39.8 cm). This confirms the good 
preprocessing of electronic tide gauge 
measurements. 
    The mean level obtained from the data of the 
electronic tide gauge data of the period from March 
29, 2004 to February 27, 2006, present an offset of 
4.1 cm to the current reference. 
The harmonic constants obtained from the series of 
the electronic tide gauge over of the period from 
March 29, 2004 to February 27, 2006, were also 
used for the prediction of the tide for the same 
period. The difference between the observed and 
predicted tides vary in an interval of + 20 cm: 
 

 
Fig. 5 Difference (in red) between the observed tide data (in 
blue) and the predicted tide data (in green). 

9 Conclusion  

The objective of this study was to determine the 
mean sea level at Algiers harbour using an 
electronic tide gauge.  The calibration of data 
revealed the need of more frequent obtained 
calibration data using of the luminous probe or the 
ladder of tides. 
    The preliminary mean sea level obtained with the 
electronic tide gauge shows an offset of 4.1 cm 
compared to the mean sea level reference currently 
used.   
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Abstract. Airborne gravity is capable of providing 
an accurate and bias-free extension of satellite 
gravity models and thus bridges the spectral gap 
between these models and the fine structure of the 
gravity field as mapped by the newest digital 
elevation models (SRTM). Airborne gravity is 
therefore an ideal base for regional gravity/geoid 
modeling. Airborne gravity may also be an efficient 
tool to validate existing datasets e.g. older marine 
surveys and is the only efficient way to cover the 
near coastal zone where altimetry derived gravity 
fails to deliver reliable data. 

This paper describes some recent surveys 
undertaken by Danish National Space Center 
(DNSC) including both surveys over marine areas 
in the Arctic and the North Atlantic region and 
surveys over land covering all of Malaysia and 
Mongolia. The purpose has been to contribute to 
regional and global models (ArcGP and EGM2006), 
to provide geoid models for national height systems 
and reference surfaces for ocean current studies. 
The measurements were done with a LaCoste & 
Romberg marine/airborne gravimeter owned by the 
University of Bergen. This type of gravimeter has 
an excellent drift characteristic and can when the 
data are properly processed provide bias-free results 
also for airborne applications. 

The main source for a bias in airborne data 
obtained with stabilized platform systems is the so-
called tilt correction, which basically is a modeling 
of the platform orientation error. A new platform-
response-modeling approach to account for this 
effect will be described. This approach seems to 
give virtual bias-free results. 
 
1 Introduction 
 
Today airborne gravimetry is a truly operational 
tool for gravity mapping and it offers a fast and 
economic coverage of large areas. One of the big 
advantages of airborne gravimetry is the uniform 
and seamless coverage of the near-coastal region, a 
region that so far is only poorly covered in many 

areas of the world due to shallow water, which 
don’t allow for marine measurements. Satellite 
altimetry derived models are in general not reliable 
near the coast (Andersen and Knudsen, 1998). This 
region is at the same time an area where one may 
want the most precise geoid due to the high 
population density and the economic interests 
related to infrastructure developments here. Also 
natural hazard management like flooding control 
and tsunami warning systems require a good coastal 
geoid determination in order to make use of fast and 
cheap GPS levelling instead of tedious and costly 
spirit levelling. Another advantage of airborne 
surveys is the ability to cover remote and otherwise 
inaccessible areas like mountains and jungles. 

It is common practice to subject marine and 
airborne gravity profile data to an adjustment 
procedure that minimizes the misfit at the crossing 
points, either as a linear trend or a bias removal. It 
may be justified to do this to marine data, see 
LaFehr and Nettleton (1967) for a discussion, but 
for airborne data obtained with a long-term stable 
gravimeter like the LaCoste & Romberg meter and 
a proper reduction for motion induced effects there 
seems to be little physical justification for such an 
adjustment. The gravimeter is virtual drift-free 
during the short time span of a flight (Valliant, 
1992), so bias or tilt problems in the data may 
indicate that the processing algorithm is less than 
optimal. The situation is different for systems 
utilizing sensors, which are known to drift, such as 
INS equipment (Glennie, 1999), but it doesn’t make 
the crossover adjustment healthier. Any crossover 
adjustment will by nature distribute point errors at 
crossing points into along-track corrections, and 
thus provide a way for short-period random errors 
to leak into the longer wavelengths. Using a dense 
net of tie lines in the crossover adjustment will 
reduce this leaking, but it may be quite expensive 
especially for regional scale surveys. 

 Avoiding the need for crossover adjustment of 
the airborne track data therefore means that one can 
get away with much fewer tie lines than in a survey 



that requires crossover adjustment since the tie lines 
now only serve as internal quality estimators 
(repeatability at line crossing points). 

 
2 Tilt effect and biases. A new platform 
modeling approach 
 
The effect of a tilting platform is both to make the 
gravimeter less sensitive in the vertical direction, 
and to make it sensitive to horizontal accelerations. 
The traditional approach to account for this effect 
leads to a correction term that is non-linear in the 
accelerations. The correction term can be found in 
Valliant (1992) or in Czombo (1994) and writes:  
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where fk denotes accelerations measured by the 
gravimeters three accelerometers and qk denotes 
horizontal kinematic accelerations derived from 
GPS. Valliant (1992) gives an approximate 
expression derived from equation (1) under the 
assumption that gandgfz ≅ >> y,xf : 
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last equation is good in the sense that it highlights 
the problem with the tilt correction. It is basically a 
small difference between two potentially huge 
numbers. Furthermore, the two potentially huge 
numbers are derived by squaring discrete and very 
noisy measurements. In addition to that, the noise 
on the separate terms must be expected to have 
different signatures, so the noise on the squared 
terms is not likely to cancel out due to the 
subtraction. Such an approach will certainly cause 
problems, problems that cannot be filtered out by 
the final low pass filter, since the squaring will 
change the characteristics of the noise signal. A 
zero-mean noise will after the squaring have a 

positive mean value. In this way the tilt correction 
may become a way for zero-mean noise to bias the 
gravity estimates. Pre-filtering of the data before the 
tilt correction is derived may reduce the problem, 
but the optimal amount of filtering is somewhat 
ambiguous.  
The tilt angles may alternatively be estimated from 
the combined gravimeter and GPS observations. For 
small tilt angles the following approximations hold 
for one axis, see also Figure 1: 
 

gqfqf)sin(qf xzxzxx ⋅φ+≈⋅φ+≈⋅φ+=     (3) 

or 

g
qf xx −≈φ                             (4) 

It was shown in Olesen et al (1997) that the tilt 
angle has no spectral components above 
approximately 0.01 Hz. See also LaCoste 1967 for a 
thorough discussion of the spectral behavior of the 
LaCoste & Romberg marine gravimeter’s stabilized 
platform. With this knowledge the tilt angles can be 
well modeled and filtered. High frequency noise in 
the tilt angle estimation can be effectively removed 
with a low-pass filter that matches the platform 
period. This leads to the computation of the tilt 
correction being split into two parts, (i) the 
modeling of a physical system with known 
properties (the stabilized platform) and (ii) the 
correction for tilt computed as a linear combination 
of three acceleration components:  
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This implies, that zero-mean noise on the 
acceleration estimates will propagate unbiased as 
zero-mean noise into the tilt correction and will 
therefore not induce any bias into the gravity 
estimates. 

Table 1 shows the performance of the two 
different tilt correction algorithms. Two tracks from 
the Greenland 2001 survey are analyzed, where one 
track was flown under turbulent conditions and the 
other was flown under smooth conditions. It is seen 
that the two algorithms yield the same results when 
no filtering is applied. This should not surprise, 
since the two methods are identical in that case. The 
table shows a dramatic change in mean value when 
filters are applied, especially for the dynamic flight, 

Figure 1. Tilting platform 
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from 13.3 mGal to –2.1 mGal for the traditional 
approach, when a 1 seconds filter is applied before 
calculating the correction. Further filtering is seen 
to change the mean value several mGal, when we 
still look at the traditional approach. This shows 
that the tilt correction can add severe biases to our 
data, as it is unclear which amount of filtering is 
optimal. Moreover, the optimal filter length may 
change due to the dynamics of the flights. The 
modeling approach, on the other hand, is seen to be 
much less filter-sensitive for realistic filter lengths. 
Besides, the optimal filter length is more or less 
given from the platform natural period (Olesen 
2003). A filter around 60 to 80 seconds should be 
adequate. 

 
Table 1: Comparison of the two different tilt correction 
algorithms 

Traditional approach 

Quiet flight Dynamic flight Pre- 

filter Mean St dv Mean St dv 

0 sec 0.32 1.49 13.26 8.42 

1 sec -0.46 0.97 -2.09 4.29 

2 sec -0.76 0.91 -3.87 3.92 

3 sec -0.88 0.89 -3.98 3.75 

5 sec -0.92 0.86 -3.64 3.47 

10 sec -0.87 0.77 -2.82 2.81 

20 sec -0.77 0.61 -1.84 1.83 

 
Modeling approach 

Quiet flight Dynamic flight Platform 

filter Mean St dv Mean St dv 

0 sec 0.34 1.48 13.30 8.42 

20 sec -1.01 0.93 -5.46 4.06 

40 sec -1.02 0.93 -4.48 4.01 

60 sec -0.99 0.95 -4.26 4.18 

80 sec -0.98 0.95 -4.18 4.37 

100 sec -0.98 0.95 -4.03 4.32 

120 sec -0.97 0.95 -3.79 4.20 

 
The standard deviation of the tilt correction in Table 
1 shows somewhat the same dependency on filter 
length as does the mean value. But, the mean value 
is the main concern for us, as the data are intended 
for geodetic use. The modeling algorithm described 
in this section is a more sound way to establish the 
correction for platform errors, than is the traditional 

algorithm. The modeling approach incorporates the 
known physical properties of the platform system in 
its algorithm in contrast to the traditional approach. 
 
3 The Arctic surveys 
  
Geodynamics Department at Danish National Space 
Center has since 1998 gathered approximately 
150,000 line km of airborne gravity data in the 
arctic region. The surveys constitute a seawards 
extension of the helicopter-based conventional 
gravity campaigns along the Greenland coast, see 
Forsberg et al (1998) and Forsberg and Rubek 
(1998). The surveys around Greenland have mainly 
been funded by US National Geospatial-Intelligence 
Agency as part of the Arctic Gravity Project, see 
http://earth-info.nga.mil/GandG/ wgs84/agp/. 

To the north, in the Polar Sea, the operations 
were coordinated with the surveys performed by US 
Naval Research Laboratory (Brozena 1991, 
Childers et al 2001). Surveys around Svaldbard 
were done in cooperation with and partly funded by 
Statens Kartverk, Norway. The survey over Foxe 
Basin, Canada, was done under contract to Geodetic 
Survey Canada.  

The survey stretching from Greenland’s East 
coast via Iceland to Scotland and Norway was done 
within the frame of the GOCINA project (Geoid 
and Ocean Circulation in the North Atlantic). The 
aim was to provide a Mean Dynamic Topography 

Figure 2. Arctic surveys between 1998 and 2003 



model (MDT) for the area in question. The MDT 
would be based on a Mean Sea Surface (MSS) from 
satellite altimetry and a gravimetric geoid (Knudsen 
et al 2004). The airborne gravity data provided the 
constraints needed to do a healthy bias adjustment 
of the existing gravity data in the area before 
computation of the geoid. The inclusion of the 
airborne data had significantly effect especially 
along the Greenland coast were other reliable data 
sources are sparse. 

Statistics from crossover analyses of the datasets 
are shown in Table 2. For all years the RMS 
crossover misfit was 2.5 mGal indicating a 1.8 
mGal noise level on the individual tracks (2.5 mGal 
divided by sqrt(2) based on the assumption that the 
noise is uncorrelated from track to track). The 
results seem to be pretty constant from year to year 
only the year 1998 stands out with a 1.8 mGal RMS 
crossover error, that fits nicely with the fact that the 
1998 survey was over the frozen Polar Sea with 
very smooth flight conditions. The 1.8 mGal misfit 
indicates a 1.3 mGal noise on the track data. 

 
Table 2: Crossover error statistics for the Arctic surveys 
(units: mGal) 

Data set Number of cross RMS misfit 
1998 86 1.8 
1999 74 2.5 
2000 96 2.8 
2001 66 2.6 
2002 101 2.6 
2003 46 2.1 

All years 670 2.5 
 

Comparison to surface data is very consistent with 
the noise estimates from crossover analysis, 2.5 
mGal when comparing to a high quality marine data 
set from NUNAOIL, the national oil company of 
Greenland. These marine data are scattered along 
most of the Greenland east and west coast and are 
believed to be accurate at the 1 mGal level or better 
(Strykowski and Forsberg, 1995). The comparison 
to ice surface data over the Polar Sea gave a 1.3 
mGal agreement, exactly the same number as the 
internal noise estimate from the 1998 dataset. In 
both cases the surface data was compared directly 
with the airborne free air anomalies, no upward or 
downward continuation was performed to the data. 
The airborne surveys were flown at an altitude of 80 
to 200 meters so the attenuation due to upward 
continuation is marginal. This is especially true 
over the ocean where the gravity anomaly sources 

are located below the surface. The good agreement 
between internal and external error estimates 
indicates that there are only little internal bias 
problems left in the airborne datasets. Applying a 
bias adjustment to the airborne dataset will off 
course lower the crossover misfit but the derived 
error estimates will be too optimistic and will no 
longer reflect the real noise level. Table 3 also 
shows that mean differences between airborne and 
surface data as well as global models are at the sub-
mGal level suggesting that the mean value and the 
longer wavelengths in the airborne datasets are very 
precisely determined.  
 
Table 3: Comparison to surface data within 1 km and to 
global models (units: mGal) 

Data set 
Number 
of points 

Mean 
diff. 

Standard 
deviation 

NUNAOIL 
marine data 

1178 0.1 2.5 

Canadian sea  
ice data 

12 0.4 1.3 

GGM01C NA 0.2 23.2 
EIGEN-

GRACE02S 
NA -0.3 24.6 

 
 
4 The Malaysian and the Mongolian surveys 
 
Geodynamics Department from National Survey 
and Cadastre-Denmark (now with Danish National 
Space Center) was asked by the Department of 
Surveying and Mapping Malaysia (JUPEM) to 
perform a nationwide airborne gravity survey. This 
as part of an ambitious plan to establish a modern 
GPS based height system integrating a precise geoid 
model and a real time kinematic GPS positioning 
system. This would allow the GPS user to get 
precise heights above sea level at the ‘push of a 
button’ everywhere in the country.  

The airborne survey covered approximately 
500,000 km2 at a 5 km line spacing, see . It was 
flown between September 2002 and May 2003, a 
total of 530 hours airborne time. Tropical 
conditions with high temperatures and humidity 
causing unstable weather to build up almost every 
day together with a rather mountainous terrain 
peaking at more than 4000 meters makes it a 
challenging task to do airborne gravimetry here. 
Time constraints forcing us to fly almost every day 
no matter the weather conditions added to the 
challenge of getting quality data out of our efforts. 



The crossover analysis in Table 4 should be seen in 
this light; 2.6 mGal RMS difference from almost 
2000 line crossing points indicating a noise level 
around 1.8 mGal. This is to our opinion a very 
satisfactory result and demonstrates that airborne 
gravimetry is truly operational for regional gravity 
field mapping also under diverse and difficult 
conditions like in Malaysia. 

 
Table 4: Crossover error statistics for the Malaysian and the 
Mongolian surveys (units: mGal) 

Data set Number of cross RMS misfit 
Malaysia 1965 2.6 
Mongolia 504 3.1 

 
Table 5: Airborne gravimetric geoid compared to global 
models (units: meters) 

Global model Standard dev. of difference 
GGM02S to 160 1.11 
EGM96 to 360 1.08 

EIGEN-CG03 to 360 0.57 
 

It was also the task of Geodynamics Department to 
compute a best possible geoid model based on the 
airborne data in combination with some terrestrial 
data, GRACE based geo-potentials models and the 
SRTM digital elevation model (Shuttle Radar 
Topography Mission, see http://srtm.usgs.gov). 
Table 5 shows the final geoid model compared to 
different global models over Sabah province in 

Eastern Malaysia (Malaysian part of Borneo 
Island).  The residual is at the meter level for most 
models and even for the newest high-resolution 
model the EIGEN-CG03 to degree 360 the residual 
signal is 57 cm. This residual is due to 
shortcomings in the global models and underlines 
the need to collect more gravity data in many areas 
in order to produce geoid models of a quality 
suitable for GPS leveling. 5 centimeter precision or 
better is a typical requirement. The difference 
between the airborne geoid and the EIGEN-CG03 
geoid is also portrayed in Figure 3 and it is seen that 
also in the important near coastal zone the global 
model has significant problems. This will be the 

Figure 3. Difference between airborne geoid and the EIGEN-
CG03 global model to degree 360 

Figure 4. Ground track pattern for the Malaysia survey. The Peninsula or Western Malaysia to the left and Malaysian Borneo to the right. 
Flight lines could be extended over Thai and Brunei territory whereas it was not possible to get permission to enter into Indonesian or 
Singaporean airspace. A total of 530 hours where flown during the months of October to November 2002 and February to May 2003.  
Flight lines were in general planned to follow main topographic features, e.g. along a mountain ridge instead of crossing it in order to 
reduce the number of climbs or descents. The location of suitable airports also played a major role for the overall track layout 



case in many other areas around the world and 
airborne gravimetry offers a fast and economic way 
of collecting new gravity data to supplement 
existing surface data and global models. 

The Mongolian survey was done in the autumn 
months of 2004 and 2005 as this period is the most 
stable with mainly clear sky and not too much wind. 
The survey covered all of Mongolia, 1.6 million 
square kilometers, at a 10 nautical miles line 
spacing. Only a 25 km no-fly zone along the border 
to neighboring Russia and China was omitted. The 
project was a joint effort between Mongolian 
Administration of Land Affairs (ALaGAC), US 
National Geospatial-Intelligence Agency (NGA) 
and Danish National Space Center (DNSC). The 
aim was to establish a modern GPS based height 
system for Mongolia and to make a contribution to 
the soon-to-be-released geo-potential model 
EGM06. NGA provided the funding for the survey 
and DNSC was responsible for the airborne survey 
in cooperation with local partners. The slightly 
higher noise level for the Mongolian data compared 
to the Malaysian survey is ascribed to the different 
aircraft used for the two surveys and to the presence 
of mountain waves in Mongolia. Mountain waves 
are a wind generated and relatively long-wave 
motion of the air in mountainous areas. 
 
Conclusion 
 
Airborne gravimetry with a LaCoste & Romberg 
airborne/marine gravimeter has over the years 
proved to be a very reliable concept for acquiring 
quality gravity data for various geodetic 
applications. The survey in Malaysia showed that 
the method is also applicable under demanding 
conditions like in tropical and mountainous areas. 

The new platform modeling approach to correct 
for platform off-level errors seems to yield virtual 
bias free data and thus eliminates the need for a bias 

crossover adjustment of the data. It also means that 
single or coarse distributed lines can be utilized to 
validate existing data sets, e.g. old marine data sets. 
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LSQR based Geopotential RecoveryO. BaurInstitute of Geodesy,Universität Stuttgart, Geshwister-Sholl-Str. 24D, 70174 Stuttgart, GermanyJ. KusheDEOS,Delft University of Tehnology, Kluyverweg 1, 2629HS Delft, The NetherlandsAbstrat. In the ontext of present and forth-oming geosienti� satellite missions, numerialsolution strategies for large and ill-onditionedlinear systems of equations as ourring in geo-potential reovery are of great interest. Due tothe harater of the inverse problem, i.e. to solvea highly overdetermined problem, least squaresproedures are usually adopted. To meet the ari-sing hallenge from the omputational point ofview, an iterative algorithm based on bidiago-nalization and QR deomposition, referred to asLSQR, is presented. Moreover, in terms of LSQRtuning, an adoption and extension of the originalalgorithm for its use in satellite geodesy was rea-lized. In partiular, regularization and preondi-tioning is addressed. The LSQR algorithm is ap-plied to a simulated GOCE (Gravity �eld andsteady-state Oean Cirulation Explorer) dataset. Its parallel implementation on a (shared me-mory) superomputing platform results in a high-ly e�etive tool for solving least squares problems.Keywords. LSQR, Satellite Gravity Gradiome-try, GOCE, High Performane Computing
1 IntroductionIn satellite geodesy the estimation of the geopo-tential, i.e. the unknown oe�ients of its harmo-ni series expansion, based on observation datafrom spae is of major interest. However, solvingfor the unknowns in a brute fore manner by nor-mal matrix inversion requires an immense orememory, whih exeeds by far the limit of mostommon omputation platforms. Therefore, theuse of LSQR as an e�etive and robust tool tomanage this task in an iterative manner is pro-posed. Disregarding runtime, the method an beaomplished on an ordinary personal omputer.The LSQR algorithm itself was originally in-trodued by Paige and Saunders in 1973 and pu-

blished in detail at the beginning of the 1980s(Paige and Saunders, 1982a,b). The proedure isa Krylov subspae based iterative method, suhas the onjugate gradients (CG) methods (He-stenes and Stiefel, 1952). Both solve linear sy-stems of equations by means of suessive ap-proximations. Whereas the LSQR method is fre-quently applied in geophysis, it has found on-ly little resonane in geodeti appliations. A-tually, least squares (LS) problems in geodesyare mostly treated by CG methods, leading tothe CGLS proedure. Appliation of CGLS interms of satellite based gravity �eld reovery anbe found in e.g. Shuh (1996), Pail and Plank(2002) and Ditmar et al. (2003). Geodeti pro-blems are treated with LSQR in e.g. Kushe andMayer-Gürr (2001) and Baur and Austen (sub-mitted). The LSQR and the CGLS method sha-re approximately the same storage and work re-quirement demands. Furthermore, they generatemathematially the same sequenes of approxi-mations to the real solution. But onerning sta-bility of the iterative progress, CGLS is shownto be outperformed by LSQR. This holds predo-minantly for ill-onditioned problems (Paige andSaunders, 1982a; Björk, 1996; Jaobsen et al.,2003).The basi LSQR algorithm aording to Pai-ge and Saunders is presented in the next se-tion. If regularization plays a role, the methodis very suitable, sine various regularization se-narios an be evaluated at the same time withmarginal extra omputational osts. This aspetis addressed in Set. 3. Moreover, to improve thespeed of onvergene preonditioning is imple-mented as outlined in Set. 4. Setion 5 dealswith the tailored parallelization of the algorithmusing the OpenMP programming environment.This is done against the bakground of the forth-oming GOCE satellite mission as demonstratedin Set. 6. Finally, Set. 7 summarizes the on-lusions of this ontribution.



2 The LSQR MethodFigure 1 presents the priniple of the iterativeLSQR solver. The equation Ax = y + e onsti-tutes an arbitrary linear (or linearized) system ofequations with the vetor of observations y, ve-tor of unknown parameters x and the design ma-trix A desribing the funtional model betweenthem. In LS appliations the number of observa-tions n is muh larger than the number of the un-known parameters u yielding an overdeterminedsystem. Solving it by means of a standard Gauÿ-Markov model (L2-norm minimization of the re-sidual vetor e) is equivalent to (Koh, 1999)
min ‖e‖2 = min

x
‖Ax− y‖2

Σ−1 . (1)To simplify matters, deorrelated observations(white noise) with uniform level of auray areassumed. Thus, D{y} = Σ = σ2I holds. Bidia-gonalization (Golub and Kahan, 1965; Paige andSaunders, 1982a) transforms the original mini-mization problem to a muh simpler one by thedeomposition of the design matrix A in two or-thogonal matries,Uk+1 (dimension n×(k+1))and Vk (u × k), and a lower bidiagonal matrix
Bk ((k+1)×k). Thus,A ≈ Ak = Uk+1BkV

T
kholds. For eah iteration step k the dimension ofthe matries is enlarged by one. For k = u itera-tions the matrixA is fully deomposed (Ak=u =

A). However, in pratial appliations k ≪ uiterations approximate the exat solution su�-iently, i.e. the iterative proess an be trunatedat an early stage. Both the vetors (u1, ...,uk)and (v1, ...,vk) form an orthogonal base of twoKrylov subspaes, f. e.g. Björk (1996). By a setof Givens rotations the bidiagonal matrix Bk isdeomposed in an orthogonal matrix Qk and anupper triangular matrix Rk. The Givens trans-formation is a speial kind of a ounter lokwiserotation. Tehnially, it is hosen suh that thesuessive exeution per iteration equals a diago-nalization proess of matrixBk , i.e. the non-zeroseondary diagonal elements vanish. Thus, theorthogonal matrix Qk is omposed of the pro-duts of the Givens rotation matries. Finally,this leads to
âk = R−1

k Qk(β1e1) (2)for solving the bidiagonal minimization subpro-blem. Therein, β1 = ‖y‖ denotes the norm ofthe observation vetor y and e1 is the �rst o-lumn of a unit matrix of appropriate size. For
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Figure 1: Flowhart of the LSQR methodthe original vetor of unknown parameters xk ∈
Kk(A

TA,AT y) holds, i.e. the approximate so-lution xk is embedded in the Krylov subspaespanned by the vetors (v1, ...,vk). Therefore,
x̂k an be represented as a linear ombination ofthese base vetors. The vetor âk assembles theoe�ients of that linear ombination. The itera-tive proess for solving the unknown parametersis terminated if the kth iteration is meeting so-me trunation riterion. Pseudoode 1 presentsa method for Givens rotation implementation.Pseudoode 2 illustrates the LSQR proess stepby step.Pseudoode 1: Givens rotation

[c, s, ρ] = givrot(ρ̄, β)if β = 0.0a. c = 1.0, s = 0.0, ρ = ρ̄else if |β| > |ρ̄|a. t = ρ̄/β, q =
√

1.0 + t2b. s = 1.0/q, c = ts, ρ = qβelsea. t = β/ρ̄, q =
√

1.0 + t2b. c = 1.0/q, s = tc, ρ = qρ̄



Pseudoode 2: The LSQR method to solve
min ‖e‖2 = minx ‖Ax − y‖2Initialization1. β1u1 = y2. α1v1 = AT u13. α1 = α1

β14. φ̄1 = β15. ρ̄1 = α1First iteration: k = 16. β2u2 = Av1 − α1u17. h1 = AT β2u28. [c1, s1, ρ1] = givrot(ρ̄1, β2)9. φ1 = c1φ̄110. φ̄2 = −s1φ̄111. q1 = 1

ρ1
v112. x1 = φ1q113. α2v2 = h1 − β2

2v114. α2 = α2

β2Further iterations: for k = 2 : u15. βk+1uk+1 = Avk − αkuk16. hk = AT βk+1uk+117. θk−1 = sk−1αk18. ρ̄k = ck−1αk19. [ck, sk, ρk] = givrot(ρ̄k, βk+1)20. φk = ckφ̄k21. φ̄k+1 = −skφ̄k22. qk = 1

ρk

(vk − θk−1qk−1)23. xk = xk−1 + φkqk24. αk+1vk+1 = hk − β2
k+1vk25. αk+1 =

αk+1

βk+1

3 RegularizationRegularization is a ommonly used tool to over-ome the instability of ill-posed inversion pro-blems. Here we exlusively fous on Tikhonovregularization (Tikhonov, 1963) whih has beenproven to perform very well for satellite geodetiappliations, f. e.g. Kushe and Klees (2002).Extending the original formulation in terms ofthe auxiliary ondition of minimizing the fun-tional minx ‖x‖
2
K

the regularized LSQR mini-mization problem reads
min
x

{

‖Ax− y‖2 + κ‖x‖2
K

} (3)with the regularization parameter κ and the re-gularization matrix K. For K = I, equation(3) is known as regularization in standard form(Hanke and Hansen, 1993). Sine the optimal re-gularization parameter κopt is usually not knowna priori, it is advantageous to solve the linearleast squares problem (3) for multiple regulariza-tion parameters κi, i = 1, ..., imax. The optimal

one is �nally hosen aording to some qualityriterion of the estimate x̂κi
, f. e.g. Hanke andHansen (1993), Kilmer and O'Leary (2001), Ku-she and Klees (2002), Koh and Kushe (2002).Regularization yields the subproblem matrix

Bk,κi
to get tridiagonal struture. Thus, onlythe QR deomposition is a�eted by the additio-nal onstraint but not the bidiagonalization re-spetively tridiagonalization proess itself. Thatmeans, the additional omputational e�ort is ma-nifested in imax additional Givens rotation foreah iteration whih is marginal even for a largenumber of regularization parameters. This is oneof the major advantages of the LSQR methodompared to alternative iterative solvers.For regularization with matrix K 6= I, alledregularization in general form, it is onvenientto transform the extended minimization problem(3) to standard form. This is ahieved by Choles-ky fatorization of the symmetri and quadratimatrix K with K = LT

K
LK yielding

min
c

{

‖AKc− y‖2 + κ‖c‖2
I

}

. (4)Therein, the substitutions AK = AL−1
K

and
c = LKx hold. The properties of (3) solving for
x hold for (4) when solving for c. The estimateof the original parameter vetor is obtained bybak substitution, i.e. x̂κ = L−1

K
ĉκ. Note thatfor pratial problems related to spherial har-moni analysis K is diagonal. In the following,the regularized version of LSQR is denoted asR-LSQR.Aording to Table 1, multiple regularizationparameter treatment has no signi�ant e�et onthe overall runtime. However, to �nd the �best�one amongst the a priori values, some quality ri-terion has to be evaluated for eah of them (theorresponding runtime is negleted in Table 1).The inrease of total wall time onsidering 100regularization parameters opposite to the unre-gularized version is less than 1%.Table 1: Runtime results R-LSQR (Spetral resolu-tion L = 200, n = 518 400, 8 CPUs, 1 iteration).# param. wall time (s) wall time (%)no regul. 242.7 100.01 242.7 100.010 243.6 100.4100 244.9 100.9



4 PreconditioningThe onvergene behavior of an iterative solveris predominantly determined by the onditionnumber of the normal matrix. Preonditioning isapplied to improve the ondition of the normalequation system and thus to inrease the speedof onvergene of the iterative solver. In order tooutline the methodology of preonditioning onthe level of the design matrix we shortly reviewpreonditioning on the level of the normal matrixas presented in Baur and Austen (submitted).Starting from the linear minimization model(1) the orresponding normal equation systemreads ATAx = ATy, respetively Nx = b.Inserting the identity matrix I = N−1
bdNbd inbetween the normal matrix N and the parame-ter vetor x leads to

NN−1
bdNbdx̂ = b. (5)Finally, the substitutionsN∗ = NN−1

bd and x̂∗ =
Nbdx̂ transform (5) into

N∗x̂∗ = b. (6)Therein, Nbd denotes the blok-diagonal appro-ximation of the true normal matrixN. Setup, in-version and storage is e�iently ahieved blok-wise. When assuming Nbd ≈ N, the produt
NN−1

bd is lose to identity and thus the ondi-tion of the system improves onsiderably. Howe-ver, solving (6) by means of LSQR requires de-sign matrix assembly twie per iteration. This isa signi�ant drawbak of the method, sine thesetup of A is the most time onsuming part ofthe solver.Design matrix preonditioning avoids this pro-blem. An adequate preonditioner an be alu-lated by Cholesky deomposition of the blok-diagonal normal matrix approximation
Nbd = LT

NLN. (7)Analogously to (5), inserting I = L−1
N

LN in theoriginal formulation , together with the substitu-tions AN = AL−1
N

and z = LNx �nally yields
ANz = y + e. (8)Aordingly, AN and y enter the LSQR proe-dure to solve the overdetermined problem (8).The initial vetor of unknowns is omputed from

x̂ = L−1
N

ẑ. (9)Here, the design matrix preonditioned versionof LSQR is referred to as PCA-LSQR.

5 Parallel ImplementationDue to the harater of the LSQRmethod, matrix-matrix and matrix-vetor multipliations are avoi-ded by means of repeated vetor-vetor operati-ons. Sine neither the design matrix nor the nor-mal matrix must be kept in the main memory,storage requirements are by far smaller as om-pared to non-iterative solvers. Despite the smallmemory requirements of the LSQR method, run-time inreases dramatially with inreasing ma-ximal resolution of the geopotential to be resol-ved. Thus, the e�ient use of the algorithm anonly be ahieved by adopting high performaneomputing (HPC) failities.Fortunately, eah observation, i.e. eah singlerow of the design matrix, an be treated sepa-rately. Moreover, the major omputational ostsour within the bidiagonalization proess, i.e.design matrix deomposition. It is therefore rea-sonable to distribute the number of observationson several CPUs of a multiproessor omputati-on platform. Within the ourse of this ontribu-tion, alulations are performed on a 64 proes-sor -NUMA superomputer using OpenMP forparallelization. The platform is part of an SGIAltix 3700 system supported by the Center forComputing and Networking Servies in Amster-dam (SARA). Compare Fig. 2 for the parallelprogramming sheme. The parallel region (blakolored) embraes the suessive design matrixdeomposition whih is split (uniformly) on theproessing elements used. Moreover, in ase ofPCA-LSQR, the omputation of the design ma-trix preonditioner L−1
N

is performed in parallel.
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6 GOCE Data AnalysisWe apply the LSQR method as outlined in thesetions before to a simulated GOCE data set. Inpartiular we perform geopotential reovery ba-sed on the (quasi-)radial tensor omponent Vzz.EGM96 up to degree and order 300 is used toset up the simulation senario (Ilk et al., 2003).The simulation overs a 30 days period with 5 ssampling. Thus, the total number of observati-ons is n = 518 400. Trunation of the iterativeproess is ontrolled by omparing the latitude-weighted RMS geoid height hanges of sues-sive approximations, denoted as ∆WRMSk
h. If

∆WRMSk
h < δ holds, the iterative proess stops.Within this ase study, the threshold is �xed on-servatively to δ = 0.7mm.Table 2: Runtime results LSQR (8 CPUs)spetral resolution number of wall time

L iterations (h)100 56 1.1200 180 13.4Table 2 presents runtime results for the basiLSQR implementation using 8 CPUs. For Vzzanalysis with L = 100, onvergene is ahievedafter 56 iterations. However, the number of itera-tions inreases to 180 for a spetral resolution of
L = 200. Blok-diagonal preonditioning aor-ding to Set. 4 has been implemented and su-essfully parallelized. Runtime dereases signi�-antly sine the number of iterations drops dra-matially ompared to the basi algorithm. A-ording to Table 3, for L = 100 onvergene isahieved within only 8 iterations. Runtime is ap-proximately one third ompared to Table 2. Re-garding L = 200 the number of iterations dropsfrom 180 to 14. Runtime is redued to 19.4%.Table 3: Runtime results PCA-LSQR (8 CPUs)spetral resolution number of wall time

L iterations (h)100 8 0.4200 14 2.6250 19 5.1300 32 14.4

Table 4: Runtime results PCA-LSQR (8 CPUs)spetral resolution wall time
L L−1

N
(h)100 0.2200 1.4250 2.6300 4.8Note that the omputational osts within eahiteration are omparable for both LSQR and PCA-LSQR. Only the additional operations of apply-ing L−1

N
, respetively (L−1

N
)T , on a vetor our.This has no signi�ant runtime e�et. However,the setup of the (inverse) preonditioner itself isa quite ostly proess. Table 4 shows the partfor L−1

N
alulation. Opposite to the total runti-me in Table 3, roughly spoken half the ompu-ting time is required for L−1

N
omputation. Thisan be improved by approximate alulation ofthe blok-diagonal preonditioner but is not do-ne here. Moreover, exemplary for all senarios,Table 5 shows runtime saling dependent on thenumber of proessing units. The speed-up Sp isde�ned as the ratio between serial runtime T1and the runtime ahieved using p proessors, de-noted as Tp. Thus,

Sp =
T1CPU

Tp CPUs

(10)holds. In the optimal ase the speed-up is equalto p. Needless to say that this annot be ahie-ved in pratial appliations. However, this is aquite good quality measure of the parallel imple-mentation. Atually, aording to Table 5, thespeed-up is mostly lose to the number of CPUsused. This demonstrates the e�ient and power-ful parallelization of the implementation.Table 5: Runtime results PCA-LSQR (L = 200)# CPUs wall time (h) speed-up1 19.7 18 2.6 7.616 1.4 14.332 0.7 27.364 0.4 48.0



7 ConclusionsThe results listed in the Table 5 demonstrate thesuessful appliation of the iterative LSQR me-thod for solving (linear) least squares problemsarising in geopotential reovery. For spae geo-deti appliations the basi version of the ite-rative LS solver is not very e�etive with regardto both omputational and methodologial onsi-derations. Preonditioning proved to be an exel-lent instrument to damp the number of iterationsonsiderably and thus, to speed up the method.Additionally, Tikhonov regularization in generalform has been added to the implementation wi-thout noteworthy additional e�ort even for a hu-ge number of a priori regularization parameters.In the future the expansion of LSQR tuning forgeopotential reovery is aimed. In partiular thisinvolves variane omponent estimation (VCE)for the proper weighting of di�erent observationgroups, orbital ars respetively, and the appro-ximate omputation of error estimates.Aknowledgment. This work was partially arriedout under the HPC-EUROPA projet (RII3-CT-2003-506079), with the support of the European Com-munity - Researh Infrastruture Ation (under theFP6 �Struturing the European Researh Area� Pro-gram). Moreover, the researh was funded by theGerman Federal Ministry of Eduation and Researhand the Deutshe Forshungsgemeinshaft (Geoteh-nologien II program, Grant No. 03F0329B).
ReferencesBaur, O., Austen, G. (submitted) A parallel iterativealgorithm for large-sale problems of type poten-tial �eld reovery from satellite data. Manusriptsubmitted to Adv. Geosi.Björk, A. (1996) Numerial methods for least squa-res problems, SIAM PhiladelphiaDitmar, P., Klees, R., Kostenko, F. (2003) Fast andaurate omputation of spherial harmoni oef-�ients from satellite gravity gradiometry data, J.Geod., 76, pp. 690�705Golub, G.H., Kahan, W. (1965) Calulating the sin-gular values and pseudoinverse of a matrix, SIAMJ. Numer. Anal., 2, pp. 205�224Hanke, M., Hansen, P.C. (1993) Regularization me-thods for large-sale problems, Surv. Math. Ind.,3, pp. 253�315

Hestenes, M.R., Stiefel, E. (1952) Methods of onju-gate gradients for solving linear systems, J. Res.Nat. Bur. Stand., 49, pp. 409�436Ilk, K.H., Visser, P., Kushe, J. (2003) Satellite Gra-vity Field Missions, Final Report Speial Commis-sion 7, Travaux IAG, Vol. 32, General and tehni-al reports 1999�2003, SapporoJaobsen, M., Hansen, P.C., Saunders, M.A. (2003)Subspae preonditioned LSQR for disrete ill-posed problems, BIT, 43, pp. 975�989Kilmer, M.E., O'Leary, D.P. (2001) Choosing regu-larization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl., 22,No. 4, pp. 1204�1221Koh, K.-R. (1999) Parameter estimation and hy-pothesis testing in linear models, Springer BerlinHeidelberg New YorkKoh, K.-R., Kushe, J. (2002) Regularization of geo-potential determination from satellite data by va-riane omponents, J. Geod., 76, pp. 259�268Kushe, J., Mayer-Gürr, T. (2001) Iterative Solutionof Ill-Conditioned Normal Equations by LanzosMethods, in: Pro. IAG Sienti� Assembly, Bu-dapest, HungaryKushe, J., Klees, R. (2002) Regularization of gravity�eld estimation from satellite gravity gradients, J.Geod., 76, pp. 359�368Paige, C.C., Saunders, M.A. (1982) LSQR: An algo-rithm for sparse linear equations and sparse leastsquares, ACM T. Math. Software, 8, pp. 43�71Paige, C.C., Saunders, M.A. (1982) LSQR: Sparselinear equations and least squares problems, ACMT. Math. Software, 8, pp. 195�209Pail, R., Plank, G. (2002) Assessment of three nu-merial solution strategies for gravity �eld reove-ry from GOCE satellite gravity gradiometry im-plemented on a parallel platform, J. Geod., 76,pp. 462�474Shuh, W.D. (1996) Tailored numerial solutionsstrategies for the global determination of theEarth's gravity �eld, Mitteilungen der geodäti-shen Institute der Universität Graz, 81Tikhonov, A.N. (1963) Regularization of inorretlyposed problems, Sov. Mat. Dokl., 4, pp. 1035�1038



Presented at the 1st International Symposium of the International Gravity Field Service - “Gravity Field of the Earth”, August

28–September 1, 2006, Istanbul, Turkey

A NEW APPROACH FOR DETERMINING THE POTENTIAL
FIELD

WenBin Shen1,2

1 Department of Geophysics, School of Geodesy and Geomatics, Wuhan University, WUHAN, CHINA
2 Key Lab. of Geospace Environment and Geodesy (MEC), Wuhan University, WUHAN, CHINA

e-mail: wbshen@sgg.whu.edu.cn

Abstract: Various methods have been put forward by
geodesists to determine the Earth’s external potential
field based on the given boundary value or the data dis-
tributed in space. For the same purpose, a new approach
is introduced in this paper. Based on the new approach
(named as the fictitious compress recovery approach),
once given the potential V (or any harmonic function)
defined in the domain outside the Earth on the Earth’s
physical surface or the surface defined by the satellite
altitude, the Earth’s external potential field could be
determined. The new approach has broad applications
in geophysics (including geodesy). One example of the
applications is provided: the normal gravity field gener-
ated by WGS84 reference ellipsoid is determined with
the accuracy level of 0.84 mm, based on the new ap-
proach. Two simulation experimental tests are provided,
which show that the new approach is valid and effective
for determining the potential field, provided that the po-
tential (or any regular harmonic function) is given on the
boundary, no matter which boundary it is, the Earth’s
surface or the surface defined by the satellite altitude.
With this new approach, the convergence problem as
well as the downward continuation problem is satisfac-
torily solved.

Key words: fictitious compress recovery; potential field

determination; normal gravity field determination; con-

vergence and downward continuation problems; simula-
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1 Introduction

Scientists try to find laws or establish theories or
methods as simple as possible, which could best
fit the reality. Concerning the determination of
the Earth’s external gravity field, besides Stokes’s
method (Heiskanen and Moritz, 1967), Moloden-
sky’s method (Molodensky et al, 1962) and Bjer-
hammar’s method (Bjerhammar, 1964), a lot of
methods have been put forward. It is not the aim
of this paper to judge the advantages and disad-
vantages of the various methods. However, it is well
known that in physical geodesy the following two

problems are still open at least in theory (Moritz,
1980; Sjöberg, 1980, 2001; Rummel et al, 1993;
Ågren, 2004) : i) whether the spherical harmonic ex-
pansion series expressing the Earth’s potential field
converges in the domain between the Earth’s surface
and the surface of Brillouin sphere (Arnold, 1989),
simply referred to as the convergence problem; ii)
theoretically, how to determine the Earth’s external
gravity field based only on the data (e.g., poten-
tial, gravitation or gravitational gradients) given on
a simply closed surface (e.g., the surface correspond-
ing to the satellite altitude) that completely encloses
the Earth, simply referred to as the “downward con-
tinuation” problem.

In this paper, a new approach (Shen, 2004a) will
be introduced, based on which the above mentioned
two problems could be solved.

2 The Fictitious Compress Recovery
Approach

2.1 Theoretical model

This subsection is a brief summary of the fic-
titious compress recovery approach, which is re-
ferred to (Shen, 2004a, 2005a). The basic idea of the
method is that the “compress” and “recovery” pro-
cedures are successively executed between the given
boundary (the Earth’s surface ∂Ω or the surface ∂S
corresponding to the satellite altitude) and the sur-
face of an inner sphere (or Bjerhammar sphere) that
lies inside Earth, and finally one gets a fictitious har-
monic series solution outside the inner sphere, which
coincides with the Earth’s real field in the whole do-
main outside the Earth, no matter the given bound-
ary is ∂Ω or ∂S (Shen and Ning, 2004), under the
assumption that the above mentioned harmonic se-
ries is uniformly convergent in the domain outside
the inner sphere.

Suppose there exists an unknown regular har-
monic field u(P ) defined in the domain Ω̄, the



domain outside the Earth, and suppose the har-
monic field u(P ) is uniquely determined by the given
boundary value u(P )|P∈∂Ω on the Earth’s surface
∂Ω, which is supposed to be a “simply closed sur-
face” ∂S (Shen, 2005b): there exists a one-to-one
continuous map between ∂S and a spherical surface
realized simply by ray. The problem is to find the
harmonic field u(P ) (P ∈ Ω̄). The realization proce-
dure could be stated as follows.

Set

Θ(0)(P ) ≡ u(P ) , P ∈ Ω̄
Θ(n)(P ) = Θ(n−1)(P )− u∗(n)(P ),

P ∈ Ω̄ , n ≥ 1 (1)

where Θ(n−1)(P ) (n ≥ 1) is called the (n−1)th-order
residual (potential) field. Note that the (n − 1)th-
order residual field (including the 0-order residual
field) is only defined in the domain Ω̄, and can be
expressed on the Earth’s boundary as follows

Θ(0)
∂Ω ≡ u∂Ω

Θ(n)
∂Ω = Θ(n−1)

∂Ω − u
∗(n)
∂Ω , n ≥ 1 (2)

Compress the (n − 1)th-residual boundary value
Θ(n−1)

∂Ω on the surface ∂Ki of an inner sphere Ki

that lies inside the Earth along the radial direction,
searching for the solution of the following boundary
value problem





∆u∗(n)(P ) = 0 , P ∈ K̄i

u∗(n)(P )|∂K = Θ(n−1)
∂Ω

limP→∞ u∗(n)(P ) = 0 , n ≥ 1
(3)

and the solution is given by Poisson integral

u∗(n)(P ) =
r2 −R2

i

4πRi

∫

∂Ki

Θ(n−1)
∂Ω

l3
dσ,

P ∈ K̄i , n ≥ 1 (4)

which is a regular harmonic function in the domain
K̄i, the domain outside the inner sphere Ki with the
radius Ri. When the above solution is constrained
in the Earth’s external domain Ω̄, it can be taken
as the first approximation of the (n − 1)th-residual
field Θ(n−1)(P ), or

∑n
1 u∗(n)(P ) can be taken as the

nth approximation of the field u(P ).
Hence, one gets a series solution in the domain

K̄i:

u∗(P ) =
∞∑

n=1

u∗(n)(P ) , P ∈ K̄i (5)

which coincides with the real field u(P ) in Ω̄ (Shen,
2004a), under the postulate that equation (5) is uni-
formly convergent in the domain K̄i (Cf. next sub-
section). On the boundary ∂Ki one has

u∗|∂Ki
= (

∞∑
n=0

Θ(n)) |∂Ω (6)

where Θ(n)|∂Ω is determined by Eq. (2).
This approach is referred to as the fictitious com-

press recovery approach.

2.2 The uniform convergence postulate

With intuitive reasoning and various experiments,
it could be stated that (5) is uniformly convergent
in the domain K̄i. Unfortunately this statement is
not yet strictly proved. However, just like Einstein
(Einstein, 1905), who created the special relativity
theory based on two postulates (the light velocity
constant postulate and the special relativity prin-
ciple postulate), let us accept the following postu-
late (uniform convergence postulate): the series (5)
is uniformly convergent in the domain K̄i.

The important thing is that, if one accepts the
uniform convergence postulate, one could draw out
that the series (5) coincides exactly with the real
field in the domain outside the Earth (Shen, 2004a).
In addition, one will find that the fictitious compress
recovery approach has quite a few direct applica-
tions in geophysics, especially in physical geodesy.
Whether the postulate is correct, it should be ex-
pected to be tested by various experiments and prac-
tical applications.

3 Applications

Based on the fictitious compress recovery approach,
some applications could be found out directly.

3.1 Runge-Krarup theorem

Based on Runge theorem (Moritz, 1980), Krarup de-
rived a result which could be briefly stated as fol-
lows (Krarup, 1969): any regular harmonic function
φ defined in the domain outside the Earth can be
always uniformly and infinitely approximated by a
regular harmonic function ψ defined in the domain
outside an inner sphere that lies inside the Earth.
This result is referred to as Runge-Krarup theorem
(Bjerhammar, 1975; Moritz, 1980).

In fact, one could get a stronger result than what
Runge-Krarup theorem states. Suppose the function



u(P ) is regular and harmonic in Ω̄ (e.g., the gravita-
tional potential field), which is uniquely determined
by the boundary value u∂Ω, then, based on the ficti-
tious compress recovery approach, a fictitious regu-
lar harmonic function u∗(P ) (P ∈ K̄i) can be found
out, which coincides exactly with the original field
u(P ) in the domain Ω̄. Hence, Runge-Krarup theo-
rem is simply derived out from the fictitious com-
press recovery approach.

3.2 The convergence problem

Given continuous or discrete boundary values on ∂Ω
or ∂S, in practical applications, the Earth’s global
gravity field is determined based on the spherical
harmonic expansion series. However, there exists a
theoretical problem: whether the considered series is
convergent in the domain between the Earth’s sur-
face and the surface of Brillouin sphere?

To answer this question, one could apply for the
fictitious compress recovery approach. Based on the
given boundary value V∂S (or V∂Ω), a fictitious field
V ∗(P ) is determined, which is regular and harmonic
in K̄i, and coincides with the real field V (P ) in
Ω̄. Since V ∗(P ) (P ∈ K̄i) is regular and harmonic,
it could be expressed as a uniformly convergent
spherical harmonic series in the domain K̄i (Kellogg,
1929). Further, since it holds

V (P ) = V ∗(P ), P ∈ Ω̄ (7)

the following conclusion is directly drawn out: the
Earth’s potential field V (P ) could be expressed as a
uniformly convergent spherical harmonic expansion
series in the whole domain outside the Earth. Con-
sequently, based on the fictitious compress recovery
approach, the convergence problem is solved.

In fact, independently from the fictitious com-
press recovery approach, the convergence problem
was solved (Shen, 2005b): the gravitational poten-
tial of the Earth could be expressed as a uniformly
convergent harmonic series in the domain outside
the Earth. Hence, it could be considered that the
new approach is supported by (Shen, 2005b).

3.3 The downward continuation

Suppose the boundary value V (P )|∂S (or gravita-
tion Vi(P )|∂S or gravitational gradients Vij(P )|∂S)
on the surface ∂S corresponding to the satellite
altitude is given. It is noted that the boundary
value V |∂S on ∂S might be determined by using
the well known energy integral approach (Bjerham-
mar, 1967; Visser et al, 2003). To determine the

Table 1: Parameters of the WGS84 reference ellipsoid

Semi-major axis, a 6378137 m
Flattening, f 1/298.257223563
Normal geopotential at the el-
lipsoidal surface,U0 ≡ W0

62636855.80 m2s−2

Angular velocity, ω 7.292115× 10−5 rad s−1

real field V (P ) in the domain Ω̄ − S̄, the domain
between the Earth’s physical surface ∂Ω and the
surface ∂S, it occurs the “downward continuation”
problem, which was not solved satisfactorily by us-
ing conventional methods, due to the “ill-posed”
problem (Moritz, 1980; Sjöberg, 1980, 2001; Rum-
mel et al, 1993).

The fictitious compress recovery approach can be
applied in determining the Earth’s external field
V (P ) (P ∈ Ω̄), provided that a boundary value
V (P )|∂S on a “simply closed surface” ∂S is given,
where the closed surface ∂S completely encloses the
whole Earth. Based on the boundary value V |∂S

and the fictitious compress recovery approach, a fic-
titious field V ∗(P ) (P ∈ K̄i) can be determined,
which coincides with the real field V (P ) in the do-
main outside the surface ∂S. It was further proved
(Shen and Ning, 2004; Shen, 2005a) that the deter-
mined fictitious field V ∗(P ) (P ∈ K̄i) coincides with
the real field V (P ) in the whole domain outside the
Earth. Consequently, the “downward continuation”
problem is solved. This approach is referred to as
the “fictitious downward continuation” (Shen et al,
2006a,b).

3.4 The normal gravity field determination

The aim is to determine the normal gravity field gen-
erated by WGS84 ellipsoid (Shen and Zhong, 2006),
based on the fictitious compress recovery approach.
The parameters of WGS84 reference ellipsoid are
listed in Table 1.

There are differences among various normal
geopotential values on the surface of the WGS84 ref-
erence ellipsoid provided by different authors (Burša
et al, 1997a,b; Grafarend and Ardalan, 2000), some
of which are listed in Table 2. In (Shen and Zhong,
2006), W0 is given as 62636852.4029 m2s−2(30′×30′,
which is determined based on the parameters listed
in Table 1. On the surface ∂E of the ellipsoid, the
normal geopotential U |∂E ≡ W0 holds constant,
and consequently the normal gravitational potential
boundary value V |∂E is determined by the equation
V |∂E = U |∂E − Q|∂E , of which Q(P ) denotes the
centrifugal potential field.

To determine the normal field outside the ellip-
soid, the discrete approach is used: dividing the



Table 2: The normal geopotential U0 ≡ W0 on WGS84 ellip-
soidal surface

Burša et al., 1997a 62636855.72± 0.5 m2s−2

Burša et al., 1997b 62636855.80± 0.5 m2s−2

Grafarend et al., 2000 62636855.80± 3.6 m2s−2

NIMA 2000 62636851.7146 m2s−2

Table 3: Statistics information about the differences ∆U be-
tween the calculated field U∗ and real field U on the ellip-
soidal surface (with 30′ × 30′ grid) [Unit: m2s−2]

∆U = U∗ − U Iterative times N = 15
Max(∆U) 7.063591480255127E-002
Min(∆U) -1.682689785957336E-002

Mean(∆U) 8.289705838053775E-004
RMS(∆U) 8.436805231548323E-003

spherical surface of the inner sphere into 30′ × 30′

grids by parallel latitude and longitude lines, and
mapping these grids along radial directions on the
surface of the ellipsoid. In every grid on ∂E one rep-
resentative value is chosen as the average value over
the grid. Generally the value at the geometric center
of the grid is chosen, but it is not the best way: there
are other approaches (Shen et al, 2006a,b), which
will not be described here because it is not essen-
tial. As the grid becomes infinitesimal, the value at
every point on the grid is equivalent to the average
value over the grid. Now, there are 259200 point val-
ues on the boundary ∂E: V

(i)
∂E (i = 1, 2, · · · , 259200).

Then, based on the fictitious compress recovery ap-
proach, the fictitious boundary values V

∗(i)
∂Ki

(i =
1, 2, · · · , 259200) are determined (which were stored
for the future usage), based on which the fictitious
field V ∗(P ) (P ∈ K̄i) could be determined, i.e., the
value V ∗(P ) at any point in K̄i could be determined.
In the calculations, the zero-order term GM/r is
taken away. The calculated results (with the itera-
tive procedure times N = 15) are compared with
the real field provided by the conventional approach
(Heiskanen and Moritz, 1967), and are listed in Ta-
ble 3.

From Table 3 one can see that, based on the fic-
titious compress recovery approach, with 30′ × 30′

grid and iterative times N = 15, it is determined the
normal gravity field U∗(P ) generated by WGS84 el-
lipsoid with the accuracy 0.84 mm, which is good
enough for general applications.

4 Simulation Calculations

In Sec.3.4, the normal gravity field is determined
based on the fictitious compress recovery approach.

This strongly support the new approach. In addi-
tion, another two simulation tests are provided in
the sequel.

4.1 Simulation test I

With 10◦ × 10◦ grid and discrete values obtained
by EGM96 model, the (disturbing) potential values
V∂K1 (648 point values ranging from −83.676m2s−2

to +64.869m2s−2) on the boundary ∂K1 of a smaller
sphere K1 with radius R1 = 6338 km are given
(Shen et al, 2006a). Then, the potential values V∂K2

on the spherical surface ∂K2 (with R2 = 6638 km)
corresponding to the satellite altitude were calcu-
lated by using the Poisson integral. Suppose we
know only the boundary values V∂K2 , the problem is
to determine the real field in the domain outside K1.
Based on the fictitious compress recovery approach
and the given values V∂K2 , the fictitious field V ∗(P )
was determined. By comparisons it is found that the
determined fictitious field V ∗(P ) coincides with the
real values V∂K1 on the boundary ∂K1 at least un-
der the accuracy (RMS) level 0.1 cm, and the largest
difference ∆V = V − V ∗ on the boundary ∂K1 is
0.4 cm. Hence, this simulation test supports both
the fictitious compress recovery approach and the
“fictitious downward continuation”.

4.2 Simulation test II

Choose two spherical boundaries ∂K1 and ∂K2 of
two spheres K1 and K2 with radii R1 = 55 km
and R2 = 80.35 km, respectively, where K1 is taken
as the inner sphere, and choose two point masses
Gm1 = Gm2 = 100 m3s−2, which are located
outside and inside the smaller sphere, respectively
(Shen et al, 2006b).

In the experimental test, using discrete approach,
dividing the spherical surface into 1◦ × 1◦ grids,
and consequently there are 64800 point values
on the boundary ∂K2: V

(i)
∂K2

(i = 1, 2, · · · , 64800).
Then, based on the fictitious compress recovery ap-
proach, the fictitious boundary values V

∗(i)
∂K1

(i =
1, 2, · · · , 64800) were determined (which were stored
for the future usage), based on which the fictitious
field V ∗(P ) (P ∈ K̄1) could be determined, i.e., the
value V ∗(P ) at any point in K̄1 could be deter-
mined. 11 test points were chosen, which are listed
in Table 4. The calculated results are provided in Ta-
ble 5: the second column lists the real values V (Pj)
at test points Pj (j = 1, 2, · · · , 11), the third column
lists the “fictitious values” corresponding to the test
points Pj with the iterative procedure times N = 30,



Table 4: A list of the coordinates (r, θ, λ) at test points [units
of (r, θ, λ): (km, ◦, ◦)]

Point No. Radius Co-latitude Longitude
1 60.5 90.0 90.0
2 67.0 80.0 60.0
3 100.0 20.0 30.0
4 100.0 50.0 90.0
5 100.0 120.0 150.0
6 100.0 160.0 70.0
7 90.0 60.0 80.0
8 70.0 160.0 30.0
9 70.0 80.0 30.0
10 72.0 120.0 80.0
11 120.0 30.0 80.0

Table 5: Comparisons between the real values V (Pj) and cal-

culated values V ∗(Pj) at 11 test points [unit: m2s−2]

P. No. j V (Pj) V ∗(Pj)|N=30 ∆V
1 68.1474983 20.3624210 47.785077276
2 4.2914681 4.2370771 0.054390962
3 2.3021512 2.3024617 -0.000310552
4 2.7086108 2.7088060 -0.000195131
5 1.9344627 1.9338306 0.000632143
6 1.7847403 1.7848045 -0.000064234
7 3.2901607 3.3028124 -0.012651715
8 2.1865713 2.1894143 -0.002842985
9 2.9000400 2.9039151 -0.003875168
10 3.7610990 3.7618779 -0.000778967
11 2.0074077 2.0069548 0.000452841

where the “fictitious values” were calculated based
on Poisson integral by using the “fictitious bound-
ary values” V ∗

∂K1
, which were determined by the fic-

titious compress recovery approach, and the last col-
umn lists the differences between the real values and
the “fictitious values” at the test points Pj .

The first point mass m1 = m and second point
mass m2 = m are located at (r, φ, λ) = (30.0, 90, 90)
and (r, φ, λ) = (63.0, 90, 90), respectively. The fic-
titious compress recovery approach predicts that
all the fictitious values V ∗(Pj) (j = 1, 2, · · · , 11) on
the test points should be coinciding with the corre-
sponding real values V (Pj) (j = 1, 2, · · · , 11), except
for the test point P1(60.50, 90, 90), because it is lo-
cated at the position just directly under the point
mass m2 that is located at point (63.0, 90, 90), and
in this case, one can’t construct a “simply closed sur-
face” ∂S which encloses point masses m1 and m2 but
does not enclose the first test point P1 so that there
exists one-to-one continuous map between ∂S and
∂K1, referring to Fig. 1. That means, the calculated
value at point P1 is the real fictitious value, and it
might be far from the real value. Just considering
the fictitious field in the interior of the Earth, it
might deviate far from the real field. The important

thing is that the fictitious field coincides with the
real field in the domain outside the Earth. Hence,
the experimental test supports the “fictitious down-
ward continuation”.

Figure 1: The smaller and larger spherical surfaces are de-
noted by ∂K1 and ∂K2, respectively. ∂S is a simply closed
surface that encloses both masses m1 and m2, and it is not
possible to construct the simply closed surface ∂S so that it
encloses both masses m1 and m2 but excludes the test point
P1. It is noted that the calculated field coincides with the real
field in the domain outside ∂S (just taking ∂S as the Earth’s
surface!)

The above simulation calculation is significant.
The Earth could be divided into a lot of but finite
“particles”. Since the potential obeys the supposi-
tion principle, the above simulation results means
that the fictitious compress recovery approach as
well as the “fictitious downward continuation” is
valid and reliable for the potential field generated
by the Earth.

5 Discussions and Conclusions

Previously, it was considered that it had been proved
(Shen, 2004b) that the series (5) is uniformly con-
vergent in the domain K̄i, the domain outside the
inner sphere Ki, and consequently the fictitious field
determined by the fictitious compress recovery ap-
proach coincides with the real field in the domain
outside the Earth (Shen, 2004a). Later, it was found
that the proof provided in (Shen, 2004b) is not rigor-
ous. Nevertheless, various simulation experimental
tests (Shen et al, 2006a,b; Shen and Zhong, 2006)
support the fictitious compress recovery approach,
and consequently it is reasonable to assume that the
series (5) is uniformly convergent in the domain K̄i

(as a postulate), the rigorous proof of which is ex-
pected to be provided in the future.

The fictitious compress recovery approach has



broad applications, based on which, e.g., the Runge-
Krarup theorem can be derived out, the conver-
gence problem as well as the downward continuation
problem can be solved, and the normal gravity field
can be determined, etc. Consequently, it might be
suggested that the fictitious compress recovery ap-
proach could be accepted as a general approach for
solving the (first kind of) boundary value problem.
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Ågren J (2004) The analytical continuation bias in geoid
determination using potential coefficients and terres-
trial gravity data. J Geod, DOI 101007/s00190-004-
0395-0

Arnold K (1989) Das gravitationspotential im
auβenraum der erde. Mitteilung des Zentralinstitut
für Physik der Erde Nr 1668, Vermessungstechnik
37(3):82–86

Bjerhammar A (1964) A new theory of geodetic grav-
ity. Royal Institute of Technology. Geodesy Division,
Stockholm

Bjerhammar A (1967) On the energy integral for satel-
lites. Rep. of the R. Inst. of Techn., Stockholm, Swe-
den

Bjerhammar A (1975) Discrete approaches to the so-
lution of the boundary value problems in physi-
cal geodesy. Bollettino di Geodesia e Scienze Affini
34:185–240
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Burša M, Raděj K, Śima Z, True SA, Vatrt V (1997b)
Determination of the geopotential scale factor from
topex/posei- don satellite altimetry. Stud Geoph et
Geod 14:203–216

Einstein A (1905) Zur elektrodynamik bewegter körper.
Ann Phys 17:891–921

Grafarend EW, Ardalan AA (2000) World geodetic da-
tum. Journal of Geodesy 73:611–623

Heiskanen WA, Moritz H (1967) Physical geodesy. Free-
man and Company, San Francisco

Kellogg OD (1929) Foundation of potential theory. Fred-
erick Ungar Publishing Company, New York

Krarup T (1969) A contribution to the mathematical
foundation of physical geodesy. Publ. 44, Dan. Geod.
Inst., Copenhagen

Molodensky MS, Eremeev VF, Yurkina MI (1962) Meth-
ods for study of the external gravitation field and fig-
ure of the Earth (transl. from Russian 1960). Israel
Program for Scientific Translations, Jerusalem

Moritz H (1980) Advanced physical geodesy. Wichmann,
Karlsruhe
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Abstract. Global gravity field recovery from
the dedicated gravity field satellite missions like
CHAMP, GRACE and GOCE, is a computationally
demanding task. This paper makes use of a torus-
based “lumped coefficients” approach, which is able
to deal with any geopotential functionals. Firstly, as
a demonstration of its feasibility and efficiency, grav-
itational disturbing potentials from real CHAMP SST
and simulated gravity gradient tensors from GOCE-
like SGG are processed through the torus approach
individually. The spherical harmonics solutions val-
idate that SST is only sensitive to the low degrees
of spherical harmonics while SGG better resolves the
high degrees.

Therefore, in order to cover the whole gravity
spectrum, the block-diagonal order-wise normal ma-
trices from SST and SGG data are merged in the least-
squares adjustment using proper weighting factors.
The optimal weighting factors will firstly be esti-
mated by a parametric covariance method in an itera-
tive way. We also apply the variance components es-
timation as an alternative method. The joint SST and
SGG solutions show better performances than either
one of the stand-alone inversions in the presence of
full gravity field spectrum and minimization of geoid
height errors.

Keywords. gravity field recovery, torus approach,
spherical harmonics, block-diagonality, SST, SGG

1 Introduction

The dedicated gravity field satellite missions,
CHAMP, GRACE and GOCE provide a huge amount
of homogeneous measurements in their mission life
time. Thus it is a computationally demanding task to
recover the Earth’s gravity field up to certain spher-
ical harmonic degree from spaceborne gravimetry.

The torus-based semi-analytical approach has been
proven a feasible and efficient tool to achieve this
goal, cf. (Sneeuw, 2000a; Xu et al., 2006). In
this approach, the gravitational observables derived
from the position, velocity, and acceleration data
are treated as the direct input in-situ observables.
However, individual missions only cover certain spa-
tial resolutions because of their implementations and
prospective target goals. The CHAMP mission em-
ploys the satellite-to-satellite tracking (SST) concept
and provides accurate position, velocity and acceler-
ation data. The correspondingly derived disturbing
potential data are only sensitive to the long wave-
length part, while the GOCE mission makes use of
the satellite gravity gradiometry (SGG) concept, and
the gravity gradient tensors better resolve the signal
having high gravity frequencies. As two examples,
the stand-alone solutions from real CHAMP disturb-
ing potential data and simulated GOCE gravity gradi-
ent tensor data are processed to calculate the spheri-
cal harmonics by the torus-based semi-analytical ap-
proach respectively in section 2.

In order to cover the combined gravity field spec-
trum, individual solutions have to be merged. The
joint inversion of SST and SGG data has been stud-
ied in , e.g., Bouman (2000); Ditmar et al. (2003);
Pail and Plank (2004) to list a few. The innovative
point in this paper is that the block-diagonal order-
wise normal matrices from both SST and SGG data
are merged by proper weighting factors in the least-
squares adjustment. There are two ways to optimally
estimate such weighting factors, which will be ad-
dressed in section 3. One is the parametric covari-
ance method (PC) in an iterative way. It is based on
a comparison of the parameter differences between
a subset solution and the joint solution, with the dif-
ferences of the corresponding error estimates. The
second approach is variance component estimation
(VC), in which the optimal weights are introduced
as reciprocal values of the iteratively estimated vari-



ances of each measurement group. In section 4, the
joint solutions by two optimal weighting methods are
presented with the comparison of both SST and SGG
stand-alone solutions.

2 Stand-Alone Solutions from SST and
SGG

As an alternative choice of traditional gravity field
determination tools, i.e., the time-wise and space-
wise approaches (Rummel et al., 1993), the torus ap-
proach has been proven feasible and efficient to re-
cover gravity field from spaceborne gravimetry. In
addition, the torus approach is able to deal with any
geopotential functionals, cf. (Sneeuw, 2000b).

2.1 The torus representation of disturbing
potentials from real CHAMP SST data

The direct output from CHAMP SST in the high-low
mode are the position, velocity, as well as the ac-
celeration data along the orbit. After applying the
energy balance approach, the in situ gravitational po-
tential V can be calculated and calibrated at the satel-
lite height, cf. (Gerlach et al., 2003; Weigelt, 2006),
which will be treated as the direct observables for
the torus approach. Without any details of the rota-
tion and transformation procedure, the potentials V
can be rotated and expressed in spherical harmonics
up to a maximum degree L by two orbital variables
u (the argument of latitude) and Λ (the longitude of
the ascending node) in an orbital frame, cf. (Sneeuw,
2000b):

V (r, I, u, Λ) =
GM

r

L∑

l=0

(
R

r

)l l∑

m=−l

l∑

k=−l

· K̄lmF̄lmk(I)ej(ku+mΛ), (1)

in which r,R,GM are the geocentric radius, the
Earth’s equatorial radius and gravitational constant
times Earth’s mass, respectively. The normalized
spherical harmonic coefficients K̄lm with degree
l and order m are in a complex-valued format.
(1) introduces the normalized inclination function
F̄lmk(I) with the orbit inclination I , and the third
index k due to the rotation, cf. (Kaula, 1966). Note
that both orbital coordinates u and Λ attain values in
the range of [0, 2π) periodically. Topologically, the
product of [0, 2π) × [0, 2π) creates a torus, which is
exactly the proper domain of a two-dimensional dis-
crete Fourier series. In order to simplify the torus-
based representation, the following Fourier coeffi-
cients Amk, known as “lumped coefficients”, and the

transfer coefficients Hlmk, are introduced:

AV
mk(r, I) =

L∑

l=max(|m|,|k|)
HV

lmkK̄lm; (2a)

HV
lmk(r, I) =

GM

r

(
R

r

)l

F̄lmk(I). (2b)

With these quantities, (1) can be concisely re-
arranged as a 2D Fourier series:

V (r, I, u, Λ) =
L∑

m=−L

L∑

k=−L

AV
mkej(ku+mΛ). (3)

The two-dimensional summation in (3) is valid to
any orbits. However, a realistic orbit is always per-
turbed by disturbing forces, e.g., the Earth’s flatting
J2 effect and air-drag perturbation. Consequently,
the transfer coefficients are time-dependent due to
varying heights and inclinations, i.e., r(t), and I(t).
In order to apply the fast Fourier analysis, a nominal
orbit with constant radius and constant inclination as-
sumptions has to be introduced, under which the po-
tential V is only the function of orbital variables u(t)
and Λ(t) with constant coefficients Amk and Hlmk.
As a result, the transfer coefficients Hlmk in (2b)
spectrally build a linear system between lumped co-
efficients Amk in the spectral domain and spherical
harmonics K̄lm in the spatial domain.

Under the nominal orbit assumption, the spheri-
cal harmonics K̄lm can accordingly be determined
from the corresponding geo-functionals by three
steps. Firstly, gravitational potentials are reduced
from height and inclination variations and interpo-
lated regularly onto a nominal torus. Secondly, the
pseudo-observable lumped coefficients in (2a) are
easily computed by a two-dimensional Fast Fourier
Transform (FFT) technique. In the final step, spheri-
cal harmonics K̄lm for different orders m are solved
individually by the least-squares adjustment based on
the linear system in (2b), cf. (Xu et al., 2006). For the
computational and programming purpose, the linear
least-squares solution for certain order m ∈ [−L,L]
can be expressed in a matrix format like:

am
(2L+1)×1

= Hm
(2L+1)×(L−|m|+1)

km
(L−|m|+1)×1

; (4a)

⇒ km = (Hm
THm)−1(Hm

Tam), (4b)

in which am and km stand for the order-wise vectors
of coefficients Amk and K̄lm respectively. Note that
the weight matrices of observations are assumed as
unit matrices and uncorrelated with respect to each
other for the least-squares adjustment.



The big advantage of a semi-analytical proce-
dure like the torus approach is that the normal
matrix shows a block-diagonal structure m order-
wisely with an assumption of the nominal orbit, cf.
(Sneeuw, 2000b). Consequently, the normal matrix
for certain order m in least-squares adjustment has
the size of (L − |m| + 1) × (L − |m| + 1) for each
block, which is easily inverted. However, one cor-
responding disadvantage of the torus approach is the
correction of radius and inclination variations, which
can be done by an iteration scheme, cf. (Klees et al.,
2000).

For the first stand-alone example, disturbing po-
tential data are calculated and calibrated from almost
two years of real CHAMP SST data (position, velocity
and acceleration), (Weigelt, 2006). These disturbing
potential data V are processed to solve for the spheri-
cal harmonics up to degree L = 90 according to fore-
going three-step computational flow. Choosing the
GRACE satellite-only gravity field model GGM02S
as the reference field, the root-mean-square per de-
gree (σl) of CHAMP two-year overall solution is cal-
culated by (5). The meaning of σl is the average stan-
dard deviation to be expected for a specific degree l:

σl =

√√√√ 1
2l + 1

l∑

m=−l

(
K̄est

lm − K̄ref
lm

)2
. (5)
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Figure 1: Degree RMS from SST gravity field recov-
ery compared with GGM02S reference

In the above degree RMS plot, the black solid curve
is the SST signal, and the black dash curve is the noise
with respect to the reference field. It shows that the
disturbing potentials from SST are able to recover the
long wavelength part of the gravity spectrum. But
the error spectrum curve goes up beyond degree 30

and intersects with the SST signal curve at degree 60,
where the signal to noise ratio (SNR) is equal to one.
Therefore, it can be drawn the conclusion that the
disturbing potentials from CHAMP SST data are not
able to recover the gravity field beyond degree 60.

2.2 The torus representation of gravity gra-
dient tensors from GOCE SGG data

Another advantage of the torus approach is that its
algorithms can be employed to not only the gravita-
tional potential but also its functionals. The proce-
dure of three recovering steps described before keeps
same only except that the corresponding transfer co-
efficients have to be changed for particular function-
als. For instance, transfer coefficients Hzz

lmk for grav-
ity gradient tensor radial component Vzz can be de-
rived as, cf. (Sneeuw, 2000b):

HVzz

lmk =
GM

r3

(
R

r

)l

[(l + 1)(l + 2)]F̄lmk(I). (6)

The second stand-alone example is the processing
of Vzz simulation data, which have been simulated
along a ten-day GOCE-like orbit with the altitude
around 256 km and a sun-synchronous orbit with in-
clination 96◦.6. In this close-loop simulation, dis-
turbing forces and instrument errors have been con-
sidered in the measurement bandwidth. The spheri-
cal harmonics up to L = 90 are recovered by forego-
ing addressed three steps. The OUS91A model is se-
lected as the reference field for this example, which
is exactly the apriori input model in the close-loop
simulation.
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Figure 2: Degree RMS from SGG gravity field recov-
ery compared with OUS91A reference

In the SGG degree RMS plot, again, the black solid
curve is the SGG signal, the black dash curve is the



error with respect to the reference field. Compared
to the previous SST RMS plot (Figure 1), Figure (2)
shows that the gravity gradient tensors struggle in
the low wave-number part. However, the error curve
is quite flat in the higher wave-number part, which
means SGG is able to recover the gravity field beyond
degree 90.

3 Optimal Weighting Methods

The previous stand-alone examples from individual
real SST and simulated SGG data show that SST is
only sensitive to the low frequencies while SGG bet-
ter resolves the high frequencies of the Earth’s grav-
ity. Therefore, In order to cover the whole gravity
field spectrum, the combined solution is necessary.
To achieve this goal, the normal matrices from SST
and SGG data are merged in the least-squares adjust-
ment by optimal weighting factors wi. Note that due
to the block diagonality in the torus approach, the op-
timal weighting factors have to be consequently es-
timated order wise as well. The combined SST and
SGG solution with assumed weighting factors wV

and wzz for certain order m is given in a general for-
mula:

kopt
m =

(∑

i

wiHi
m

T
Hi

m

)−1 (∑

i

wiHi
m

T
am

i

)

i = V, Vzz (7)

Since the optimal weight factors wV and wzz are
unknown in general, they have to be estimated from
the observations, i.e., the “lumped coefficients” in
the linear equation (4a). Two approaches are investi-
gated in the following section.

3.1 Parametric covariance approach

Parametric covariance approach (PC) originally was
developed by Lerch (1989). It is based on a compari-
son of the parameter differences between the individ-
ual solutions and joint solution, leading to a calibra-
tion factor qi:

qi =
(ki

m − kopt
m )T(ki

m − kopt
m )

trace[(N opt)−1 − (N i)−1]
, (8)

in which the normal matrix from combined N opt and
from each stand-alone N i are calculated as follows:

N opt =
∑

i

wiHi
m

T
Hi

m;

N i = wiHi
m

T
Hi

m. (9)

Starting with initial values of wi = 1 for both SST
and SGG, the updated weights w∗i can be obtained

iteratively by re-scaling the variances with the cali-
bration factor qi for each observation group:

w∗i =
wi

qi
. (10)

Compared with previous weighting factor wi, un-
der a threshold criterion, e.g., the relative accuracy
between old and updated weights |w∗i−wi|

wi
≤ 10−8,

the calculation will normally converge after several
iterations. After the convergence, the final weights
are taken back to (7) to get the final optimal joint so-
lution.

3.2 Variance components approach

Koch and Kusche (2002) determined the optimal
weights by introducing reciprocal values of the es-
timated variance components (VC), i.e., wi = 1

σ̂i
2 in

(7). Starting with initial values of σi
2 = 1 for each

group, the posterior variance components can be it-
eratively estimated by:

σ̂∗i
2 =

ε̂i
Tε̂

τi
. (11)

Residual vector εi can be determined by the linear
observation system with approximate values of com-
bined K̄m and the initial weight factors wi = 1 in (7)
as:

ε̂i = Hi
mkm − am. (12)

The partial redundancies τi for different types of
observations can be calculated from:

τi = 2L + 1− trace
(

N i

N opt

)
, (13)

where 2L + 1 represents the number of observations
am for each order m in (4a). The normal matrices N i

and N opt can be computed in the same way as (9).
After the calculation of posterior variance compo-

nents σ̂∗i
2, the updated weighting factors are deter-

mined by:
w∗i =

wi

σ̂∗i 2
. (14)

Again, the calculating scheme works iteratively.
Initially starting from one, the weighting factors for
each observation group will normally converge after
several iterations to fulfill the threshold criterion.

4 Joint Solutions and Discussion

In order to investigate the performances of two opti-
mal weighting approaches, the joint solutions com-
bining SST disturbing potentials V and SGG grav-
ity tensor radial component Vzz up to L = 90 are



processed using the parametric covariance approach
(PC) and variance components estimation (VC) re-
spectively. Note that the corresponding optimal
weights are determined order by order due to the
block diagonality. After the computation in an itera-
tive way, the final degree RMS results for PC and VC
joint solutions are plotted in Figure (3).
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Figure 3: Joint solutions degree RMS from real SST
& simulated SGG compared with GGM02S

The degree RMS plot shows that both joint SST and
SGG solutions by two optimal weighting approaches
are better than either one of the stand-alone solu-
tions. Apparently, in the higher degree part, they are
very close to the SST solution and the error curves
are bent down towards SGG solution in the high fre-
quency part. However, both PC and VC solutions do
not totally follow the SGG curve in higher degrees
because SST still takes part in the calculations.

In order to examine how much each group con-
tributes to the optimal joint solutions, the relative
weights between SST and SGG, i.e., the ratios of
wV /wVzz , for different order m are calculated and
shown in Figure (4).
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Figure 4: Relative weights for different order m :
wV /wVzz

The relative weights in parametric covariance ap-
proach are relatively arbitrary (Figure 4a). Appar-

ently, the relative weight ratios in the variance com-
ponents estimation for different orders are quite rea-
sonable, for instance, Figure (4b) shows that SST
dominates the long wavelength parts, while SGG
takes the lead in the high frequency part.

Another important aspect to evaluate the perfor-
mance of the weighting estimation methods is the
number of iterations. Although it is time consuming
to calculate the partial redundancy factor τ (13) in
variance components estimation, only several dozens
of iterations are required compared to the parametric
covariance calculation, which stops sometimes over
thousand iterations. The reason why parametric co-
variance method needs more iterations for conver-
gence is that the denominator σ̂∗i

2 in (14) might be
close to zero sometimes, leading the updated weight
w∗i towards infinite and hardly reaching the thresh-
old values. As discussed thoroughly in Lemoine et
al. (1998), the PC technique is not designed for cali-
bration of distinct data types where they do not over-
lap in signal bandwidth. The experiment in our joint
solution by PC method validates this statement. The
basic idea in this experiment is for the sake of demon-
strating the principle of two weighting methods. An-
other argument is that we are trying to reach a joint
solution with two uncombinable data sets, because
the SST data are derived from the “real world”, while
the SGG data are generated from a “simulated world”.
Thus the comparisons which are done here are only
drawn this particular experiment and might not be ex-
tended for general cases.

An interesting phenomenon is that around the SST
recovering limit, i.e., degree l = 60, VC requires
larger amount of iterations compared to other de-
grees. It means that SST and SGG have almost equal
contributions around l = 60 area where the leading
role between SST and SGG interchanges.
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Figure 5: Number of iterations for different order m

To summarize the comparison in our specific ex-
periment, the variance components estimation (VC)
works better than the parametric covariance approach
(PC) in terms of the degree RMS curve, the relative
weights ratio between SST and SGG, the number of



iterations and the computational time. In addition,
the variance components estimation can be applied
in the regularization factor determination, cf. (Koch
and Kusche, 2002).

5 Conclusion

Results from two years of real CHAMP disturbing po-
tentials show that SST is only sensitive to the low
frequency part and only able to recover the grav-
ity field up to degree L = 60, while the simulated
GOCE SGG radial component Vzz can only better re-
solve high frequencies of gravity spectrum beyond
degree L = 90. In the combined SST and SGG
solution, two approaches are investigated in order
to calculate the optimal weighting factors for dif-
ferent orders m. They are parametric covariance
approach and variance components estimation. m
order-wise joint solutions by optimal weighting fac-
tor from each group show that the results cover the
whole gravity spectrum and better than either one
of the stand-alone solutions. Variance components
estimation performs better than the parametric co-
variance method in terms of degree RMS curve, the
relative weights ratio between SST and SGG, and the
number of iterations. However, the conclusion only
validates for this particular experiment as a tool kit.
Since the two data sets may not be combinable, in
general, by no means do the results imply any qual-
ified conclusions of the PC and VC methods. Thus,
the actual application of the optimal weighting ap-
proaches will be taken into consideration in the fu-
ture investigation.
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Spectral assessment of recently released CHAMP
and GRACE satellite-only Earth gravity models
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Abstract. In the present study we consider
some of the current satellite-only models based
on the analysis of CHAMP and GRACE orbital
data, computed and released mainly from Geo-
forschungszentrum Potsdam. In order to obtain
a first quantification of their spectral characteris-
tics, a selection of spectral quantities were com-
puted for all of the considered models, namely
correlation coefficient per degree, smoothing per
degree, and percentage change by degree. Fur-
thermore, typical geodetic measures in comput-
ing different geopotential functionals, such as
RMS geoid undulation and gravity anomaly dif-
ference curves have also been evaluated for the
same models, using the combined model EGM96
as reference. The comparisons quantified the
level of agreement between different CHAMP-
only, GRACE-only and combined models, defin-
ing the specific bandwidths where the respective
correlations take place.

Keywords. CHAMP, GRACE, satellite-only
models, combined models, spectral assessment

1 Introduction

Based on the detected orbit perturbations
and the tracking observations the analysis of
CHAMP or GRACE data gathered over finite
time periods leads to the computation of new
satellite-only Earth gravity models, e.g., Reigber
et al. (2003), Tapley et al. (2005). Currently, Ge-
oforschungszentrum Potsdam alone has released
up to now a total of 4 different CHAMP-only
models, 2 GRACE-only models and 4 combined
models, the latter obtained from the merged
analysis of CHAMP, GRACE, LAGEOS and sur-
face gravity data. More precisely we examine
here the CHAMP models EIGEN-1S, EIGEN-
2, EIGEN-3p and EIGEN-CHAMP03S, which
differ mainly as to the amount of considered
CHAMP data (3 months, 10 months, 3 years
and 33 months respectively), the GRACE mod-
els EIGEN-GRACE01S and EIGEN-GRACE02S

(39 and 110 days of GRACE tracking data) and
the combined models EIGEN-CG01C, EIGEN-
CG03C and EIGEN-GL04C (different portions
of CHAMP, GRACE, LAGEOS and surface
gravity data). An important aspect that has
to be addressed is the level of agreement be-
tween these different new models. For exam-
ple, as the aforementioned models are obtained
from the same group, through an identical anal-
ysis procedure and using the same primary data
types (with variable being the time span of the
involved satellite observations and consequently
the maximum degree and order of the evaluated
harmonic coefficients), it would be useful to be
able to identify any possible spectral correlations
between the respective coefficient sets, and if
such a correlation exists, to define the specific
spectral bandwidth where it occurs.

2 Spectral assessment tools

GFZ Potsdam delivers the new gravity field solu-
tions in terms of potential harmonic coefficients
Clm and Slm (l and m denoting degree and or-
der respectively), up to a specific maximum de-
gree and order accompanied with their respective
variances σC

lm
and σS

lm
, as these were obtained

after the completion of the adjustment process.
A first spectral presentation of this information
can be done by means of the degree variances (or
power spectrum) and error degree variances, de-

fined respectively as σ2

l =
∑l

0

(
C2

lm + S2

lm

)
and

σ̂2

l =
∑l

0

(
σ2

C
lm

+ σ2

S
lm

)
. Figures 1 and 2 dis-

play the power spectrum and the respective er-
ror degree variances of all 4 CHAMP-only GFZ
models. From this representation it is possible to
identify an apparent relation between different
models, which are assigned to a specified com-
mon methodology. It is clear, that at least in
terms of signal power all models present an al-
most identical variation up to spherical degree
40, whereas their errors fluctuate in a different
way along the whole common spectral range (0-
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100).

A further means of assessment that we
examine here, is through the computation
of so-called RMS anomaly and RMS un-
dulation differences by degree, defined as

δgl = GM/R2(l − 1)
(
∆C2

lm + ∆S2

lm

)1/2

and

δNl = R
(
∆C2

lm + ∆S2

lm

)1/2

respectively, where

∆Clm =
(
CA

lm − CB
lm

)
and ∆Slm =

(
SA

lm − SB
lm

)

express the differences between corresponding
coefficients of two models A and B. Figures 3
and 4 present these computations for the afore-
mentioned CHAMP-only models, computed with
respect to EGM96. We observe that the newest
CHAMP models gradually tend to decrease their
deviations from EGM96 in an almost consistent
manner. In order to obtain a more detailed in-
sight to the new models we will consider some
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of the available tools for the spectral assessment
of different global geopotential solutions (see,
e.g., Tscherning 1985, Rapp 1986, Lemoine et
al 1998). Thus, we evaluate the correlation by
degree

ρl =

l∑

m=0

(
CA

lmCB
lm + SA

lmSB
lm

)

√
σ2

l (CA
lm, SA

lm)σ2

l (CB
lm, SB

lm)
(1)

where (CA
lm, SA

lm) and (CB
lm, SB

lm) denote the fully
normalized spherical harmonic coefficients of two
expansions, symbolically expressed here as mod-
els A and B, and σ2

l (CA
lm, SA

lm), σ2

l (CB
lm, SB

lm) are
the respective degree variances.

The correlation per degree provides a numeri-
cal quantification of a direct comparison between
the two models, though it can not reflect entirely



Fig. 5 Gain of CHAMP model EIGEN-1S with

respect to EGM96.
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Fig. 6 Correlation by degree of the available GFZ

CHAMP-only models.

the agreement or disagreement between them.
For example, the computed correlation per de-
gree may indicate a high correlation level be-
tween the two sets, even when a dominant scale
factor is present in the coefficients. A better com-
parison measure is obtained from the so called
smoothing per degree

Sl =

l∑

m=0

(
∆C2

lm + ∆S2

lm

)

σ2

l (CB
lm, SB

lm)
(2)

a quantity expressing the degree of smoothing
one obtains if model A is subtracted from B
(Tscherning 1985). An additional quantity, of
special interest for comparative analysis of two
models obtained from an identical evaluation al-
gorithm and primary observations is the percent-
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Fig. 8 Percentage difference by degree of the

available GFZ CHAMP-only models with respect to

model EIGEN-1S.

age difference by degree, given by

Pl =





l∑

m=0

(
∆C2

lm + ∆S2

lm

)

l∑

m=0

(
CA

lm

)2

+
(
SA

lm

)





1/2

× 100 (3)

Finally, we examined the so called gain, a rel-
ative error measure that expresses the ratio be-
tween an existing error spectrum and the error
spectrum of a new model, is defined by (Sneeuw,
2000)

glm =
σold

lm

σnew
lm

(4)



Fig. 9 Gain of GRACE model EIGEN-GRACE01S

with respect to EGM96.

and merely quantifies the relation between the
error estimates of the existing versus the error
estimates of the new gravity model, with σold

lm

and σnew
lm denoting the variances of the individ-

ual coefficients σC
lm

and σS
lm

. Hence, quantity
glm is computed separately for the Clm’s and the
Slm’s and its 2-D graph (e.g., Figures 5 and 9)
contains the results for all coefficients.

3 CHAMP-only models

Figures 5-8 display a selection of the afore-
mentioned spectral assessment quantities for the
GFZ CHAMP-only models EIGEN-CHAMP03S,
EIGEN-3p, EIGEN-2 and EIGEN-1S. The gain
of one of these models (EIGEN-1S) was com-
puted with respect to combined model EGM96.
This comparison allows to describe the distribu-
tion of the change in the error estimates of the
EIGEN-1S model with respect to EGM96 in the
available degree range 0-100. Although not at-
tempting to perform a one-to-one comparison it
can be seen that the largest changes occur mainly
over the very low degree range (0-15).

The most useful observation concerns the ob-
tained correlation between the models. For ex-
ample, we notice an almost perfect coincidence
between all 4 models almost up to degree 20, as
this is manifested through the combined evalua-
tion of the correlation, smoothing and percent-
age difference per degree computations. Between
degrees 20 and 35 this accordance loses slightly
in magnitude, remains however extremely high,
with the numerical values of the newer coeffi-
cients varying between 5% - 10% with respect to
to the corresponding coefficients of EIGEN-1S.
Beyond this limit the coefficients of the mod-
els released after EIGEN-1S, which has been

0 20 40 60 80 100 120
0.7

0.75

0.8

0.85

0.9

0.95

1

Degree l

 

 

EIGEN−GRACE01S vs EIGEN−GRACE02S

Fig. 10 Correlation by degree of the two available

GFZ GRACE-only models EIGEN-GRAGE01S and

EIGEN-GRACE02S.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Degree l

 

 

EIGEN−GRACE01S vs EIGEN−GRACE02S

Fig. 11 Smoothing by degree computed as to the

two available GFZ GRACE-only models

EIGEN-GRAGE01S and EIGEN-GRACE02S.

used as the reference model for all EIGEN-
CHAMP models, begin to vary considerably with
respect to EIGEN-1S. The discrepancy between
the EIGEN models becomes more apparent at
the degree range 60-100, which demonstrates a
more or less expected result, if one considers the
extreme variation in the portion of the used satel-
lite data between the different solutions (from
the 88 days of tracking and accelerometry data
for model EIGEN-1S to the 3,5 years of mis-
sion observables for the evaluation of EIGEN-
CHAMP03S).

4 GRACE-only models

Figures 9-12 present the respective computa-
tions for the only two available GFZ GRACE-
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only models, namely EIGEN-GRAGE01S and
EIGEN-GRACE02S. It is interesting to observe
how differently distributed is here the gain of
these models with respect to EGM96 compared
with Figure 5. As Figure 9 demonstrates the
region where the gain is significant is expanded
uniformly over a much broader degree range of
the common spectrum. The comparisons lead
furthermore to the remark that the bandwidth
over which the GRACE models exhibit the high-
est degree of correlation (up to degree 85) is much
more broad than the respective degree range
which was obtained for the CHAMP only mod-
els (0-35). The two models show a remarkable
smoothness, while they begin to deviate quanti-
tatively around degree 60, with the percentage
difference arriving at values above 70% for de-
grees approaching 120.

5 Combined models

The comparison strategy for the available
combined models should incorporate precedent
CHAMP-only or GRACE-only models, depend-
ing on the data origin of the individual com-
bined model. From the vast comparison possi-
bilities Figures 13-15 present only a representa-
tive quantification of the spectral relations be-
tween selected combined models. Thus, Figures
13 and 14 display the correlation and smooth-
ing per degree of GFZ model EIGEN-CG03C, a
model complete to degree and order 360, which
is obtained from the analysis of over one year of
GRACE data. Since CG03C utilized CHAMP
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and gravity data as well, it would be plausible
to attempt a direct comparison with a CHAMP
only model. CHAMP03S is the almost 3 year
satellite data CHAMP only model, which has
been used for the construction of CG03C. The
correlation of the two models up to degree 60 is
demonstrated from Figures 13 and 14, however a
substantial deviation is observed for the degree
range 60-120.

Although referring to satellite only models
Figures 15 and 16 present finally the spec-
tral comparison between GRACE only mod-
els GGM01S (Tapley et al 2004) and EIGEN-
GRACE02S. This particular comparison was se-
lected intentionally, in order to verify whether
similar level of agreement, as the one already
shown for the GFZ GRACE-only models, could
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be obtained between GRACE models that were
put out by different groups as well. Indeed, Fig-
ures 15 and 16 present almost identical char-
acteristics with the corresponding statistics of
GFZ’s GRACE-only models (Figures 10 and 11).

6 Concluding remarks

Some spectral comparisons were undertaken us-
ing a selection of the most recently released satel-
lite only and combined CHAMP and GRACE
Earth gravity models. First remarks that can
be drawn refer to the high correlation that ex-
ists among the GRACE only models within a de-
gree bandwidth of roughly l < 60, the CHAMP
models showing a significant restriction of the
respective correlations to l < 20. The second
major comment should include a reference to the

spectral behaviour of all models around their up-
per degree limit (100, 120 or 150). The com-
putations revealed a significant amplification of
all test statistics starting around degree 40 and
90 for the CHAMP and GRACE models respec-
tively and obtaining maximum values as soon as
the upper boundary of the respective spectral
domain is approached. This observation should
be directly linked to the overall characteristics
of the respective satellite missions, which simply
cannot recover data, or equally provide reliable
gravity field information beyond a certain fre-
quency.
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Gravity Field Modeling on the Basis of GRACE Range-
rate Combinations: current results and challenge
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Abstract. A new approach to gravity field modeling
from GRACE KBR data is presented in detail. The
functional model explicitly connects gravity field pa-
rameters with a linear combination of range-rate mea-
surements at three successive epochs. Unlike the func-
tional model based on inter-satellite accelerations, the
new one does not require the radial component of inter-
satellite velocity vectors to be determined from GPS
data. Performance of the approach is tested with real
GRACE data. A 176-day set and a one-month set are
seperately processed. The mean gravity field model
computed from the 176-day data set is as accurate as
the GGM01S model. The computed monthly model
is 2-3 times less accurate than a model obtained by
GFZ. The probable reason for a limited accuraccy of
the computed monthly model is noise in inter-satellite
baselines, which are still determined from GPS data.

Keywords: GRACE, range-rates, Earth’s gravity field
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Figure 1: Definitions of the LOSRF (a), the angle ������� � and orientation of the frame at the epoch ! relatively to the axes
defined for the epoch !#"%$ (b).

are compared with a GFZ model obtained for the same
month. The outcome of the comparison is discussed in
the final section 4. Futhermore, this section containes
overall conclusions and a discussion of further chal-
lenges we face.

2 Derivation of functional model

First of all, let us define a LOS-related Reference
Frame (LOSRF) for each particular epoch (Fig.1(a)).
In the frame, the x-axis is directed along the LOS, from
the trailing satellite to the leading one; the z-axis is
orthogonal to the x-axis in the plane formed by two
satellites and the center of the Earth, and the y-axis is
orthogonal to the x- and z-axis forming a right-hand
frame. Thus, x-, y-, and z-axis can be understood as
the along-track, cross-track, and radial axis, respec-
tively. Three succesive epochs, say &'�)( , & and &+*,( ,
are used to form one observation equation. For the
sake of simplicity, assume that the satellites motion
is 2-dimensional (i.e. that the inter-satellite velocity
vector does not have the cross-track component). Let-�.0/�132 be the angle between x-axes at epochs &+�4( and& (Fig.1(b)). Similarly, let -5.6/0782 be the angle between
x-axes at epochs & and &�*9( . The angles -5.6/:1;2 and-�.0/6782 are assumed to be positive. The 3-D average
inter-satellite accelerations between the epochs &5�<(
and & (i.e. =� .6/:1;2 ) and between the epochs & and &�*<(
(i.e. =� .6/67+2 ) are defined as follows:

=� .6/:1;2 � >�?�@?�@ 13A ? ��B�CEDGF CH C I =� .6/67+2 � >'?�@ 78A ??�@ ��B�CED F CH C J
where ��B�CED is the point-wise inter-satellite acceleration
as a function of time C , and

H C is the sampling interval.
From these definitions, the following equalities hold:H C��K=� .6/�132 �4 / �L /:1NM J (1)H C��K=� .6/0782 �4 /07�M �L / J (2)

where +O BQP��R&S�T( J & J &N*U(VD are inter-satellite ve-
locities at three successive epochs. Consider the pro-
jections of Eqs. (1) and (2) onto the W / axis:H C��YXZ �.6/:1;2 �)[ �/ �%[ �/:1NM J (3)

H C��\XZ �.6/0782 �)[ �/07�M �L[ �/ J (4)

where [ �O , XZ �.6/�132 and XZ �.0/6782 are the projections of vec-
tors +O , =� .6/:1;2 and =� .6/0782 onto the W / axis, respectively,
(thus, [^]/ �_[ �/ ). By adding Eqs. (3) and (4) together,
we have:H C��;` XZ �.0/�132 *,XZ �.6/0782ba �T[ �/07�M �L[ �/�18M�c (5)

Furthermore, [ �/�18M can be represented as a linear com-
bination of ”locally defined” x- and z-components of
the vector  /:1NM , i.e. [^d/:1NM and [ ]/:1NM (with this notation,
we imply that the axes x and z correspond to the epoch
of the vector under consideration, i.e. &+�e( ):
[ �/:1NM �f[ d/�18M �hgjiYkl`#m nL� -l.6/:1;2 a *o[ ]/:1NM �jgpi\k -�.6/:1;2

�oq /:1NM �VkEr0s -�.0/�132 *t[ ]/�18M �jgjiYk -l.6/:1;2 J (6)

where q^O is the range-rate at the epoch P , see Fig.1(b).
Similarly, [ �/67�M can be represented as a linear combina-
tion of [ d/07�M and [^]/67�M :
[ �/07�M �e�uq /07�M �hkvr0s -l.6/0782 *o[ ]/07�M �VgpiYk -�.6/0782 c (7)

Substitution of Eqs. (6) and (7) into (5) yields:

H C��3`^XZ �.6/:1;2 *wXZ �.6/0782xa �_�uq /:1NM �jkEr0s -�.0/�132
�Lq /07�M �hkvr0s -�.6/0782 �%[ ]/:1NM �jgpi\k -�.6/:1;2*o[ ]/07�M �jgpi\k -�.6/0782 c (8)

Now, let us express [ ]/:1NM and [^]/07�M in terms of range-
rates and average inter-satellite accelerations. To do



that, we can consider the projection of Eqs. (1) and (2)
onto the y / axis:H CG�jXZNz.6/:1;2 �T[ z/ �{[ z/:1NM �T[ d/ �{[ z/:1NM �wq / �|[ z/�18M I (9)

H C��YXZ3z.6/0782 �4[ z/07�M �L[ d/ �)[ z/67'M �fq / J (10)

where [ zO , XZ3z.6/:1;2 and XZNz.0/6782 are projections of the vec-
tors  O , =� .6/:1;2 and =� .0/6782 onto the y / axis, respectively.
Next, [ z/:1NM can be represented as a linear combination
of [^d/:1NM and [ ]/�18M :
[ z/:1NM �oq /:1NM �Vgpi\k -�.6/:1;2 �L[ ]/�18M �jkvr6s -l.6/:1;2 c (11)

Substitution of Eq. (11) into (9) yields the following
expression for [^]/:1NM .
[ ]/:1NM � H C��YXZ3z.6/:1;2

kvr6s -�.0/�132 *}q /:1NM ��gji�~ -l.6/�132 c (12)

Similarly, [ z/67�M can be represented as a linear combina-
tion of [ d/07�M and [^]/67�M :
[ z/07�M �fq /07�M �hgjiYk -l.6/0782 *t[ ]/07�M �jkvr0s -�.6/0782 c (13)

Then, [^]/07�M can be obtained by substituting Eq. (13)
into (10):

[ ]/07�M � H C'�\XZ3z.6/67+2
kvr6s -l.6/67+2 * q /

kEr0s -�.0/6782 ��q /07�M ��gji�~ -l.6/0782 c (14)

Now, Eqs. (12) and (14) can be inserted into (8) with
the inter-satellite accelerations being arranged in the
left-hand side and the range-rates in the right-hand
side:
H C�� ` XZ z.6/:1;2 �hgji�~ -l.6/�132 �)XZ z.6/0782 �jgji�~ -l.6/67+2 a
* H C�� ` XZ �.6/:1;2 *,XZ �.6/0782xa
�wq /�� gji�~ -�.0/6782 *�gpiK~ -�.6/:1;2b�
� q /:1NM
kvr6s -l.6/�132 � q /07�M

kvr6s -l.6/67+2 c (15)

After a scaling, which will be explained below,
Eq. (15) can be fininally written as follows:

H C���B�� .0/6782 DhXZ z.6/0782 �eB:� .6/:1;2 DhXZ z.6/:1;2 �f� / B�XZ �.6/�132 *wXZ �.6/0782 Dx�
�<B�� .0/�132 Dbq /�18M �4B�� .6/:1;2 *t� .6/0782 DEq / *TB�� .0/6782 Dbq /67�M

(16)

with � /�� � �.6A ? 2�� � B:gji�~ -l.6/�132 *_gpi�~ -l.6/0782 D ; � .6/:1;2 � �
� / �vgpi�~ -�.6/:1;2 ; � .6/0782 � �w� / �Egji�~ -l.6/0782 ; � .6/:1;2 � � � @��� �;�^� @��Y�and � .6/0782 � � � @��� ��� � @0�Y� . Hereafter, the parameters � / ,

� .6/:1;2 , � .6/0782 , � .6/:1;2 and � .6/67+2 are refered to as the navi-
gation parameters.

In a special case of circular satellite orbits, we have:
-�.0/�132 � -l.6/0782 � - / ; � / ���:� �;� @.6A ? 2 � ; � .6/:1;2 �
� .6/0782 �M.6A ? 2�� , and � .6/:1;2 ��� .6/67+2 � M.0A ? 2��K�x� �V� @ . If we as-
sume further that the orbit radius approaches infin-
ity, ~¡ �s - /L¢ £ and gpi\k - /L¢ ( . Then, Eq. (16)

turns into: ¤¥�¦� @6�\� 1 ¤¥§¦� @��Y�A ? �©¨ @��\ª 1 � ¨ @ 7 ¨ @0�\ª.6A ? 2�� . Thus, the
computation of range-rate combinations in this special
case, reduces just to the double numerical differentia-
tion of range-rates with the 3-point scheme. In other
words, the range-rate combinations become approxi-
mately equal to second time-derivatives of range-rates.
This explains the scaling applied to Eq. (15).

Eq. (16) defines our functional model, which can be
written as a matrix-to-vector multiplication: «{yo�U¬ ,
where y is the set of gravity field parameters, ¬ is the
set of range-rate combinations, and « is a design ma-
trix. The expression in the right-hand side is called
hereafter the ”observed RRC”. For consistency, the
expression in the left-hand side is referred to as the
”reference RRC”. The reference RRCs can be di-
rectly related to the parameters of the gravity field (e.g.
spherical harmonic coefficients). Then, the set of un-
known gravity field parameters can be computed from
the range-rate combinations by means of a least-square
adjustment.

The functional model is strictly linear, which allows
a numerically efficient data processing algorithm (Dit-
mar and van Eck van der Sluijs, 2004) to be built on its
basis. Furthermore, the GRACE KBR-data processing
can be easily combined with processing of other satel-
lite data (e.g., 3-D accelerations derived from a satellite
orbit as well as satellite gravity gradiometry data).

3 Results of real data processing

The goal of real GRACE data processing was to eval-
uate the accuracy of a mean and a monthly gravity
field model achievable by the RRC approach. Whereas
some mean field models obtained with the RRC ap-
proach have been already presented (Ditmar and Liu,
2006), the computed monthly models are analysed for
the first time. In both cases, the gravity field models up
to spherical harmonic degree 150 are derived though
we only demonstrate the solutions up to degree 120.
A nearly half-year data set (176-day span, from July.
9, 2003 to Dec. 31, 2003) and a one-month data set
(August 2003) have been separately processed. Each
data set includes: (1) a reduced-dynamic orbit of satel-
lite A (30-sec sampling); (2) relative baseline vectors
between satellite A and B (Kroes et al. 2005) (10-sec
sampling) ; (3) non-gravitational accelerations (1-sec
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Figure 2: (a): Geoid height difference between our half-year model and EIGEN-CG03C (thin black line), between GGM01S
and EIGEN-CG03C (thick grey line), formal error of GGM01S (thick black line). (b): Geoid height difference between our
monthly model produced by the RRC approach and EIGEN-CG03C (thin black line), between the GFZ monthly model and
EIGEN-CG03C (thick black line), between the monthly model produced by the acceleration approach and EIGEN-CG03C
(thick grey line). Cumulative geiod height difference (dash line) and geiod height difference per degree (solid line) are shown,
Degree 2 is excluded.

sampling); (4) quaternion data (5-sec sampling); (5)
KBR range-rates (5-sec sampling). The procedure of
real data processing is as follows:

1) Computation of the navigation parameters. The
reduced-dynamic orbit of the satellite A and base-
line vectors are rotated into the Celestial Reference
Frame (CRF) and then interpolated onto 5-sec in-
tervals. The orbit of the satellite B is obtained by
adding baseline vectors to the orbit of satelllite A.
The angles -l.6/:1;2 and -l.6/67+2 are computed from the
baselines, and navigation parameters are therefore
calculated from these angles.

2) Computation of the observed RRCs. The range-
rates and the navigation parameters are used to cal-
culate the observed RRCs. Furthermore, we account
for minor deviations of the actual setup from the 2-
D case by adding small corrections to the range-rate
data. These corrections are computed on the basis
of satellite orbits derived from the GPS data. Im-
portantly, these corrections are so small that their
contribution to the error budget is totally negligible.

3) Computation of the reference RRCs. The point-

wise accelerations are firstly computed on the basis
of a reference gravity field model along the orbits of
two satellites. Temporal variation caused by tides,
as well as by atmospheric and ocean mass changes,
are also considered (Ditmar and Liu, 2006). These
point-wise accelerations are then rotated into the
CRF, and an averaging filter is applied (Ditmar and
van Eck van der Sluijs, 2004). The averaged ac-
celerations projected onto the corresponding y / andW / axes together with the navigation parameters are
used to calculate the reference RRCs.

4) Computation of non-gravitational RRCs. Non-
gravitational accelerations of two satellites are
firstly rotated into the CRF. Then, the non-
gravitational RRCs are computed similarly to step
3.

5) Computation of residual RRCs. The residual RRCs
are obtained by subtraction of the reference and
non-gravitational RRCs from the observed ones.

6) Least-square adjustment. Inversion of residual
RRCs into corrections to the spherical harmonic
coefficients of the reference model is implemented



with a frequency-dependent data weighting scheme.
As decribed in (Ditmar et al. 2006), relatively high
weights are assigned to low frequencies and low
weights to high frequencies. Scale factors in non-
gravitational RRCs, as well as biases, are estimated
on daily intervals simultaneously. No regulariza-
tion is applied in the inversion, which means that
the solution is completely unconstrained, [like e.g.
the GGM01S model (Tapley et al., 2004)].

The difference between the model computed from the
half-year data set and the EIGEN-CG03C model (Fo-
erste et al., 2005) is shown in terms of geoid height
in Fig.2(a). For comparison, the difference between
GGM01S and EIGEN-CG03C models, as well as the
formal error of GGM01S model are also shown(The
GGM01S model is an early result produced from the
data span of April to November 2002). It should be
mentioned that EIGEN-CG03C and GGM01S mod-
els are computed from KBR and GPS data, while our
model is produced from KBR range-rates only. As can
be seen from Fig.2(a), our model and GGM01S are
equally accurate at degrees 30-70. Starting from de-
gree 70, our model is closer to EIGEN-CG03C model
than GGM01S. However, our model shows a some-
what lower accuracy at low degrees (below 30). Note-
worthy, it is not completely fair to compare these
two models, since they are computed from differerent
data intervals with a different amount of data. The
GGM01S made use of longer data span (6-7 months)
than our model (176 days). On the other hand, our
model is obtained from somewhat more data (155
days) than GGM01S (111 days).

The difference between our monthly model and the
EIGEN-CG03C model is also shown in terms of geoid
heights, see Fig.2(b). The difference between the GFZ
monthly model of August 2003 and EIGEN-CG03C
is demonstrated as well. For further comparison, we
have processed the same data span (August 2003) by
using the acceleration approach. The data processing
methodology in the acceleration approach is somewhat
similar to that in the RRC approach, though the func-
tional model is, naturally, different. As can be seen
from Fig.2(b), the model produced by the RRC ap-
proach is significantly better than that computed with
the acceleration approach: 2-3 times at low degrees
(below 55), and 8-10 times at higher degrees (above
55). Nevertheless, the RRC approach solution is 2-3
times less accurate than the GFZ monthly model.

4 Discussion and conclusions

There might be various reasons for a limited accuracy
of our solutions, particularly the monthly one. For

example, there are minor differences in using tempo-
ral geophysical phenomena models between our and
GFZ’s processing schemes (Flechtner, 2005). Fur-
thermore, our choice of nuisance parameters for ac-
celerometer data may not be optimal. We believe, how-
ever, that the dominant reason is noise in navigation
parameters. In order to support this statement, we have
simulated a synthetic data set similar to the one de-
scribed by (Ditmar and Liu, 2006), and then added
a noise with 1-mm standard deviation and the auto-
correlation factor of 0.995 to the inter-satellite baseline
vectors. The range-rates were assumed to be noise-
free. Then, we computed a set of noise-free navigation
parameters from ’true baselines’ and a set of noisy nav-
igation parameters from ’noisy baselines’. Both sets of
navigation parameters together with the reference ac-
celerations computed on the basis of the true model
along the noisy orbits were used to compute the resid-
ual RRCs. For a reference, we have also computed the
RRCs from the difference between the GFZ monthly
model and the EIGEN-CG03C model. The latter RRCs
give an indication of the expected magnitude of tempo-
ral gravity field variations (particularly, those related to
the hydrological processes).
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Figure 3: Square root of noise Power Spectral Density
(PSD) of RRCs computed from the noise-free navigation pa-
rameters (grey) and the noisy navigation parameters (light-
grey). For a reference, the square-root PSD of the residual
gravity field signal of August 2002 in RRCs is shown (black).

From Fig. 3, it is obvious that the noise propagated
from navigation parameters can be comparable to or
even larger than the magnitude of temporal gravity
field variations. This may explain why our monthly
model is less accurate than the GFZ one. We believe
there are at least two ways to reduce noise progated



from the navigation parameters: one is to smooth the
navigation parameters, and the other one is to choose
a longer sampling interval. Furthermore, we consider
a modification of the functional model in such a way
that the navigation parameters themselves are primar-
ily derived from KBR data. We intend to present this
functional model in a forthcoming publication.

Acknowledgements

We thank Ejo Schrama for his DINGO software used
for the orbit simulation. We are grateful to P. Visser,
R. Kroes and T. van Helleputte for providing us with
GRACE baselines. Most of the computations were
done on the SGI Altix 3700 super-computer in the
framework of the grant SG-027, which was provided
by ”Stichting Nationale Computerfaciliteiten” (NCF).
The support of NCF is gratefully acknowledged.

References

P. Ditmar, R. Klees and X. Liu. Frequency-
dependent data weighting in global gravity field
modeling from satellite data contaminated by non-
stationary noise. Journal of Geodesy, on-line, 2006.
doi:10.1007/s00190-006-0074-4

P. Ditmar and A. A. van Eck van der Sluijs. A tech-
nique for Earth’s gravity field modeling on the ba-
sis of satellite accelerations. Journal of Geodesy,
78:12-33, 2004.

P. Ditmar and X. Liu. Gravity field modeling on
the basis of GRACE range-rate combinations. The
Proceedings of the ”VI Hotine-Marussi Symposium
of Theoretical and Computational Geodesy: Chal-
lenge and Role of Modern Geodesy”. May 29 - June
2, 2006, Wuhan, China, accepted.

C. Foerste, F. Flechtner, R. Schmidt, U. Meyer, R.
Stubenvoll, F. Barthelmes, R. Koenig, K.H. Neu-
mayer, M. Rothacher, Ch. Reigber, R. Biancale, S.
Bruinsma, J.-M. Lemoine, J.C. Raimondo. A New
High Resolution Global Gravity Field Model De-
rived From Combination of GRACE and CHAMP
Mission and Altimetry/Gravimetry Surface Gravity
Data Poster presented at EGU General Assembly
2005, Vienna, Austria, 24-29, April 2005

F. Flechtner. GFZ Level-2 Processing Standards Doc-
ument for Level-2 Product Release 0003. 2005.
GRACE 327-743 (GR-GFZ-STD-001) Gravity Re-
covery and Climate Experiment.

S.-C. Han, C. K. Shum, C. Jekeli, and D. Als-
dorf. Improved estimation of terrestrial wa-
ter storage changes from GRACE. Geophysi-
cal Research Letters, 32, 2005. L07302, doi:

10.1029/2005GL022382.
K. H. Ilk, M. Feuchtinger, and T. Mayer-Gürr. Grav-
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High-Degree Geopotential Model Tailored to
Egypt
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Abstract. The quality of the reference geopoten-
tial model used in the framework of the remove-
restore technique greatly affects the accuracy of the
computed geoid. None of the existing geopotential
models fit the Egyptian gravity field to the desired
extent. The aim of this investigation is to have a
smoothed gravity field so that it is unbiased and has
significantly reduced variance by using a high-degree
tailored geopotential model. The window technique
has been applied to get rid of the double consider-
ation of the topographic-isostatic masses within the
data window. The high-degree tailored reference
model has been created by merging the available
gravity anomalies in the area of investigation with
the EGM96 global gravitational data set. The merged
global field has been used to estimate the harmonic
coefficients of the tailored reference model by FFT
technique using an iteration process to enhance the
accuracy of the obtained harmonic coefficients (Abd-
Elmotaal, 2004). Three different tailored geopoten-
tial models have been created by maintaining the
lower harmonics till degree 20, 36 and 72 to their
values as of EGM96 model. The results show that
the tailored geopotential models give better residual
gravity anomalies. The variance has dropped to its
one third.

Keywords. geopotential models, harmonic analy-
sis, window technique, Egypt, geoid determination.

1 Introduction

The quality of the reference geopotential model used
in the framework of the remove/restore technique
plays a great role in estimating the accuracy of the
computed geoid. In other words, if the residual field
is biased and has a high RMS, then using such a
biased/high variance field in the geoid computation
process gives less accurate interpolated quantities,
and hence worse geoid fitting to the GPS-levelling

derived geoid. Practical studies so far have proved
that none of the existing reference geopotential mod-
els fit the Egyptian gravity field to the desired extent.
Thus, the main aim of this investigation is to have a
smoothed gravity field (in terms of gravity anoma-
lies) so that it is, more or less, unbiased and has a
significantly reduced variance by using a high-degree
tailored reference geopotential model.

The used data sets are described first. The win-
dow technique (Abd-Elmotaal and Kühtreiber, 2003)
within the remove/restore technique has been out-
lined. The local gravity anomalies for the Egyp-
tian data window are gridded in 30′ × 30′ grid us-
ing the remove/restore window technique. The lo-
cal gridded data are merged with the global 30′×30′

gravity anomalies, computed using EGM96 till N =

360, to establish the data set for computing the tai-
lored geopotential models. The merged 30′ × 30′

global field has been then used to estimate the har-
monic coefficients of the tailored reference model
by an FFT technique (Abd-Elmotaal, 2004). Three
different tailored geopotential models have been cre-
ated by restoring the low order harmonics of EGM96
till N = 20, 36 and 72. A wide comparison among the
developed tailored geopotential models and EGM96
geopotential model has been carried out.

It should be noted that many scholars have tried
to compute tailored geopotential models to best suit
their specific areas of interest. For example, Wenzel
(1998) has computed a set of tailored geopotential
models for Europe.

2 The Data

2.1 Local Egyptian Free-Air Gravity
Anomalies

All currently available sea and land free-air gravity
anomalies for Egypt and neighbouring countries have



been merged. A scheme for gross-error detection has
been carried out. Figure 1 shows the distribution of
the free-air gravity anomalies for Egypt used for the
current investigation. The distribution of the free-air
gravity anomaly stations on land is very poor, con-
centrated mainly along the Nile valley. Many areas
are empty.
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Figure 1. Distribution of the local Egyptian free-air gravity
anomalies.

The values of the free-air gravity anomalies range
between −190.51 mgal and 294.74 mgal with an
average of −3.28 mgal and a standard deviation of
about 60.36 mgal. Highest values are in sea area.

2.2 Digital Height Models

For the terrain reduction computation, a set of fine
and coarse Digital Height Models DHM’s is needed.
The fine EGHA9930 30

′′

× 30
′′

and the coarse
EGHA99M3 3

′

× 3
′

DHM’s (Abd-Elmotaal, 1999)
are used for the current investigation. They cover the
window 19◦ ≤ φ ≤ 35◦, 22◦ ≤ λ ≤ 40◦. Figure 2 il-
lustrates the EGHA9930 fine DHM.

3 The Window Technique

Within the well-known remove/restore technique, the
effect of the topographic-isostatic masses is removed
from the source gravitational data and then restored
to the resulting geoidal heights. For example, in the
case of gravity data, the reduced gravity anomalies
in the framework of the remove/restore technique is
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Figure 2. The 30
′′

×30
′′

EGHA9930 Digital Height Model
(after Abd-Elmotaal, 1999).

computed by

∆g = ∆gF −∆gh −∆gRe f , (1)

where ∆gF stands for the free-air anomalies, ∆gh is
the effect of topography and its compensation on the
gravity anomalies, and ∆gRe f is the effect of the ref-
erence field on the gravity anomalies. Thus the final
computed geoid N within the remove/restore tech-
nique can be expressed by:

N = NRe f +N∆g +Nh , (2)

where NRe f gives the contribution of the reference
field, N∆g gives the contribution of the reduced grav-
ity anomalies, and Nh gives the contribution of the
topography and its compensation.

The conventional way of removing the effect
of the topographic-isostatic masses faces a theo-
retical problem. A part of the influence of the
topographic-isostatic masses is removed twice as it
is already included in the global reference field. This
leads to some double consideration of that part of
the topographic-isostatic masses. Figure 3 shows
schematically the conventional gravity reduction for
the effect of the topographic-isostatic masses. The
short-wavelength part depending on the topographic-
isostatic masses is computed for a point P for the
masses inside the circle. Removing the effect of the
long-wavelength part by a global earth’s gravitational
potential reference field normaly implies remov-
ing the influence of the global topographic-isostatic
masses, shown as a rectangle in Fig. 3. The double



consideration of the topographic-isostatic masses in-
side the circle (double hatched) is then seen.

P

EGM96

TC

Figure 3. The traditional remove/restore technique.

A possible way to overcome this difficulty is to
adapt the used reference field due to the effect of
the topographic-isostatic masses for a fixed data win-
dow. Figure 4 shows the advantage of the win-
dow remove/restore technique schematically. Con-
sider a measurement at point P, the short-wavelength
part depending on the topographic-isostatic masses
is now computed by using the masses of the whole
data area (small rectangle). The adapted refer-
ence field is created by subtracting the effect of
the topographic-isostatic masses of the data window,
in terms of potential coefficients, from the refer-
ence field coefficients. Thus, removing the long-
wavelength part by using this adapted reference field
does not lead to a double consideration of a part of
the topographic-isostatic masses (no double hatched
area in Fig. 4).

 adapted EGM96

P

data area

TC

Figure 4. The window remove/restore technique.

The reader who is interested in computing the har-
monic coefficients of the topographic-isostatic po-
tential of the data window is kindly referred to (Abd-
Elmotaal and Kühtreiber, 2003).

4 Gravity Anomalies

The available gravity anomalies within the local
Egyptian window (19◦ ≤ φ ≤ 35◦, 22◦ ≤ λ ≤ 40◦)

Table 1. Statistics of the three gravity anomalies fields
statistical parameters

gravity anomalies type min. max. average st. dev.
mgal mgal mgal mgal

Global (EGM96) −329.5 403.4 −0.50 29.7
Local (Egypt) −173.2 198.9 1.10 40.0

Merged (EGM96 + Egypt) −329.5 403.4 −0.51 29.7

have been interpolated in 30
′

× 30
′

grid using the
window remove/restore technique. Figure 5 shows
the local Egyptian 30

′

×30
′

interpolated anomalies.

24 26 28 30 32 34 36 38

20

22

24

26

28

30

32

34

-180
-160
-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
180
200

Figure 5. The local Egyptian 30
′

×30
′

interpolated gravity
anomalies.

The EGM96 geopotential model till N = 360 has
been used to create 30

′

× 30
′

global gravity anoma-
lies. The local Egyptian 30

′

× 30
′

interpolated grav-
ity anomalies using the window remove/restore tech-
nique has been merged with the created 30

′

× 30
′

global gravity anomalies forming the data set for
computing the tailored geopotential models. Table 1
illustrates the statistics of the three gravity anomalies
fields. The statistics show that merging the Egyptian
gravity anomalies data set has a minor effect on the
global gravity field. Only the high-order harmonics
would then change.

5 Tailored Geopotential Models for
Egypt

Let us consider an analytical function f (θ,λ) defined
on the unit sphere (0 ≤ θ ≤ π and 0 ≤ λ ≤ 2π). Ex-



pand f (θ,λ) in series of surface spherical harmonics

f (θ,λ)=
∞

∑
n=0

n

∑
m=0

(

C̄nm cosmλ+ S̄nm sinmλ
)

P̄nm(cosθ) ,

(3)
where C̄nm and S̄nm are the fully normalized spheri-
cal harmonic coefficients and P̄nm(cosθ) refers to the
fully normalized associated Legendre function. Let
us introduce the abbreviations

R̄nm(θ,λ) = P̄nm(cosθ)cosmλ ,

Q̄nm(θ,λ) = P̄nm(cosθ)sinmλ .

(4)

It is well known that the fully normalized har-
monic coefficients are orthogonal, i.e., they satisfy
the orthogonality relations

∫∫

σ

R̄nm(θ,λ) R̄n′m′(θ,λ)dσ = 0 (5)

∫∫

σ

Q̄nm(θ,λ) Q̄n′m′(θ,λ)dσ = 0 (6)

∫∫

σ

R̄nm(θ,λ) Q̄nm(θ,λ)dσ = 0 , (7)

1
4π

∫∫

σ

R̄2
nm(θ,λ) =

1
4π

∫∫

σ

Q̄2
nm(θ,λ) = 1 . (8)

As a consequence of the orthogonality, the fully
normalized harmonic coefficients C̄nm and S̄nm can
be given by (Heiskanen and Moritz, 1967, p. 31)

C̄nm =
1

4π

∫∫

σ

f (θ,λ) R̄nm(θ,λ)dσ ,

S̄nm =
1

4π

∫∫

σ

f (θ,λ) Q̄nm(θ,λ)dσ .

(9)

In fact, (9) cannot be used in practice to compute
the harmonic coefficients simply because the analyt-
ical function f (θ,λ) is generally unavailable. Only
a finite set of noisy measurements f (θi,λ j), cover-
ing the whole sphere, might be available. Discretiz-
ing (9) on an equal angular grid covering the whole
sphere gives the following quadratures formula

Ĉnm =
1

4π

N−1

∑
i=0

2N−1

∑
j=0

f (θi,λ j) R̄nm(θi,λ j)∆i j ,

Ŝnm =
1

4π

N−1

∑
i=0

2N−1

∑
j=0

f (θi,λ j) Q̄nm(θi,λ j)∆i j ,

(10)

where Ĉnm and Ŝnm are the estimate of C̄nm and S̄nm,

respectively, ∆i j indicates the segment area and N
is the number of grid cells in the latitude direction.
Expression (10) is used to compute the harmonic
coefficients if the available data field is represented
by a set of point values f (θi,λ j). It should be noted
that (10) is usually only an approximation due to the
discretization effect of f (θ,λ).

If all C̄nm and S̄nm are known till degree and order
Nmax, one can compute f̃ (θi,λ j) as follows:

f̃ (θi,λ j) =
Nmax

∑
n=0

n

∑
m=0

(

C̄nm cosmλ j+

+ S̄nm sinmλ j
)

P̄nm(cosθi) , (11)

which can be regarded as an approximation to f (θ,λ)

at point (θi,λ j). Expression (11) defines the object of
spherical harmonic synthesis: given the coefficients,
it is required to estimate the function.

The double summation appearing in (10) for har-
monic analysis as well as in (11) for spherical har-
monic synthesis are computed using FFT. Colombo
(1981) has written two subroutines for this pur-
pose, called HARMIN and SSYNTH. Abd-Elmotaal
(2004) has written a program called HRCOFITR,
which uses Colombo’s subroutines, after great
modifications, in an iteration process to obtain the
best coefficients accuracy and minimum residual
filed either the given filed is on sphere or on ellip-
soid.

The merged 30′ × 30′ global field has been used
to estimate the harmonic coefficients of the tailored
reference model by HRCOFITR Program (Abd-
Elmotaal, 2004). Since the low order harmonics of
the anomalous gravitational potential are to a great
extent due to the density disturbances in the upper
mantle and even deeper sources, the lower harmon-
ics till a certain degree have been fixed to their values
as of EGM96 geopotential model. Three different
tailored geopotential models have been created by
restoring the low order harmonics of EGM96 till
N = 20, 36 and 72.

Figure 6 shows the EGGM06A tailored geopo-
tential model, in which the lower coefficients till
N = 20 are preserved to EGM96. Figure 7 shows
the EGGM06B tailored geopotential model, in which
the lower coefficients till N = 36 are preserved to
EGM96. Figure 8 shows the EGGM06C tailored
geopotential model, in which the lower coefficients
till N = 72 are preserved to EGM96. All the three
figures illustrate that only minor changes to EGM96



have been made. Notice the change in the very low
harmonics preserved to those of EGM96 in each of
the three Figures.

Figure 6. The EGGM06A tailored geopotential model (till
N = 20 preserved to EGM96).

Figure 7. The EGGM06B tailored geopotential model (till
N = 36 preserved to EGM96).

Figure 9 shows the differences at the grid points
between the Egyptian 30

′

× 30
′

interpolated grav-
ity anomalies and the computed gravity anomalies
using the EGGM06A tailored geopotential model.
Figures 10 and 11 show the same differences us-
ing EGGM06B and EGGM06C models, respectively.
The white areas indicate differences less than 5 mgal
in magnitude. All three figures shows good matching
especially in the data areas. From the three figures,
one may conclude that the EGGM06A is the better
one in view of the minimum difference to the inter-
polated gravity anomalies.

For the sake of a more detailed comparison and

Figure 8. The EGGM06C tailored geopotential model (till
N = 72 preserved to EGM96).
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Figure 9. Differences between Egyptian 30
′

×30
′

interpo-
lated gravity anomalies and the computed gravity anoma-
lies using the EGGM06A tailored geopotential model.

examining the computed tailored geopotential mod-
els, they have been used to compute the gravity
anomalies at the data points (13566 points). Table 2
illustrates the statistics of the differences between the
Egyptian gravity anomalies data and those computed
by the tailored geopotential models created within
this investigation. Table 2 shows that all the three
developed geopotential models give practically the
same results. The tailored geopotential models cre-
ated in this investigation give better residual gravity
anomalies (unbiased and have much less RMS than
that of EGM96). The variance has dropped to its one
third. The range has dropped to its one half.
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Figure 10. Differences between Egyptian 30
′

× 30
′

interpolated gravity anomalies and the computed grav-
ity anomalies using the EGGM06B tailored geopotential
model.
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Figure 11. Differences between Egyptian 30
′

× 30
′

interpolated gravity anomalies and the computed grav-
ity anomalies using the EGGM06C tailored geopotential
model.

6 Conclusions

Three high-degree tailored reference geopotential
models for Egypt have been developed in this inves-
tigation. The window remove/restore technique has
been applied to get rid of the double consideration of
the topographic-isostatic masses within the data win-
dow. An FFT technique using an iteration process
has been used to recover the harmonic coefficients
to enhance the accuracy of the obtained harmonic
coefficients and to minimize the residual field. The

Table 2. Statistics of the differences between the gravity
anomalies at the data points (13566 points) and those com-
puted by the tailored geopotential models

statistical parameters
anomalies difference min. max. range average st. dev.

mgal mgal mgal mgal mgal
Data - EGM96 −190.5 294.7 485.2 −3.3 60.4

Data - EGGM06A −162.4 96.5 258.9 −1.5 21.3
Data - EGGM06B −163.8 98.5 262.3 −1.3 21.4
Data - EGGM06C −164.8 95.2 260.0 −1.8 21.5

lower harmonic coefficients (till N = 20, 36 and 72)
have been fixed to their values of EGM96 as they are
to a great extent due to the density disturbances in the
upper mantle and even deeper sources. The tailored
geopotential models created in this investigation give
better residual gravity anomalies (unbiased and have
much less RMS). The variance has dropped to its one
third. The range has dropped to its one half. All
three tailored geopotential models developed within
the current investigation give practically the same re-
sults.
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from range measurements of short arcs  
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Abstract. Three years of GRACE data have been 
used to simultaneously determine the static gravity 
field model ITG-Grace02s up to a maximum spheri-
cal harmonic degree of n=160 as well as  monthly 
variations in the long wavelength part in one recov-
ery step. The physical model of the gravity field re-
covery technique is based on Newton’s equation of 
motion, formulated as a boundary value problem in 
the form of a Fredholm type integral equation. The 
principal characteristic of this method is the use of 
short arcs of the satellite's orbit in order to avoid the 
accumulation of modelling errors and a rigorous 
consideration of correlations between the range ob-
servations in the subsequent adjustment procedure. 
Only the results of the static gravity field model are 
presented here. The validation of the gravity field 
model is performed by comparisons with existing 
GRACE satellite-only and combined gravity field 
models as well as by external validation based on 
different data sets. The results reveal the excellent 
quality of the presented gravity field model. 

 

Keywords. GRACE, satellite-to-satellite tracking, 
twin-satellite mission, Fredholm integral equation, 
short arc, gravity field recovery  
 

1 Introduction 

As a result of the dedicated space-borne gravity 
field mission GRACE (Gravity Recovery And Cli-
mate Experiment – Tapley et al. 2004), a break-
through in terms of the  accuracy and the resolution 
of the gravity field determination has been achieved. 
The innovative character of this mission lies in the 
highly precise line-of-sight range and range-rate K-
band measurements between the twin satellites. In 
addition, the surface forces acting on the satellites 
are measured and can be removed properly during 
the recovery procedure. As a result of this mission, 
various global gravity field models, satellite-only 
and combined ones, have been derived, such as the 
recent combined model EIGEN-GL04C (Förste et 
al. 2006) and the satellite -only model EIGEN-

GL04S1. Other GRACE gravity field models are 
GGM02C and the satellite-only model GGM02S 
(Tapley et al. 2005).  
The gravity field recovery procedure to derive these 
models is based on the classical approach of satellite 
geodesy. It consists basically in deriving the spheri-
cal harmonic coefficients representing the gravita-
tional potential from an analysis of accumulated 
orbit perturbations of the satellites. It is an 
indispensable requirement to analyse medium or 
long satellite arcs covering at least one day or more 
in order to cover the characteristic periodic and 
secular disturbances caused by the small corrections 
to the approximate force function. 
It has been demonstrated that these requirements are 
not necessary anymore for the new generation of 
dedicated gravity satellites. They can be character-
ized by a modelling concept which acts more in-situ 
than by analyzing accumulated orbit perturbations 
(Ilk et al. 2006). Very precise results can be 
achieved with these new in-situ techniques and are 
able to compete with the results of the classical 
analysis procedures (e.g., Mayer-Gürr et al. 2004).  
In Sect. 2 of this article the computation procedure 
for processing the observations of the GRACE 
mission is sketched. In Sect. 3 results are presented 
and validated by different alternative data sets. Sect. 
4 concludes this article with a summary and some 
perspectives for future work. 

2 The mathematical model for low-low 
satellite-to-satellite tracking 

2.1  Setup of the physical model 

The mathematical-physical model for a single 
satellite is based on the formulation of Newton’s 
equation of motion,  
 ( ) ( ; , ; )t t=r a r r x&& & , (1) 
as a boundary value problem, 
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the normalized time variable, 
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and the boundary values 
 : ( ), : ( ),A A B B A Bt t t t= = <r r r r . (5) 
The specific force function in Eq. (1) with the un-
known parameters x  can be separated as follows, 
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The quantity da  is a disturbance part, which repre-
sents the non-conservative disturbing forces, V∇  is 
a reference part, representing the long wavelength 
gravity field features 0x  and T∇  is an anomalous 
part, modeling the high frequent refinements ∆x  to 
the low frequent gravity field parameters 0x  of the 
global model.  
If precise intersatellite functionals as line-of-sight 
measurements are available, as in case of the 
GRACE mission, the mathematical model for range 
observations can be derived by projecting the 
relative vector to the line-of-sight connection, 
 ( )12 2 1( ) ( ) ( ) ( )ρ τ τ τ τ= ⋅ −e r r . (7) 
Analog formulae can be derived for range-rates and 
range accelerations, but for the determination of 
ITG-Grace02s only ranges have been used. The 
quantity 12e  is the unit vector of the line-of-sight di-
rection of the two GRACE satellites with the posi-
tions 1( )τr  and 2( )τr . This vector is known within a 
few mas, assuming that the satellite positions are 
measured with an accuracy of a few cm and taking 
into account the distance of approximately 200km 
between the two satellites. Nevertheless, the accu-
racy is not adequate to the  high accuracy of the 
range measurements in the size of some mµ . 
Therefore, a model refinement is necessary which 
improves implicitly also the relative orbit. We will 
not show the details here because of space and refer 
to Mayer-Gürr (2006). Further details to the physi-
cal model of the gravity field recovery technique 
based on GRACE low-low SST data can also be 
found in Mayer-Gürr et al. (2006).  
 
2.2  Gravity field representation 

The anomalous potential ( , )T ∆xr  can be formu-
lated as follows,  
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 (8) 
with the corrections ,nm nmc s∆ ∆ ∈ ∆x  to the refer-
ence potential coefficients 0,nm nmc s ∈ x  and with 
the surface spherical harmonics, 
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In case of a regional recovery the anomalous poten-
tial ( )T r  can be modeled by parameters of space 
localizing base functions as well as shown e.g., in 
Mayer-Gürr et al. (2006) and Schmidt et al. (2006). 
 
2.3 The linearized deterministic model 

The functional model describes the dependency of 
the observables on the gravity field parameters. If 
we write Eq. (7) as 
 ( )12 2 1( ) ( ) ( ) : ( )fρ τ τ τ⋅ − =e r r x= , (10) 
then we can write after linearization,  
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The first term at the right hand side can be derived 
from Eq. (10), the second term from Eq. (2), and the 
third term from Eq. (6) and Eq. (8). If all linearized 
observation equations are collected for one short arc 
then we arrive at the following matrix equation, 
 ∆ +l A x e= , (13) 
with the observations l  and the unknowns ∆x , 
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where the terms 0 ( )iρ τ  contain the  reference pa-
rameters; e  is the error and the design matrix A  is 
composed of the partial di fferentials as shown in Eq. 
(12). 
 
2.4 The stochastic model 

The ranges between the twin satellites are strongly 
correlated; the same holds for the range-rates and 
the range accelerations. Therefore, an appropriate 
selected stochastic model has to be introduced by a 
variance-covariance matrix 2 1( ) σ −=C l P  for each 



 

 

 

 

 
 
 
 
 
 
 

 
 

Fig. 1: Range residuals after least squares adjust-
ment without decorrelation for a 30-minutes arc. 

 
 
 
 
 
 
 
 
 
 

Fig. 2: Range residuals after least squares adjust-
ment with decorrelation for a 30-minutes arc.  

 
short arc. The consideration of this variance-
covariance matrix acts as a decorrelation of the ob-
servations and the decorrelated adjusted residuals 
should show white noise.  
The derivation of a realistic variance-covariance 
matrix is very important: in case of a correct decor-
relation one can claim that the solution is optimal in 
the statistical sense, and it is not necessary to intro-
duce calibration parameters for the K-band meas-
urements. The formal errors of the adjustment re-
sults do not need any calibration. If the adjustment 
is performed without decorrelation then we get typi-
cal residual features as shown in Fig. 1 for a 30-
minutes arc. 
The variance-covariance matrix is composed of two 
parts: the first part describes the noise of the K-band 
measurements, 2 ( ) T

Pσ F C p F , and the second one 
the noise of the accelerometer measurements, 

2 ( ) T
aσ B C a B , so that it holds for the variance 

covariance matrix, 
 2 2( ) ( ) ( )T T

P aσ σ= +C l F C p F B C a B .    (15) 
 

The matrix F  describes the filtering of the phase 
observations and B  a corresponding filtering matrix 
for the accelerometer measurements (cf. Mayer-
Gürr 2006; Thomas 1999, Wu et al. 2004). Fig. 2 
shows the residuals after least squares adjustment of 
the same arc as shown in Fig. 1 in case of 
decorrelated observations. 

2.5 Combination of the normal equations 

The arc-related parameters are eliminated before the 
arcs are merged to the complete system in order to 
reduce the dimension of the adjustment problem. 
Every short arc builds a (reduced) partial system of 
observation equations. Separate variance factors for 
each arc have been determined to combine the de-
sign matrices and to consider the variable precision. 
The variance factors are computed by means of a 
variance component estimation procedure described 
in Koch and Kusche (2003). The details of the itera-
tive combination scheme combined with a variance 
component estimation and the computation of the 
regularization factor as well as the procedure to 
solve the complete system without establishing the 
normal matrices are described in Mayer-Gürr 
(2006). 

3 Gravity field solution ITG-Grace02s 

3.1  Data set and choice of parameters 

For the determination of the gravity field model 
ITG-Grace02s K-band range measurements of the 
GRACE twin satellite mission have been used for 
the period February 2002 until December 2005 cov-
ering approximately three years. The approximately 
18 million ranges are corrected for the tides caused 
by Sun, the Moon and the planets. The ephemerides 
are taken from the JPL405 data set. Effects originat-
ing from the deformation of the Earth caused by 
these tides are modelled according to the IERS 2003 
conventions. Ocean tides are computed using the 
FES2004 model. Effects of high frequency atmos-
phere and ocean mass redistributions are removed 
prior to the processing by the GFZ AOD de-aliasing 
products. Only the K-band range measurements 
have been used as observations, the Level 1B orbits 
have only served as approximation values for the 
linearized observation equations. As already men-
tioned the three years data have been split into short 
arcs of approximately 30 minutes arc length. A 
global spherical harmonic solution up to degree 
n=160 beginning from degree n=2 has been deter-
mined simultaneously with monthly temporal varia-
tions of the potential coefficients from degree n=2 
to degreee n=40. It shall be pointed out that no regu-
larisation has been used for this solution. The tem-
poral variations have been modelled by linear spline 
functions with monthly resolution. This will be con-
text of a later publication. In addition to the gravity 
field parameters for each arc a K-band range bias 
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and an accelerometer bias have been estimated as 
well.  
 
3.2  Comparisons with alternative solutions 

The model ITG-Grace02s is compared to gravity 
field models derived by other institutions , which are 
also based on GRACE data. We performed com-
parisons with the recent satellite-only model 
GGM02S (data from 2002 April – 2003 Dec) and a 
combined solution GGM02C of CSR, Austin (Ta-
pley, 2006).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Comparisons of ITG-Grace02s with GGM02 

of the Center of Space Research (CSR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Comparisons of ITG-Grace02s with EIGEN-

GL04 of the  GeoForschungsZentrum Potsdam. 
 
Fig. 3 shows the results in the spectral domain: The 
difference degree amplitudes w.r.t. to the models 
GGM02S and GGM02C are approximately identical 
up to degree n=90, but are smaller from degree n=90 
upwards for the combined solution than those for 
the satellite -only solution. This is since the terres-
trial data in GGM02C supports the higher degrees 
and, obviously, these are better resolved in our satel-
lite-only solution than in the satellite-only solution 
GGM02S. A similar performance can be observed if 

our model is compared with the recent satellite-only 
solution EIGEN-GL04S1 (data from 2003 Feb – 
2005 July) and the combined solution EIGEN-
GL04C (Fig. 4). There is a strange jump in the dif-
ference degree amplitudes at degree n=115; this is 
the cut-off point of the GRACE data while the de-
grees above are dominated by terrestrial data. Obvi-
ously, the fit of the terrestrial data to the GRACE 
data was not smooth enough within the combination 
procedure in deriving the combined solution EI-
GEN-GL04C. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Differences of ITG-Grace02s and EIGEN-
GL04S1 in terms of geoid undulations (degree range 
2..130, RMS=10.2cm, avg=7.3cm, max=79.4cm). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Differences of ITG-Grace02s and EIGEN-
GL04C in terms of geoid undulations (degree range 
2..130, RMS=11.7cm, avg=7.9cm, max=141.8cm).  

 
This can also be observed in the differences of ITG-
Grace02s and the models EIGEN-GL04C and 
EIGEN-GL04S1 in the space domain for the 
degrees n=2..130. While the differences to EIGEN-
GL04S1 show the typical stripes in various parts of 
the geoid there are no specific differences over the 
continents (Fig. 5). This is different in the difference 
plot with EIGEN-GL04C: here the stripes vanished 
to a large extent but there are clearly pronounced 
error effects over South America and Antarctica 
(Fig. 6). 
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3.3  External validation 

ITG-Grace02s is a satellite-only solution without 
applying any regularization. An external validation 
by completely different data sets could give a hint to 
its precision. One possibility is the comparison with 
the EGM96 which is primarily derived from altimet-
ric data ove r the oceans. Fig. 7 to Fig. 9 show the 
differences only over the oceans between ITG-
Grace02s and EGM96 (Lemoine et al. 1996) in 
terms of geoid undulations. For comparison the dif-
ferences of the models EIGEN-GL04S1 and 
GGM02S to the EGM96 are displayed as well. The 
degree range of the spherical harmonics expansion 
is limited to an upper degree 130.  
Our model ITG-Grace02s shows the smallest global 
RMS values and average differences compared to 
the other two satellite-only models. The improve-
ment can be demonstrated better if the differences 
are visualized in the space domain: the error stripes 
of the ITG-solution are significantly less pro-
nounced than in case of the other models. Especially 
in the oceanographic important areas of the Atlantic 
Ocean and the region of the southern circum polar 
current, smaller errors can be observed. 
Another external validation is the comparison with 
terrestrial data, in most cases the comparison with 
geoid undulations derived as differences of 
ellipsoidal heights determined by GPS and or-
thometric heights (or corresponding normal 
heights). Table 1 shows comparisons with gravity 
anomalies and geoid undulations, derived from GPS 
and levelling measurements at various benchmark 
locations. The values for the USA were provided by 
the US National Geodetic Survey, (http://www.ngs. 
noaa.gov/GEOID/GPSonBM99/gpsbmdoc99.html),  
 

Table 1: External validation of ITG-Grace02s and 
other recent models with various external data 

sources (RMS, compared up to degree n=130, filled 
up with EGM96). 

 

model 
NIMA 

Altimeter 

NIMA 

terrestrial 

GPS 

USA 

GPS 

Canada 

ITG-Grace02s 6.6 mgal 11.2 mgal 43.6 cm 31.2 cm 

EIGEN-GL04S1 6.8 mgal 11.4 mgal 43.7 cm 32.6 cm 

GGM02S 7.5 mgal 11.6 mgal 45.8 cm 36.1 cm 

EIGEN-
GRACE02S 

7.7 mgal 12.0 mgal 48.6 cm 36.7 cm 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Differences of EIGEN-GL04S1 and EGM96 
in terms of geoid undulations for the degrees 2..130 
(only oceanic areas: RMS=26.2cm, avg=14.8cm, 

max=512.3cm). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Differences of GGM02S and EGM96 in 
terms of geoid undulations for the  degrees 2..130 
(only oceanic areas: RMS=30.9cm, avg=20.8cm, 

max=489.7cm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Differences of ITG-Grace02s and EGM96 in 

terms of geoid undulations for the  degrees 2..130 
(only oceanic areas: RMS=24.8cm, avg=13.0cm, 

max=516.2cm). 
 
 



 

 

 

 

the data sets for Canada by the National Resources 
of Canada (http://www2.geod.nrcan.gc.ca/~marc/ 
Html/GPS_e. html). Again, over the continents the 
ITG-Grace02s model shows slightly smaller RMS 
values than the other satellite-only gravity field 
models. 

4 Conclusions 

In this paper the static GRACE-only gravity field 
model ITG-Grace02s, covering the degrees ranging 
from n=2 to n=160, has been presented. Compari-
sons with other recent satellite-only models and 
combined gravity field models demonstrate the high 
quality of this model. All tests show better results 
for our model than for the other satellite-only mod-
els. Also the comparisons with combined models 
confirm the high quality of ITG-Grace02s. There-
fore, this model reconfirms the gravity field recov-
ery strategy developed at the Institute of Theoretical 
Geodesy of the University Bonn. It is an adequate 
recovery procedure for the analysis of precisely de-
termined kinematical orbits, which lead to the 
CHAMP models ITG-CHAMP01 and 02 (cf. 
Mayer-Gürr et al. 2004), and it demonstrates  im-
pressively the suitability for the processing of SST 
observations of the low-low type. The characteris-
tics of our alternative in-situ gravity field recovery 
strategy can be sketched as follows: use of short arcs 
for gravity field recovery, derivation of  a rigorous 
stochastic model for the observations based on the 
filtering procedure of the original observations and a 
physical model, based on the solution of Newton’s 
equation of relative motion, formulated as a bound-
ary value problem of Fredholm type.  
The next steps concentrate on the improvements re-
lated to the determination of combined gravity field 
models and the determination of time variable re-
gional gravity field models represented by space lo-
calizing base functions. The gravity field recovery 
strategy of the ITG as part of a unitized Gravity 
Recovery Object-Oriented Programming System 
(GROOPS), which is tailored to the in-situ 
observables of the new generation of gravity 
satellite missions , has to be improved and extended 
for various additional tasks.  
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Towards a characterization of temporal gravity
field variations in GRACE observations and
global hydrology models

S. Petrovic, R. Schmidt, J. Wünsch, F. Barthelmes, A. Güntner and M. Rothacher
GeoForschungsZentrum Potsdam, Germany

Abstract. In order to exploit the GRACE-
based time-variable gravity signals e.g. in hydro-
logical modeling of the global water cycle appro-
priate techniques to separate the relevant hydro-
logical signal from the integral satellite gravity
data will be needed. Recent investigations fo-
cus on comparisons on the basis of time vari-
ations of the Earth gravity field reconstructed
from monthly GRACE-only gravity field solu-
tions and global hydrological models. This shows
both pronounced similarities and considerable
differences. On the other hand, since the same
holds for comparisons between various state-of-
the-art hydrology models, a more general view
on the morphology of time-variable gravity sig-
nals due to hydrological mass redistributions will
be needed. In a preparatory study to this end we
have investigated time-variable signals derived
from three different state-of-the-art global hy-
drology models and from recent time series of
monthly GRACE-only gravity models. In or-
der to infer common characteristic features from
the distinct data sources we use spectral coher-
ence analysis and Empirical Orthogonal Func-
tions analysis in the space domain. The contri-
bution presents current results.

Keywords. time-variable gravity, GRACE
satellite mission, global hydrological models, co-
herence, degree correlations, empirical orthogo-
nal functions.

1 Introduction and motivation

The twin GRACE satellites were launched on
March 17, 2002 (GRACE = Gravity Recovery
and Climate Experiment). Their primary pur-
pose is to monitor the gravity field of the Earth
(Tapley et al. 2004a), both the static field (Reig-
ber 2005) and the time-variable part of it (Dickey

et al. 1997, Wahr et al. 1998, Peters 2001, Ta-
pley et al. 2004b, Wahr et al. 2004, Schmidt et
al. 2006a) with unprecedented accuracy.

At GFZ Potsdam a time series of monthly
GRACE-only gravity field models (labeled GFZ-
RL03) covering the period 02/2003 to 06/2006
has been processed (altogether 39 models). The
models are based on the most recent back-
ground models and processing standards. In or-
der to derive the outer accuracy of these models
and derived satellite-based mass anomalies to be
used in applications, an accuracy assessment of
these models has been performed by means of
a GRACE internal calibration approach. Based
on the basic assumption that residual variabil-
ity in the GRACE models after removing domi-
nant seasonal signals mainly represents errors of
the models, we derived individual accuracy esti-
mates in the space domain in order to scale the
formal variance-covariance information from the
adjustment. For verification we then intercom-
pared the model accuracies, computed from er-
ror propagation of the scaled covariance matrices
with the residual variability of the models in the
space domain, cf. (Schmidt et al. 2006b)

The main unmodeled component in the
GRACE gravity recovery processing are hydro-
logical mass redistributions and are clearly trace-
able in the monthly gravity field models. How-
ever, the errors of GRACE observations and the
physical models used, as well as the influences
of unmodeled mass redistributions (like changes
in ice shields) are still contained as well. There-
fore, comparing the variations of water stocks de-
duced from GRACE with different state-of-the-
art global hydrology models shows both a good
agreement (in some regions for some time inter-
vals) and considerable differences. On the other
hand, the disagreement between existing global
hydrology models (see e.g. Abrikosov et al. 2006)
is also considerable and it is not possible to de-



cide what corresponds best to the real variations
of water stocks. In this way a direct exploita-
tion of GRACE-based mass signals as true ob-
servations of global water stocks as a constraint
for the evaluation and calibration of a global hy-
drological model is not indicated. Instead, it is
necessary to characterize different dynamic pro-
cesses and to separate the relevant hydrological
signal from the integral satellite gravity data.

2 Characteristic features of dynamic
processes

In order to characterize the morphology of hydro-
logical mass redistributions we investigated three
state-of-the-art global hydrology models, H96
(Huang et al. 1996, Fan and van den Dool 2004),
LaD (Milly and Shmakin 2002) and WGHM
(Döll, Kaspar and Lehner 2003), as well as wa-
ter storage variations deduced from GRACE to
find common features that are contained in both
types of information sources.

These models are compared in space and in
the spectral regions. The data sets can be
transformed between the gridded form and the
spectral form (expressed as Stokes coefficients
Cnm, Snm), based on fully normalized spherical
harmonic functions Y m

n
(Heiskanen and Moritz

1967).
Among the possible methods which we inves-

tigate are correlations in the spectral domain
(degree correlations, coherence) and Empirical
Orthogonal Functions (EOF/PCA = Principal
Component Analysis).

3 Spectral correlations (coherence)

Different sorts of spectral correlations were com-
puted: the usual degree correlations between
two models for individual epochs, correlation be-
tween time variabilities of individual coefficients
and the degree correlations between time vari-
abilities of all coefficients belonging to the same
degree. Since the reference level of the global
hydrology models is relative and the scale uncer-
tain, all correlation computations are centered
and normed (corresponding to the usual statis-
tical definition of the Pearson linear correlation
coefficient).

As an example we show the spectral correla-
tions between 156 months (1992-2004) of the hy-
drology models WGHM and H96 up to Legendre
degree n=100.

Figure 1 presents the degree correlation r(n)
as a function of time and of degree n. The plot
shows that every twelfth month has a poor corre-
lation between WGHM and H96 (nearly white);
there is also some semi-annual structure. Inter-
annual variations are present, too.
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Figure 1. Degree correlations between spherical
harmonic coefficients of global hydrology models
WGHM and H96.

Figure 2 depicts the correlation per spherical
harmonic coefficient (SHC) coded in color as a
function of degree n and order m. Common fea-
tures of hydrology models are indicated by high
correlations, which seem to dominate the pat-
tern. However, there are also fields of low corre-
lations (light red) and even negative correlations
(blue) spread over almost all regions. Taking into
account that this approach might be too opti-
mistic, since every computed correlation is based
on a different regression, this confirms the fact al-
ready established in earlier studies performed in
space domain that the differences between vari-
ous global hydrological models are considerable.

Comparing 35 GRACE monthly mean fields
with the WGHM model, we obtain Fig. 3 (cor-
relation per SHC, in analogy to Fig. 2) The pat-
tern shows high positive correlations between the
temporal variability of spherical harmonic coeffi-
cients deduced from GRACE and from the global
hydrology model WGHM mainly in the low de-
grees and orders. In this way it indicates the cur-
rent sensitivity of GRACE models. The pattern
may give some insight for designing GRACE-
related filters.

Integral correlations in spectral domain be-
tween global hydrology models and GRACE are
illustrated in Fig. 4 (degree correlations for two
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Figure 2. Correlations between time variations of
individual spherical harmonic coefficients of global
hydrology models WGHM and H96.
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Figure 3. Correlations between time variations of
individual spherical harmonic coefficients between
WGHM and GRACE.

time series of vectors). The degree correlations
are significant only for n≤20 which was already
visible in Fig. 3.

Temporal averaging of monthly degree corre-
lations (computed between WGHM and GRACE
in the same way as those presented in Fig. 1) over
the 35 months used results in curves which agree
well with Fig. 4.
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Figure 4. Degree correlations between time vari-
abilities in WGHM and GRACE.

Concluding this section, we remark that al-
though the results are somewhat too optimistic,
several interesting features can be observed. In
the future, the investigation of spectral correla-
tions presented will be extended to individual
water catchment areas.

4 Empirical Orthogonal Functions

The second method we used is EOF (Empiri-
cal Orthogonal Functions), see e.g. (Preisendor-
fer 1988, Wilks 1995, Bosch 2001), where a re-
view of the history and of this method itself can
be found. In its common form, the use of SVD
(Singular Value Decomposition) is involved.

In order to detect systematic parts of mass re-
distributions from GRACE and hydrology mod-
els we apply Empirical Orthogonal Functions to
time series of global grids of mass anomalies de-
rived from the distinct data sources.

4.1 Application to global hydrology models
and GRACE-derived mass variations

Figure 5 shows the eigenvectors of the first three
modes for three global hydrological models: H96,
LaD and WGHM. We used a FORTRAN package
from D. Pierce (Scripps Institution, La Jolla),
available on his internet home page. The com-
putations were performed using covariance ma-
trix. The corresponding principal components as
functions of time are given in Fig. 6.
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Figure 5. Patterns of eigenvectors for the first three
modes (rows) of H96 (left), LaD (center) and WGHM
(right).
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Figure 6. Curves of principal components for the
first three modes (rows) of H96 (left), LaD (center)
and WGHM (right).

The first modes mainly show an annual sine
wave. In higher modes, also a semi-annual oscil-
lation appears as well as long-period variations.
The three models differ in their higher princi-
pal components. Mode 2 of LaD has a some-
what ‘spiky’ annual wave, revealing the presence
of higher harmonics of the annual cycle.

For comparison, the pattern of eigenvectors
and the curve of principal components (mode 1)
for the GRACE-deduced time variations of water
stocks are presented in Fig. 7.
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Figure 7. GRACE mode 1: pattern of eigenvectors
(left) and the curve of principal components com-
pared with H96, LaD and WGHM (right).

Tables 1 and 2 list the percentage of signal
(variance resp. cumulative variance) explained
by the first 10 modes. WGHM is slightly differ-
ent from other hydrology models, the variances
for GRACE are similar to those for WGHM.

In all four cases the first mode explains a
considerable part (35-60%) of entire variations.
Since the patterns of eigenvectors conform well,
it makes sense to analyze the behavior of princi-
pal components.

4.2 Analysis of principal components

The application of Empirical Orthogonal Func-
tions analysis transforms the considered models
(hydrological and based on GRACE) in such a
form which makes it possible to detect periodic

Table 1. Variances (in %) for the first ten modes

Mode H96 LaD WGHM GRACE

1 59.46 59.16 36.07 35.60
2 8.02 11.08 13.05 11.56
3 4.05 3.74 10.22 7.10
4 3.29 3.34 6.68 4.07
5 2.45 2.06 5.10 3.41
6 2.30 1.57 4.09 3.09
7 2.09 1.48 2.55 2.89
8 1.66 1.13 2.30 2.62
9 1.41 1.11 1.66 2.48

10 1.33 0.87 1.60 2.10

Table 2. Cumulative variances (in %) for the first
ten modes

Mode H96 LaD WGHM GRACE

1 59.46 59.16 36.07 35.60
2 67.48 70.24 49.12 47.16
3 71.53 73.98 59.34 54.26
4 74.82 77.32 66.02 58.32
5 77.27 79.37 71.12 61.73
6 79.57 80.95 75.22 64.83
7 81.66 82.43 77.77 67.72
8 83.33 83.56 80.07 70.34
9 84.74 84.67 81.73 72.81

10 86.07 85.54 83.33 74.91

and other systematic parts of the signal. Com-
parison of periodic parts found in different mod-
els was performed using classical Fourier analy-
sis, wavelets and detection of individual periods
contained in the models. The last mentioned ap-
proach makes it possible to compare not only the
periods, but the phases as well.

Since the time interval of the available
GRACE data is much more limited than the
common time interval of the global hydrological
models, a comparison of the two is only condi-
tionally possible.

The search for arbitrary periods can be per-
formed efficiently using the methodology de-
scribed in (Mautz and Petrovic 2005). In the
present case (maximally 156 epochs), a system-
atic search with a small step also performs well.

Table 3 contains the ten most significant peri-
ods found in the first principal component of the
three considered hydrological models. The phase
refers to the model sin(ω ∗ t − ϕ) with the time
coordinate origin situated in the middle of the



Table 3. Analysis of periodic features in principal
components: ten most significant periods of mode 1
(periods P in years, phases ϕ in degrees).

period H96 LaD WGHM
no. P ϕ P ϕ P ϕ

1 1.00 -86 1.00 -71 1.00 -88
2 3.98 -74 0.50 -64 7.61 33
3 0.50 -145 1.16 128 1.97 63
4 1.29 -41 7.64 14 3.93 28
5 15.25 117 1.99 79 0.50 -41
6 0.81 135 0.81 165 1.53 65
7 0.73 -83 0.33 21 0.81 146
8 0.90 -19 1.32 -23 0.66 150
9 0.33 26 1.61 53 0.61 169

10 3.08 -55 3.87 -47 1.41 -42

considered time interval.

The first (most significant) period (annual)
explains 93% (H96 and LaD) resp. 82% of the
principal component of the first mode. This an-
nual period shows rather similar phase angles in
the three hydrology models. The semi-annual
period is also visible in all three models; how-
ever, the phase angles do not agree so well as for
the annual period. Some further periods may be
present, like 3.9 and 7.6 years.

Figure 8 presents the nine most significant pe-
riods for mode 1 after subtraction of an annual
wave as well as the results obtained by Fourier in-
tegral. Additionally, a wavelet analysis of princi-
pal components (not shown here) was performed.

The first period (annual) explains 89% of
the principal component of the first mode for
GRACE, the pattern of eigenvectors for this
mode is similar to respective patterns of the con-
sidered global hydrology models (cf. Fig. 5 and
7). Hence, it makes sense to compare phases of
annual periods as well. A good agreement is al-
ready visible from Fig. 7 (right). Defining the
origin of the time-axis in the middle of the time
interval common to the three considered hydro-
logical models and GRACE monthly solutions
shows that all four phases lie inside an interval
of 20 degree width. Taking into account that
one month corresponds to 30 degrees and that
monthly solutions for all four models were used,
the agreement can be regarded as very good.

Figure 8 includes also the nine most significant
periods for mode 1 after subtraction of an annual
wave as well as the results obtained by Fourier
integral for GRACE.

Figure 8. Fourier-spectrum and the nine most sig-
nificant periods for mode 1 (annual wave subtracted):
H96 and LaD (upper row), WGHM and GRACE
(bottom row).

5 Conclusions

Different kinds of global spectral correlations
have been investigated. They reveal interesting
common spectral features.

EOF/PCA make it possible to find peri-
odic features in principal components and to
search for additional systematic behaviors. The
strongest global component is annual, the phases
found in the three considered global hydrology
models and GRACE conform well.

It turns out that all the three models contain
an almost perfect annual oscillation with almost
identical phases. This means that about 30-60%
of the total signal can be explained by the same
annual oscillation which can be regarded as a
common characteristic of all the three hydrology
models considered and likely of the real hydrolog-
ical variations. Comparing this with the result
of the EOF analysis of GRACE-deduced water
stocks variations strengthens this conclusion.

The patterns of eigenvectors compare well for
the dominant modes of different global hydrol-
ogy models and somewhat less well with GRACE
(the problem of striped features in GRACE
monthly solutions).
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Abstract. A mission for monitoring the variations 
of Earth’s gravity field at high resolution (up to 
harmonic degree 200) over a long time period (>5 
years) has been defined within the “Laser Doppler 
Interferometry Mission for Determination of the 
Earth’s Gravity Field” study for the European Space 
Agency. The mission exploits the use of a hetero-
dyne laser interferometer for the high-resolution 
measurement of the displacement between two sat-
ellites flying at low altitude (325 km). Starting from 
the geophysical phenomena to be investigated, a 
detailed derivation of the mission requirements        
(orbit, satellites and measurement instruments: laser 
interferometer, accelerometer) was performed using 
analytical models and numerical simulations. A 
precision of about 1 nm rms is needed in the inter-
satellite distance measurement, while the non gravi-
tational accelerations must be measured with a pre-
cision of about 10-10 m/s2 rms.  

The overall metrology system designed for this 
mission includes, beside the heterodyne laser inter-
ferometer for the measurement of the inter-satellite 
distance, devices for the measurement of the lateral 
displacement and of the relative orientation of the 
two satellites (also contributing to the mission per-
formance). Laboratory prototypes of the novel lat-
eral displacement and angle metrology have been 
submitted to first proof-of-concept tests, achieving 
promising results. 

Keywords. Space gravimetry, satellite-to-satellite 
tracking, laser metrology, Michelson interferometer. 
 
 
1  Introduction 
 
The last decade has been characterised by an in-
creasing, worldwide concern about our planet and 
its environment. It is now commonly recognised 
that, in order to pursue a sustainable development, it 
is first necessary to monitor and to understand the 
ongoing evolution of the Earth’s climate and envi-
ronment. To address these issues in the appropriate 
way, it is of paramount importance to understand 
the geophysical processes that characterise the vari-
ous sub-systems of the complex, time evolving 
Earth’s system, namely those affecting the        
Geosphere, the Atmosphere, the Hydrosphere, the 
Cryosphere and the Biosphere.  

In order to understand and to build the appropri-
ate forward models of the geophysical processes, 
targeted towards the prediction of the ongoing 
global changes, the provision of globally distributed 
gravity data is of fundamental importance, since 
they provide information on the mass exchanges 
characterising the dynamic processes which inter-
link the various sub-systems of the evolving Earth.   

Effort in space geodesy missions, from the first 
ones based on Satellite Laser Ranging (SLR), like 
LAGEOS, to the latest CHAMP, GRACE and 



GOCE, belongs to this scenario. The purpose of 
these space missions is to detect the gravity field 
and its time variations at ever-increasing accuracy 
and spatial resolution (see Table 1). But these mis-
sions suffer a complementary limitation: CHAMP 
and GRACE have a lifetime long enough to allow 
observing time variation of the gravity field, but not 
at high resolution; GOCE enables to achieve a sig-
nificantly larger resolution, but its lifetime is suffi-
cient to make only a snapshot of the geopotential. 

In 2004 the European Space Agency (ESA) 
awarded to Alcatel Alenia Space Italia a contract 
for studying a new space gravimetry mission, 
named Satellite-to-Satellite Interferometry (SSI), 
having the objective of monitoring the temporal 
variations of the Earth’s gravity field at high resolu-
tion, up to harmonic degree 180-240 (as provided 
by GOCE, but extended also to longer wave-
lengths), over a long period of time of 5 to 10 years 
(as for CHAMP, GRACE).  

 
Table 1. Objectives and performances of CHAMP, GRACE 
and GOCE 
      

 CHAMP [1] GRACE [2] GOCE [3] 

Launch 
date 

July 2000  March 2002 2007 

Orbit alti-
tude,   
inclination  

h = 454 km 
(initial value) 
i = 87° 

h = 494 km 
(initial value) 
i = 89° 

h = 250÷260 
km 
i = 96.5° 

Lifetime >6 years >8 years 20-30 months 

Main  
payloads 

Accelerometer, 
GPS receiver 

K-band ranging 
system, Accel-
erometer, GPS 
receiver 

3-axis Gradi-
ometer, 
GPS receiver 

Primary 
gravimetric 
measured 
quantities  

Satellite  posi-
tion 

Inter-satellite 
range rate 
 

Diagonal com-
ponents of the 
gravity gradi-
ent tensor 

Measure-
ment   
accuracy 

<30 cm (range 
measurement), 
<0.2 cm (phase 
measurement) 

1 µm/s From ∼50 to  
∼7 mE/Hz1/2 
between 5 mHz 
and 100 mHz  

Gravity 
field meas-
urement 
objectives 

Global map-
ping of Earth 
gravity field 
(constant and 
time-variable 
part) with a 
cumulative 
Geoid height 
error of ∼1 cm 
at the harmonic 
degree ∼30  

Global map-
ping of Earth 
gravity field 
(constant and 
time-variable 
part) with a 
cumulative 
Geoid height 
error of 1 cm  
at harmonic  
degree ∼120  

Global map-
ping of Earth 
gravity field 
(constant part) 
with a cumula-
tive Geoid 
height error of 
1 cm at the 
harmonic de-
gree 200  

To achieve its objectives, the SSI mission shall 
make use of the so called Low-Low Satellite-to-
Satellite Tracking technique, similar to that adopted 
on GRACE, but where the inter-satellite distance 
variation produced by the geopotential is measured 
by a laser interferometer rather than a radio-
frequency ranging system (Figure 1). A similar 
concept was considered also for the mission EX-5, 
proposed to NASA as successor to GRACE. The 
intrinsically higher resolution of the laser interfer-
ometry allows in principle to reconstruct the Earth 
gravity field with a significantly higher spatial reso-
lution, if the other relevant mission parameters are 
sized to match the interferometer performance [5]. 

The objectives of the SSI mission assessment 
study, whose main results are presented here, were: 

 

1. To review a set of geophysical phenomena in-
volving mass redistribution (potential objectives 
of the SSI mission) and to derive their impact on 
the temporal variations of the Earth gravity field. 

2. To analyze the geopotential measurement by 
Satellite-to-Satellite Tracking and to derive re-
quirements on the SSI mission parameters and on 
the performance of its scientific instruments. 

3. To establish an appropriate design for the SSI 
laser metrology and for its control system. 

4. To outline the satellite configuration. 
5. To define an R&D programme leading to the 

realisation of the laser metrology system.  
6. To implement laboratory prototypes of some key 

elements of the laser metrology system and to 
subject them to first proof-of-concept tests.  

 

Earth

satellite 2 satellite 1

g2 g1

∆d

   
Fig. 1 Principle of the SSI technique: the inter-satellite dis-
tance variation �d produced by the gravity accelerations g1, 
g2 is measured by a laser metrology system 

 
2  Geophysical Phenomena with        
Impacts on Earth’s Gravity Field 
 
Basically all the medium and large-scale geophysi-
cal phenomena involve significant mass redistribu-
tion in the Atmosphere (global and small-scale cir-
culation), the Cryosphere (ice mass unbalance, 
mountain glaciers melting), the Hydrosphere (sea 



level changes, ocean dynamics) and the Lithosphere 
(post glacial rebound, tectonics subduction). There-
fore they can be potentially investigated and moni-
tored by measuring the variations they induce in the 
Earth geopotential and in the related quantities: the 
height anomaly and the free air gravity anomaly 
(cfr. Heiskanen and Moritz, 1967 for definitions). 
Since these quantities will be computed at the sur-
face level, we shall refer to them (somehow im-
properly) as geoid height and gravity anomaly. For 
understanding the long-term climatic variations, it is 
particularly important to identify the trends pro-
duced by these phenomena on the gravity field pa-
rameters. A summary of some geophysical phe-
nomena reviewed during the study and of their sig-
nature on the gravity field is provided in Table 2.  

 
Table 2. Geophysical phenomena and gravity field signature 

Geophysical 
Phenomenon 

Gravitational sig-
nature (drift rate or 
amplitude) a 

Geopotential 
Degree b 

Temporal 
Evolution 

Post Glacial 
Rebound 

1 mm/year 
(geoid: cumulative 
error) 

Summed 
from 
 � =2 to 200 

Secular 

Ice mass un-
balance in 
Antarctica and 
Greenland 

0.05÷ 0.7 mm/year 
(geoid: harmonic 
degree variance) 

� = 200  Secular 

Tectonics – 
subduction 

25 ÷ 100 mGal 
2 ÷ 9⋅10-6 mGal/yr 
(gravity anomaly) 

� = 200 ÷ 
700 

10 Myr   
(typical 
period) 

Mountain 
glaciers 

0.02÷ 0.07 mm/yr 
(geoid: harmonic 
degree variance) 

� = 200 Annual to 
secular 

Hydrology: 
global hydro-
logical cycle 
and land water 
storage 

0.02÷0.07 mm/yr 
(geoid: harmonic 
degree variance, 
Po plain basin) 

� = 200 Months 
(typical 
period) 

Sea level 
changes 

1 mm/yr 
(geoid: cumulative 
error) 

Summed 
from  
� =2 to 200 

Secular 

Ocean basin- 
scale        
dynamics 

1 cm  
(geoid: cumulative 
error) 

Summed 
from � = 4 to 
20 

Several 
years pe-
riod 

Atmosphere 
global      
circulation  

0.5 mm/yr  
(geoid: harmonic 
degree variance) 

� = 4 Annual to 
secular 

a Required measurement accuracy of geoid undulation drift 
rate or gravity anomaly amplitude or drift rate needed to 
detect the phenomenon. 

b Degree � of the geopotential spherical harmonic corre-
sponding to the typical spatial resolution of the phenome-
non (� = 20000 km/spatial resolution km). 

 

3  Model of the Gravity Field Measure-
ment by Satellite-to-Satellite Tracking 
 
An analytical model has been developed in order to 
express the geopotential measurement error as func-
tion of the main parameters of the SSI mission, in 
which the information about the Earth gravity are 
obtained from tracking the distance variation be-
tween two satellites flying on the same orbital path 
at low altitude. The gravitational potential has been 
split into two parts: a model potential V and the 
residual part U (anomalous potential) which is what 
we want to retrieve. By representing the anomalous 
gravitational potential of degree � (U�) in terms of a 
Fourier series, the variance of the estimation error 
of the Fourier coefficients (Ak, Bk) is obtained as [5] 
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– J, M = number of orbits and number of meas-
urements in the observation period respectively. 

– ε = angular separation between the two satellites. 
– ω = orbit mean motion. 
– R, µ  = Earth radius and gravitational parameter. 

– 
kI

S
,ν ,

ka�
S

,
= spectral density of the inter-satellite 

distance and of the non-gravitational acceleration 
measurement noise, respectively.  

 

From the above expression, the errors on the deter-
mination of the geoid undulation (N) and of the 
gravity anomaly (∆g) can be obtained as follows 
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4  Satellite-to-Satellite Interferometry 
Mission Sizing 
 
4.1  Mission Reference Parameters 
 
A high resolution measurement of the Earth gravity 
field calls for the lowest possible altitude. In fact, 
the anomalous gravitation potential of degree � de-

creases with the orbit radius r as: )1( +−∝ �

�
rU . 

Conversely, a long mission lifetime (required to 
improve the monitoring of the gravity field tempo-
ral variations) cannot be achieved at very low alti-
tude because of the excessive amount of propellant 
needed for the aerodynamic drag compensation. 
The orbit inclination must be as close as possible to 
90° to ensure a gravity field sampling at all lati-
tudes, compatible with the design constraints of the 
satellites and of the metrology system.  

For any established set of values for the orbit al-
titude, inclination, observations duration, a suitable 
combination of  inter-satellite distance and meas-
urement error of the inter-satellite distance variation 
and of the non-gravitational accelerations acting on 
the satellites was determined using the expressions 
given in Chap. 3. At the end of an extensive analy-
sis of the orbital perturbation and control and of the 
scientific performance, the following reference mis-
sion parameters have been established: 
 

– Circular orbit spherical altitude h = 325 km. 
– Orbit inclination i = 96.78° (sun-synchronous). 
– In-flight measurement phase duration = 6 years. 
– Inter-satellite distance d = 10 km. 
– Spectral density of the inter-satellite distance and 

of the non-gravitational acceleration measure-
ment noise: see Figure 2.  
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Fig. 2 Spectral densities of the measurement error of the non-
gravitational relative acceleration between the two satellites 
and of the inter-satellite distance (converted in acceleration) 
suitable to fulfil the SSI mission objectives.  

4.2  Scientific Performance Prediction 
 
Using the reference SSI mission parameters of Sect. 
4.1, the error made in the determination of the geoid 
height and gravity anomaly variation has been esti-
mated from the error variances of the solutions com-
puted over 1-year periods along the mission using 
the equation (2). The geoid height variation error is 
plotted in Figure 3 as function of the geopotential 
harmonic degree. This error is compared to the sig-
nal (geoid height variation per degree) generated by 
two of the smaller secular geophysical phenomena 
of Table 2, namely the melting of the glaciers of the 
Italian Alps and the ice loss over Greenland. The 
plot shows that the potential performance of the SSI 
mission is suitable to detect the signature produced 
by these small geophysical phenomena on the geoid 
height up to � ≅ 200. Moreover, it has been verified 
that, with the established design parameters, the SSI 
mission would be capable of detecting the geoid 
modification caused by the Sumatra earthquake 
occurred in December 2004 [4]. The predicted per-
formance of the SSI mission obtained with the ana-
lytical measurement model (Chap. 3) has been vali-
dated in some specific cases through high-fidelity 
numerical simulations of the gravity field measure-
ment process [5], using methods described in [6]. 
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Fig. 3 Geoid height variation measurement error per har-
monic degree (dashed line) compared to the signal generated 
by two of the secular geophysical phenomena of smaller 
entity (solid lines)  

 
4.3  Measurement and Control Systems  
 
The main measurement and control systems of the 
SSI mission are schematically shown in Figure 4. 
The instrument utilized to measure the inter-satellite 
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Fig. 4 Main elements of the measurement and control sys-
tems of the SSI mission 

 
distance variation is the laser interferometer. On a 
low Earth orbit, this distance is modified by the 
action of the gravity field (let’s call �dG the varia-
tion induced by the gravitational accelerations) and 
by the aerodynamic drag (let’s call �dD the varia-
tion induced by the non-gravitational accelerations). 
The measure of the laser interferometer gives there-
fore an inter-satellite distance variation (�d) which 
includes both the gravitational and the non-
gravitational contribution: 
 

�d = �dG + �dD  (3) 
 

In order to separate �dG from �dD, the latter must 
be measured using an accelerometer (similar to the 
GOCE one) installed on each satellite and nominally 
located in the position of its centre of mass (COM).  

The laser metrology must provide a measurement 
of �d with the error spectral density limit plotted in 
Figure 5, while the accelerometers must provide a 
measurement of the non-gravitational accelerations 
between the two satellites with the error spectral 
density limit plotted in Figure 2 (similar in shape to 
the intrinsic noise spectral density of the GOCE 
accelerometer, but shifted to lower frequencies by 
half a decade).  
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Fig. 5 �d measurement error spectral density specification 

A proper operation of the accelerometer requires 
a drag control system to reduce the level of the non-
gravitational accelerations and of the angular accel-
erations and rates of each satellite. The sensors util-
ized by this system are the accelerometer itself (lin-
ear and angular accelerations measurement) and a 
set of star trackers (attitude measurement, to be 
combined with those of the angular accelerations). 
The actuators are four ion thrusters (which can be 
derived from the GOCE ones), for linear accelera-
tion and orbit control, and four low-noise reaction 
wheels (under development) for attitude, angular 
rate and angular acceleration control.  

The attitude control is driven by the laser beam 
pointing between the satellites. For this purpose a 
Beam Steering Mechanism (BSM) has been intro-
duced to avoid imposing too stringent requirements 
on the attitude control of the whole satellite. The 
BSM on the satellite 1 is driven by the measurement 
of the satellite 2 offsets relative to the laser beam 
provided by a specific lateral displacement metrol-
ogy (required measurement error ≤ 0.37 mm 1σ).  

The non-gravitational acceleration measurement 
process requires the precise knowledge of the accel-
erometer sensitive axis orientation relative to the 
line joining the COMs of the two satellites. The 
inter-satellite distance measurement process re-
quires the precise knowledge of the satellites orien-
tation relative to the laser beam. These quantities 
are both provided by a specific angle metrology 
(required measurement error ≤ 0.014 arcsec 1σ). 

A navigation receiver (GPS or GPS + GALILEO) 
placed on each satellite provides the information 
utilized for reconstructing the inertial position of the 
two satellites (required measurement error ≤ 3 cm). 
 
5  Laser Metrology System Design 
 
The selected metrology system for measuring the 
variation of the satellite-satellite relative distance is 
a heterodyne Michelson interferometer. The func-
tional configuration of this interferometer, suitably 
adapted to the SSI mission, is described in Figure 6. 
At a relative distance d = 10 km, a frequency-
stabilized laser source emitting 1 W on the satellite 
1, a retro-reflector with 3.14 cm2 cross section on 
the satellite 2 (embedded in the accelerometer proof 
mass), and a receiving telescope with 8 cm diameter 
on satellite 1 are sufficient to achieve the measure-
ment of �d with an error spectral density below the 
limit plotted in Figure 5. The relative frequency 
stabilization required for the laser source is δν/ν ≤ 
1.4⋅10-13 1/Hz1/2 above f = 0.01 Hz, with 1/f increase    
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Fig. 6 Functional configuration of the laser metrology  

 
allowed below that frequency. Such stabilization is 
achievable by locking the laser frequency to a reso-
nant mode of a dimensionally stable optical cavity, 
a technique planned to be used in the LISA mission 
[7] as well as the laser source, a Nd:YAG emitting a 
continuous wave at the wavelength of 1064 nm, 
selected for the SSI mission.  

The lateral displacement and angle metrology are 
realized by means of three Position Sensing Detec-
tors (PSDs) endowed with focusing optics. Each 
PSD measures the position and the energy of the 
laser beam spot focused by the optics on the detec-
tor plane. The orientation and the lateral shift of the 
satellite 2 relative to the laser beam are derived 
from the spot position and from the energy meas-
ured by the three PSDs respectively.  

The configuration of the metrology optical bench 
and that of the SSI satellites are shown in Figure 7.  

 

 
 

Fig. 7 Satellites and metrology optical bench configuration 

6  Metrology Proof of Concept  
 
Laboratory prototypes of the novel lateral dis-
placement and angle metrology concept have been 
implemented using commercial off-the-shelf com-
ponents and submitted to first proof-of-concept 
tests. The achieved measurement error of the orien-
tation angles relative to the laser beam was found to 
be a factor 5 larger than the SSI mission require-
ment. The performance limit is probably due to the 
dark current noise of the PSD (not the best available 
in commerce) used in the test. The achieved meas-
urement error of the lateral displacement relative to 
the laser beam was instead found well below the 
SSI mission requirement (see Figure 8). 

The concept of the heterodyne Michelson inter-
ferometer for the measurement of �d instead is not 
new, so it does not need to be demonstrated. What 
remains to be experimentally verified is the specific 
implementation of such interferometer and of its 
Beam Steering Mechanism for the SSI mission case.   

 

 
 

Fig. 8 Lateral displacement measurement test result  
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Gravity recovery capability of four generic satellite
formations

M.A. Sharifi, N. Sneeuw, W. Keller
Institute of Geodesy, Universität Stuttgart, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart, Germany

Abstract. Of all potential satellite formations a
GRACE-type in-plane leader-follower configuration
is one of the weakest choices in terms of gravitational
signal in the satellite-to-satellite tracking (SST) ob-
servable. In this paper we simulate four basic types
of formation flying (FF) missions and analyse them
in terms of sampling geometry (baseline orientation),
gravitational signal content and gravity field recov-
ery capability. The fourFF types are, respectively a
GRACE-type SST misison, aSWARM-like pendulum
configuration, a Cartwheel formation on a 2:1 rela-
tive ellipse and aLISA-type formation. All forma-
tions have comparable orbit characteristics: near po-
lar, near eccentric, and short baselines of typically
10–20 km length.

The baseline orientations in the latter threeFF-
types contain additional cross-track and/or radial in-
formation. They cover a larger azimuth-elevation
sampling space. As a result, compared to theGRACE-
type formation, all three other formations are supe-
rior in terms of more gravitational signal content,
though not equally.

The qualitative difference in the respectiveFF-
SST observable is reflected in the recovered grav-
ity fields. Comparison between the input and out-
put fields demonstrates that the recovery process us-
ing an observable with radial and/or cross-track in-
formation results in drastically improved accuracy
and isotropy. The recovered solutions from the latter
three formation types possess a lower error spectrum
with a more homogeneous structure.

Keywords. Observation equation, formation
flight, gravity field recovery, satellite-to-satellite
tracking

1 Introduction

The key GRACE-type SST observables are the in-
tersatellite distance and scalar relative velocity in a
leader-follower configuration at near-polar inclina-
tion. This type of observable inherently suffers from
the weakness that it is mainly sensitive along the line-
of-sight, i.e. in North-South direction. Consequently,
typical streaks emerge along the meridians in the
monthly GRACE solutions (e.g. Tapley et al., 2004).

Sneeuw et al. (2006) have shown that the weakness
can be overcome if theSST observation contains ra-
dial and/or cross-track gravitational signal. To that
end, a next generation gravity mission should prefer-
ably be aFF with a rotating baseline in the satellites’
local frame.

To support and quantify this assertion a gravity re-
covery experiment is set up that makes use of the
concept of formation flying. Four generic types of
Low-Earth Formations (LEF) are simulated:

– a GRACE-type leader-follower configuration, with
along-track orientation;

– a pendulum scenario, which adds a cross-track
component, but stays in the local horizon;

– a Cartwheel formation that performs 2:1-relative
elliptical motion in the orbital plane, i.e. stays in
the local vertical plane;

– and aLISA-type formation that performs circular
relative motion including out-of-plane and radial
relative motion.

All four LEF will have a typical baseline length of
around 10–20 km. The namesGRACE, Pendulum,
Cartwheel andLISA will be used in this paper as
generic for these basic formation types and should
not be mistaken for actual missions.

The dynamics of such formations are easily under-
stood in the framework of homogeneous Hill equa-
tions. Thus, the first part of the paper is concerned
with initial conditions and modelling the relative mo-
tion of the configurations in the local Hill frame.

To show the differences in the signal content of the
configurations, the second part of the paper is dedi-
cated to their comparative analysis at the observation
level. It shows how the projection of the additional
components into the observable amplify the signal.

Eventually, the recovered solutions are compared
from different perspectives both in the time and fre-
quency domains.

2 Equations of relative motion

Let us adopt the following formation flying conven-
tion. All formations consist of a chief satellite and
one or more deputy satellites. We assume a local or-
bital reference frame (or Hill frame) with its origin



in this chief satellite and oriented in along-track (x),
cross-track (y) and radial (z) direction. The relative
motion of the deputy in the local orbital reference
frame is described in general by Schaub and Junkins
(2003):

ẍ + zθ̈ + 2żθ̇ − x

(

θ̇2 − µ

r3
c

)

= ax (1a)

ÿ +
µ

r3
c

y = ay (1b)

z̈ − z

(

θ̇2 + 2
µ

r3
c

)

− xθ̈ − 2ẋθ̇ = az (1c)

whereµ is the gravitational constant and(ax, ay, az)
are non-Keplerian forces acting on the deputy satel-
lite. They could be due to atmospheric drag, Earth
oblateness effects or control thrusters.

Here we consider only formations where the chief
motion is essentially circular. In this case the chief
rate θ̇ is constant and equal to the mean orbit rate
n =

√

µ/r3
c . The equations of motion simplify to the

well-known linearized Hill equations (Hill , 1878),
see also (Clohessy and Wiltshire , 1960):

ẍ + 2nż = ax (2a)

ÿ + n2y = ay (2b)

z̈ − 2nẋ − 3n2z = az (2c)

We will refer to them asHE in the sequel. Equation
(2) has been used extensively in spacecraft formation
flying mission analysis and control research. They
are reasonable as long as(x, y, z) are small com-
pared to the chief orbital radius.

Since they are linear, theHE can be solved ana-
lytically. Assuming no perturbations or thrusting is
present (ax = ay = az = 0), all possible deputy
relative motions can be expressed in closed form
(Schaub and Junkins, 2003):

x(t) = −2A0 sin(nt + α) − 3

2
ntzoff + xoff (3a)

y(t) = B0 cos(nt + β) (3b)

z(t) = A0 cos(nt + α) + zoff (3c)

Note that the out-of-plane motion is decoupled from
the in-plane motion. The integration constants can be
expressed in terms of initial conditions through:

A0 =
1

n

√

ż2
0

+ (2ẋ0 + 3nz0)2 (4a)

B0 =
1

n

√

ẏ2
0

+ (ny0)2 (4b)

α = arctan

(

ż0

3nz0 + 2ẋ0

)

(4c)

β = arctan

(−ẏ0

ny0

)

(4d)

zoff =
2

n
(ẋ0 + 2nz0) (4e)

xoff = x0 −
2ż0

n
(4f)

The solution of the homogeneousHE allows to an-
alyze the motion of the aforementioned four basic
formation types in terms of the parameters in (4).
For the relative motion to be bounded, we must re-
quire the drift term to vanish, i.e.zoff = 0 for all
missions. The four genericFF types are now charac-
terized by:

– GRACE is purely along-track. All periodic terms
are zero and the variablexoff determines the base-
line length.

– The pendulum scenario also has a constant along-
track termxoff , but additionally a non-zero cross-
track amplitudeB0. The relative motion takes
place in thexy-plane, i.e. the local horizontal
plane. The intersatellite baseline is variable. Only
its component in along-track direction is constant.

– The Cartwheel configuration has a non-zeroA0

value. Without cross-track motion (B0 = 0)
this results in an in-plane elliptical relative motion
(Massonnet, 2001). The maximum along-track
separation is twice as large as the maximum ra-
dial separation. Hence a 2:1 relative ellipse.

– TheLISA-type mission achieves a relative circular
motion by settingB0 =

√
3A0 and matching the

phasesα andβ. Within the approximation of the
HE, the baseline is constant.

The necessary condition for achieving these config-
urations and the corresponding differential elements
in the Hill frame are summarized in table 1. These
differential elements can be converted to inertial or-
bital elements for integration purposes (Alfriend et
al., 2000).

In table 1, relative position and velocity vectors
are expressed in terms of the chief satellite’s Kepler
elements(a, e, u) and the baseline lengthρ. The lat-
ter two configurations are defined by setting the free
parameter (z0).

The homogeneousHE are a helpful tool for first
order formation design. However, the solution in (3)
is no longer valid if the chief motion is not circu-
lar. Even small amounts of eccentricity can produce
modelling errors comparable to those produced byJ2

gravitational perturbations or atmospheric drag.
Alternatively, the formations can be designed di-

rectly using differential Kepler elements. This ap-



Table 1. Initial conditions and state vectors of different formationtypes

formation initial conditions initial position (ρ0) initial velocity (ρ̇0)

GRACE A0 = B0 = zoff = 0 (ρ, 0, 0) (0, 0, 0)

Pendulum A0 = zoff = 0 (ρx, ρy cos u, 0) (0,−nρy sin u, 0)

Cartwheel B0 = xoff = zoff = 0 (±2
�

4a2e2 − z2

0
, 0, |z0| ≤ 2ae) (−2nz0, 0,±n

�
4a2e2 − z2

0
)

LISA xoff = zoff = 0; α = β

B0 =
√

3A0 =
√

3ρ/2 (±
�

ρ2 − 4z2

0
,±

√
3z0, |z0| ≤ ρ/2) (−2nz0,±

√
3n
�

ρ2/4 − z2

0
,±n
�

ρ2/4 − z2

0
)

proach, in contrast, can be used for designing a con-
figuration even with an elliptical chief motion inJ2

gravitational field (Sneeuw et al., 2006).

3 Observation equation of FF LL-SST

As for the GRACE mission, let us assume range-rate
as the basic observable of a futureLEF mission. The
range rateρ̇ between two satellites is the projection
of the relative vectorial velocitẏρ on the line-of-sight
unit vectore, e.g. (Keller and Sharifi, 2005). The
scalar range acceleration is derived by time differen-
tiation and involves additional centrifugal terms:

ρ̇ = ρ̇ · e (5a)

⇒ ρ̈ = ρ̈ · e +
1

ρ

(

ρ̇ · ρ̇ − ρ̇2
)

. (5b)

Using Newton’s equations, the vectorial acceleration
differenceρ̈ equals the difference in gravitational at-
traction∇V1,2 between the two satellites 1 and 2.

For practical applications, the scalar range acceler-
ation ρ̈ can be obtained from the observed range rate
by numerical differentiation. To extract the gravita-
tional information, one should further correct for the
relative velocity terms at the right of (5b).

In the absence of the nuisance forces, the vectorial
gradient difference∇V LOS

1,2 is parameterized in terms
of the unknown spherical harmonic coefficients. To
set up the mathematical model for the recovery of
the field, Newton’s equation is employed and (5b) is
recast into

∇V LOS
1,2 = ρ̈ +

ρ̇2

ρ
− ‖ρ̇‖2

ρ
. (6)

The left-hand side represents the gravitational attrac-
tion difference between the two satellites projected
along theL ine Of Sight (LOS). As such, it is jus-
tified to speak ofspaceborne gravimetry, though in
a differential sense. The right-hand side consists of
the HL- and LL -SST measurements. Depending on
the formation type, each term on the observation side
has different magnitude and pattern and consequently
different contribution to the total observable. Fur-
thermore, the recovered solution’s quality explicitly

depends on the gravity signal captured by the forma-
tion type. Therefore, the accuracy and the resolution
of the recovered field is a configuration specific as-
pect.

To underline this point, the signal decomposition
according to (6) is visualized in 1 both forGRACE

andLISA. The top row represents the quantity at the
left-hand side of (6), i.e. the quantity that is used
to extract gravity field information. The left col-
umn is a visualization of one orbital revolution in
the time domain, whereas the right column shows the
power spectral density of the signal in the measure-
ment bandwidth.
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Figure 1. Observation decomposition in time and space domains

(L = ρ̈ · e, c1 = ρ̈, c2 = ρ̇2/ρ andc3 = ‖ρ̇‖2/ρ)

As can be clearly seen in the time domain repre-
sentation, the total gravitational signal ofLISA and its
individual components are significantly larger than
those ofGRACE.

Comparing the missions’ spectra shows thatLISA

captures more information thanGRACE. This richer
gravitational signal content is due to the the radial
and cross-track components in the relative motion.
The GRACE mission, in contrast, only contains the
along-track component which is a—from a gravity
gradiometry viewpoint—a relatively weak observ-



able (Sneeuw and Schaub, 2005). Apparently the
common mode motion of the satellites in aGRACE-
type mission cancels a large part of the signal.

It should also be noted here that theLISA ’s spec-
trum is at least one order of magnitude higher than
that of theGRACE. Moreover, more peaks are clearly
visible in the LISA ’s spectrum. Further numerical
analysis (not shown here) would demonstrate that
the LISA mission has the richest signal, followed by
Cartwheel and Pendulum.

4 Simulation setup

For a comparative study of the four mission types
closed-loop simulations have been performed. All
configurations have comparable orbit characteristics:
near polar, near eccentric, and short baselines of typ-
ically 10–20 km length. In order to achieve a nearly
stable and bounded motion, the necessary conditions,
listed in table 1, were imposed on the initial values.
The relative state vectors can then be transformed to
the corresponding initial differential Kepler elements
(Alfriend et al., 2000).

Alternatively, the formations can be designed
directly in terms of differential Kepler elements
(Sneeuw et al., 2006). We have used the latter ap-
proach and the obtained initial differential Kepler el-
ements have been listed in table 2. The differential

Table 2. Differential mean orbital elements

Grace pendul. cartwh. LISA

∆a 0 0 0 0
∆e 0 0 0 0.001
∆I [◦] 0 0 0 0
∆Ω [◦] 0 0.1389 0 0.15
∆ω [◦] 0 0 180 −180
∆M [◦] 0.08 0.08 180 180

elements of theGRACE and Pendulum missions are
the same, except for the ascending node definition.
In the latter mission a non-zero value for∆Ω is re-
quired to introduce cross-track baseline component.

In a next step, for all missions observations of dif-
ferential gravimetry type (6) were simulated. The
mission duration and the sampling frequency are one
month and0.2Hz, respectively. To generate these
SST observationsEGM96 was used up to degree
and order60 as input model. All kinematic quan-
tities like intersatellite range, range-rate and range-
acceleration vectors are derived from the orbit inte-
gration process.

As shown in (6), the observable consists of the

LL -mode observations (ρ̇, ρ̈) and theHL-mode mea-
surementṡρ. Noise-free simulated range-rate is con-
taminated with awhite noisewith σρ̇ = 1µm/s,
comparable to the nominal noiseRMS of the real
GRACE mission (Reigber et al., 2005). The range-
acceleration̈ρ is then numerically derived from the
noisy range-rate observations usingsplinedifferenti-
ation.

Furthermore, noise-free simulated relative veloc-
ity vectors are contaminated with a correlated noise
sequence, that reflects theGPS-derivedLEO orbit co-
ordinates. We assumed a standard deviation of 6 mm
in each coordinate direction with a correlation length
of about 3 minutes.

An identical noise pattern but independently sim-
ulated sequences were used for each individual com-
ponent of the relative velocity vector. These noise
sequences were used for all the formations.

5 Gravity field recovery

To close the simulation loop gravity fields were re-
covered from the noisy observations for all four sce-
narios. Spherical harmonic coefficients and their
covariance matrix were estimated using brute-force
least squares inversion.
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Figure 2. Dimensionless degreeRMS of the recovered solutions.

The achieved results are evaluated from different
perspectives. A first spectral comparison in terms of
error degreeRMS curves shows that the introduction
of cross-track and/or radial information into the ob-
servable greatly improves the quality of the solution
by nearly an order of magnitude, see figure 2. As
expected, theGRACE mission, with along-track in-
formation alone, yields the poorest solution whereas
the LISA mission gives the best due to the contri-
bution of all three components. It is followed by
Cartwheel mission which moves only in satellites’
orbital plane. Compared toLISA, the Cartwheel ob-



servable does not carry cross-track information. Nev-
ertheless the Cartwheel solution is just marginally
worse thanLISA ’s.

In contrast, thePendulum observable contains only
along-track and cross-track, i.e. horizontal infor-
mation. Therefore, it does not achieve the perfor-
mance level of theCartwheel mission. These ef-
fects, in which the radial component is the dominant
source of gravity field information, is known from
satellite gravity gradiometry as well, e.g. (Sneeuw,
2000). Still, the Pendulum configuration outper-
forms aGRACE-typeLEF.

By lumping over the orderm, the degreeRMS

curves are not representative of non-isotropic error
spectra. Therefore we visualize the full error spectra
in 3, both in terms of input-minus-output coefficient
differences∆Clm and∆Slm and in terms of formal
standard deviations.
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coefficient differences. Right: formal standard deviations.

Indeed, these full error spectra reveal the non-
isotropic behaviour of some of the mission types. A
GRACE-type mission performs best in the low order
range. Its error spectrum resembles that of along-
track gradiometry (Vxx). The reverse is true for
the Pendulum mission, whose error spectrum resem-
bles that of cross-track (Vyy) gradiometry. Except of

sectorial harmonics, the recovered spectrum from a
Cartwheel-type mission is relatively homogeneous.
It’s error spectrum resembles a cross betweenVxz

andVzz gradiometry. ALISA-type mission also ap-
pears to provide a homogeneous error spectrum, al-
though the error structure resembles that of the ob-
servable(Vxx − Vyy), a term that is obtained by ro-
tating gradiometers.
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These spectral results are also reflected in the spa-
tial domain. Differences between the geoid height
of the input and recovered models show the spatial
distribution of the errors. Due to preference for low
orders, the familiar North-South streaks are clearly
visible in GRACE geoid errors. In contrast, they ap-



pear in East-West direction in the Pendulum config-
uration. The last two solutions are almost homoge-
neous although a very weak diagonal pattern is ob-
served in theLISA solution.

6 Conclusion

When designing future gravity field missions, forma-
tions that involve a cross-track or radial component
outperform aGRACE-type leader-follower configu-
ration. The observable in such formations are sig-
nificantly richer in gravitational content, leading to
a higher S/N ratio. Observing at least one of these
components, preferably the radial one, improves the
results both in terms of error level and of isotropy.

Employing the Pendulum mission involves the
gravity gradient component in East-West direction
whereas the Cartwheel scenario projects the radial
gravity gradientVzz onto theSST observable. The
observable in aLISA-type mission combines all the
components. Thus, the inherent weakness and the
non-isotropic behaviour of the conventional low-low
SSTobservable can be solved by formation flying.

If the relative orbits comprise a cross-track mo-
tion, the corresponding observables gain sensitiv-
ity in East-West direction. This may be helpful in
dealiasing signals. Moreover, including the radial
component’s contribution leads to a nearly homo-
geneous results in theLISA configuration. Conse-
quently, aLEF with sufficiently many satellites linked
together in a strategic way, can observe full-tensor
gravity gradiometry.
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How to properly scale GRACE estimates of
the continental water storage variations?
R. Klees, E.A. Zapreeva, H.C. Winsemius, H.H.G. Savenije
DEOS, Delft University of Technology,
Kluyverweg 1, PO box 5058, 2600 GB Delft, The Netherlands

Abstract. The estimation of terrestrial water stor-
age variations at river basin scale is one of the most
important applications of GRACE (Gravity and Cli-
mate Experiment) so far. Today, mature techniques
are available to transform monthly GRACE gravity
field models into mean water storage variations over
a target area. Spatial filtering of GRACE is rou-
tinely used, and several isotropic or non-isotropic fil-
ters have been proposed in literature. Recently, more
attention is paid to the problem of the bias, which is
introduced by spatial filtering.

The subject of this study is the amplitude and
time behaviour of the bias for several target areas in
Southern Africa. The regional hydrological model
LEW is used to provide a time series of water stor-
age variations inside and outside the target areas.
This information is used to compute the bias. Corre-
spondingly, GRACE estimates of water storage vari-
ations are corrected for the bias and compared with
the LEW model output.

The main conclusion of the study is that the bias
caused by spatial smoothing results in monthly and
annual amplitudes of mean water storage variations,
which are too small. The bias-to-signal ratio is
mainly determined by the filter correlation length.
For the target areas in Southern Africa, a

�������
km

correlation length for a Gaussian filter seems to be
an appropriate choice. Then, the bias-to-signal ratio
reaches values up to � ��� ; the monthly bias-to-signal
ratio can even be larger. After bias correction, the
differences in terms of annual amplitudes between
GRACE and LEW take up values between

�
and � �

mm. The RMS difference of monthly amplitudes are
reduced significantly and attain values up to � � mm.

The main conclusion of the study is that GRACE
annual and monthly amplitudes of mean water
storage variations over a target area have to be
bias-corrected before GRACE is used to calibrate
hydrological models.

Keywords. GRACE, spatial smoothing, bias, time-

varying gravity field, continental hydrology, regional
hydrological model LEW, water storage variation



and outside the target area partially compensate each
other, if the mass variations have similar amplitude
and are in phase.

It is rather difficult to make any conclusions about
the quality of such estimates without any additional
investigation concerned the amplitudes of the bias
and its dependency on the filter parameters and target
areas.

The subject of this study is to analyze the bias in
GRACE estimates and investigate to what extent the
bias in GRACE estimates can be corrected for by us-
ing a priori information about mass variations pro-
vided by a hydrological model.

The outline of the paper is the following: in sec-
tion 2 the research methodology is outlined. Sec-
tion 3 contains the approach followed in this study.
The LEW regional hydrological model used in this
study for bias computation and as a benchmark for
GRACE estimates is the subject of section 4. The re-
sults of the analysis of the time behaviour of the bias
and bias-corrected GRACE are presented in section
5. Section 6 contains the main conclusions of this
study.

2 Methodology

To estimate the water storage from GRACE, we ba-
sically, follow the standard approach proposed by
Swenson and Wahr (2002). We suppose the function�

describes the monthly mean water storage varia-
tions on Earth. The water storage estimate averaged
over the target area can be computed from:������ �

� � �(��� !�)� �*� # �� � ����� %�'�� �*��+ (2)

The second term on the right-hand side of Eq. (2)
describes the error ( �% ' ) of the GRACE estimate of

the monthly mean mass variation averaged over the
target area. In reality, this term is very large, and
the standard procedure to reduce it is to apply spatial
smoothing with a filter function ,&- ,

!� - � ����. !� ,/- � � � +
After spatial smoothing, we obtain a smoothed es-
timate of the mean water storage variation over the
target area:

�� - � �� � � ��� !� - � � � # �% ' + (3)

In the standard procedure by Swenson and Wahr
(2002), the spatial filter function ,&- is an isotropic
function on the sphere (e.g. a Gaussian). Alterna-
tively, non-isotropic functions have been developed,
e.g. (Han et al, 2006). Smoothing reduces the effect
of noise, but at the same time introduces a bias in
the monthly mean water storage variation estimate,
because the smoothed function !� - is used in Eq. (2)
instead of the function !� .

To estimate the bias, the water storage variation
function � must be known within the significant sup-
port of the filter , , which is the spherical convolu-
tion of the characteristic function of the target area
with the filter ,/- . Given any a priori information
about � , we can compute an estimate of the bias. The
better the quality of the a priori information, the more
accurate the bias estimate. It can be shown easily,
that the equation of the bias is

�% � � �� � � �� - � �� � � ����0 !� � � !� -21 � � � + (4)

Once the bias has been computed, the GRACE esti-
mate of monthly mean water storage variations can
be corrected for, which should result in a better esti-
mate.

3 Approach

3 To quantify the time-variable bias, we use the
LEW regional hydrological model water storage
estimates for the GRACE periods in four target
areas located in Southern Africa. The Eq. (4)
is used for the computation. We use areas of
different sizes ranging from 4 +6587 ����9 km : to
� + 	 7 ����; km : in order to investigate the relation
between bias and size of the target area.

3 �<4 monthly GRACE gravity field models, cov-
ering the period between January 2003 and



March 2006, are used to compute the water
storage variation over the target areas by us-
ing Eq. (3). We use release RL03 models, pro-
vided by GFZ (GeoForschungsZentrum Pots-
dam). The models have been smoothed with a
Gaussian filter with correlation length 
 ��� ,

����
,

and
�������

km. This allows to investigate the
relation between the correlation length and the
bias.3 Estimates of the time-variable bias are used to
correct the GRACE monthly mean water stor-
age variation. Consequently, the biased and
the bias-corrected GRACE monthly mean wa-
ter storage variations are compared with the out-
put of the LEW model and the fit between LEW
model output and GRACE estimates is assessed.3 Some statistical information about the differ-
ences between the annual sine fitted ampli-
tudes of the monthly mean water storage from
GRACE (biased and bias-corrected) and LEW
is given.

4 LEW hydrological model

For the purpose of this study, we use monthly mean
water storage variations from LEW regional hydro-
logical model for four target areas in Southern Africa
(cf. Figure 1): upper Zambezi (UZ, 4 +=5>7 ���?9 km : ),
Zambezi (Z,

� + � 7 ����; km : ), upper Zambezi + Oka-
vango (UZO,

� + 	 7 ��� ; km : ), Zambezi + Congo (ZC,� + 	 7 ����; km : ). The Lumped Elementary Watershed
(LEW) approach has some advantages in compari-
son to any global hydrological model since it en-
ables the implicit incorporation of redistribution of
surface runoff in downstream located model units,
called LEWs, that represent e.g. a wetland, lake or
man-made reservoir.

For this study, the model presented in Winsemius
et al. (2006) has been extended, by taking into ac-
count all river basins below the equator, in particular
Shebelle, Southern part of the Nile, Congo, Zambezi,
Okavango, Limpopo, and Orange.

Within the major basins, many model units or
‘LEWs’ have been delineated. Most LEWs represent
not only the sub-catchments but also the major lakes
and reservoirs (Lake Kariba, Lake Cahora-Bassa and
Lake Nyasa) in our target area, the Zambezi, which
have also been separately delineated.

For the calibration, the model has been forced by
data from the Climate Research Unit (CRU) (New
et al., 2002). These data consist of fields of global
monthly precipitation, wind speed, relative humidity,
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Fig 1. The four target areas being used in this study (from
left to right, from top to bottom): upper Zambezi, Zambezi,
upper Zambezi + Okavango, and Zambezi + Congo.

and 2 meter air temperature (minimum, maximum
and mean).

The LEW water storage estimates have been gen-
erated using rainfall estimates from the Famine Early
Warning System (FEWS) (Herman et al., 1997). The
first 2 years of simulation are taken as warming-up
time to stabilize the state variables of the LEW model
structures.

5 Results

According to the approach given in section 3, we
have computed the time-variable bias from the LEW
hydrological model output using Eq. (4) for each tar-
get area and choice of the Gaussian filter correlation
length. Figure 2 shows the bias time series for the
four target areas and

�������
km Gaussian smoothing.

From the time series of monthly bias val-

ues, the amplitude of the annual bias have been com-
puted. The same has been done for the un-smoothed
monthly mean water storage from LEW. Then, the
annual amplitudes of the bias and annual water stor-
age from LEW have been compared. Finally, the
bias-to-signal ratio is computed as ratio of the bias
and the LEW water storage amplitudes.

The estimated bias has been used to correct
GRACE monthly mean water storage variations. We
used ��4 release 03 monthly GRACE gravity field
models between January 2003 and March 2006 pro-
vided by GFZ. The degree 2 zonal coefficient has



2003 2003.5 2004 2004.5 2005 2005.5 2006 2006.5
−200

−150

−100

−50

0

50

100

150

200

250

Time, year

W
at

er
 s

to
ra

ge
 v

ar
ia

tio
n,

 [m
m

]

2003 2003.5 2004 2004.5 2005 2005.5 2006 2006.5
−200

−150

−100

−50

0

50

100

150

200

Time, year

W
at

er
 s

to
ra

ge
 v

ar
ia

tio
n,

 [m
m

]

2003 2003.5 2004 2004.5 2005 2005.5 2006 2006.5
−150

−100

−50

0

50

100

150

200

250

Time, year

W
at

er
 s

to
ra

ge
 v

ar
ia

tio
n,

 [m
m

]

2003 2003.5 2004 2004.5 2005 2005.5 2006 2006.5
−150

−100

−50

0

50

100

150

Time, year

W
at

er
 s

to
ra

ge
 v

ar
ia

tio
n,

 [m
m

]

Fig 3. Time series of monthly mean water storage variations over the target areas: From left to right and top to bottom:
upper Zambezi, Zambezi, upper Zambezi+Okavango, and Zambezi+Congo. A @BA�A�A km Gaussian filter has been used.
Black triangles: unfiltered LEW; blue x-marks: biased GRACE; red boxes: bias-corrected GRACE.

been excluded from the analysis. The monthly water
storage variations have been inferred following the
methodology and approach given in sections 2 and
3. To correct the smoothed GRACE estimates, the
time-variable bias, computed from the LEW model
output, is spline interpolated to the time epochs of
the monthly GRACE models. The GRACE estimates
smoothed by 1000 km Gaussian and corrected for the
bias for all target areas are shown in Figure 3.

Finally, the annual water storage variation is com-
puted for the biased and bias-corrected GRACE es-
timates and compared with the annual water stor-
age from LEW. All results for each target area and
the three Gaussian filters are summarized in table 1.
As we see from the results given in table 1 the bias
strongly depends on the correlation length of the fil-
ter: the smaller the correlation length, the smaller the
bias. We observe a significant reduction of the bias
from 5 � till ��
 mm, when the correlation length is

reduced from
�������

km to 
 ��� km. However, as dis-
cussed below, there is some evidence that a

�������
km

Gaussian filter has to be preferred for the selected
target areas.

The bias and the bias-to-ratio-signal depend on the
size of the target area: the smaller the target area, the
larger their values. This is clear from the comparison
of the bias-to-signal ratio for the smallest upper Zam-
bezi area - 4 5 � and the much larger Zambezi+Congo
area - � ��� .

The most remarkable result is that biased-
corrected GRACE estimates of the annual and
the monthly mean water storage variations fit sig-
nificantly better with LEW estimates than biased
GRACE estimates. For a

�������
km Gaussian filter, we

observe a significant improvement of the fit between
monthly GRACE and LEW amplitudes after bias cor-
rection between 4�4 � and 
�� � for all target areas.
The largest differences between LEW model out-
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Fig 2. Bias as a function of time between January 2003 and
March 2006 for four target areas: upper Zambezi (red trian-
gles), Zambezi (blue squares), upper Zambezi+Okavango
(green circles) and Zambezi+Congo (black x-marks). @2A�A�A
km Gaussian smoothing has been used.

Table 1. Amplitude of the annual water storage variation
signal. C=@ED : GRACE estimate, mm; C F2D : annual bias, C GHD :
bias-corrected GRACE, mm; C I�D : LEW model output, mm;C JKD : relative bias, %; C LHD : difference between bias-corrected
GRACE and LEW model output, mm.

target area C=@ED C F2D C GKD C I�D C JKD C LKD
Gauss filter, @2A�A�A km
UPZ 82 73 155 155 47 0
Z 83 61 144 133 46 11
UPZO 68 50 118 120 42 -2
ZC 33 22 55 71 31 -16
Gauss filter, M�A�A km
UPZ 102 55 157 155 35 2
Z 100 46 146 133 35 13
UPZO 80 39 119 120 33 -1
ZC 40 15 55 71 21 -16
Gauss filter, L�A�A km
UPZ 124 36 160 155 23 5
Z 117 30 147 133 23 14
UPZO 91 28 119 120 23 -1
ZC 47 8 55 71 11 -16

put and bias-corrected GRACE is attained in spring
2004, whereas the differences for the other months
are significantly smaller. The exceptionally large dif-
ferences in spring 2004 could be attributed to either
LEW model errors (e.g. poor quality of rainfall data)
or to GRACE errors (e.g. poor capture of the water
storage variation signal due to orbit geometry).

Tabel 2 gives some statistical information about
the differences between the amplitudes of monthly
mean water storage variations from GRACE and

Table 2. Statistics of the differences between GRACE
monthly estimates and LEW model output before and after
bias correction.

area GRACE - LEW N�O�P�Q�RTSVUXWXW - LEWY[Z]\ Y_^K` Obadc Y[Z6\ Y_^H` Obaec
Gauss filter, @2A�A�A km
UPZ 0.4 198.0 68.0 0.3 52.0 25.0
Z 1.4 125.0 48.0 1.5 49.0 27.0
UPZO 1.6 197.0 59.0 1.5 50.0 24.0
ZC 1.5 81.0 35.0 0.0 57.0 20.0
Gauss filter, M�A�A km
UPZ 0.8 174.0 56.0 0.3 61.0 28.0
Z 3.0 106.0 38.0 2.0 58.0 32.0
UPZO 0.0 177.0 52.0 0.3 56.0 26.0
ZC 0.4 80.0 31.0 0.2 66.0 22.0
Gauss filter, L�A�A km
UPZ 0.2 135.0 45.0 7.0 69.0 33.0
Z 1.1 82.0 31.0 1.3 67.0 37.0
UPZO 2.8 147.0 46.0 0.4 59.0 28.0
ZC 1.1 80.0 29.0 1.0 75.0 24.0

LEW model output.
It is remarkable that the fit with LEW is the best

for a filter correlation length of
�������

km; smaller fil-
ter correlation lengths lead to larger RMS differences
between bias-corrected GRACE and LEW. This can
be explained by the fact that filter correlation lengths
smaller than

�������
km do not sufficiently suppress the

noise in GRACE monthly gravity fields; after bias
correction, the noise is still dominant and causes a
larger misfit between GRACE and LEW. An extreme
situation is the Zambezi target area for a 
 ��� km
Gaussian filter. After bias correction, the RMS dif-
ference between GRACE and LEW increases from� � mm to � 5 mm!

The maximum difference between bias-corrected
GRACE and LEW monthly amplitudes is observed in
the Zambezi+Congo area, which is the largest target
area ( � 5 mm for

�������
km Gaussian smoothing). We

explain this with the poorer performance of the LEW
model caused by the lack of high-quality rainfall data
in the Northern part of the target area and just outside
but North to the target area (Figure 1).

6 Conclusions

Spatial smoothing of GRACE monthly gravity field
models introduces a significant bias in GRACE-
estimated monthly mean water storage variations.
For the four target areas considered in this study,



the annual bias attains values up to � ��� of the to-
tal water storage variation; the monthly bias may
even take up values of 5 � � . For most target areas in
the world, GRACE always underestimates the ampli-
tudes of monthly mean water storage variations (e.g.
Chen et al., 2006).

The bias strongly depends on the amplitude of the
water storage variation inside and outside the target
areas and on the size of the target area. Generally, the
larger the signal amplitude, the larger the bias and the
larger the target area, the smaller the bias. The bias
is largest if mass variations outside the target area are
negligible or even out-of-phase with the mass varia-
tions inside the target area.

To compute the bias, a priori information about
the mass variations inside and outside the target area
is needed. This information can be provided for in-
stance by hydrological models. In this study, the
LEW regional hydrological model is successfully
used to estimate the bias.

After bias correction, the annual amplitude differ-
ences of GRACE and regional hydrological model
reduce significantly. The maximum difference be-
tween monthly mean water storage variations from
GRACE (

�������
km Gaussian smoothing applied) and

LEW for the upper Zambezi area reduces from
��f�

mm before bias correction to only � 	 mm after bias
correction.

We do not observe significant phase differences
between GRACE and LEW. The maximum phase
difference is

� + 	 � month (i.e. 5�+ � deg) for the up-
per Zambezi+Okavango area; the phase differences
for the other target areas are below

� + � month (i.e. �
deg).

Without bias correction, it is hardly possible to
calibrate hydrological models using GRACE.
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GOCE Gradiometer Validation in Satellite Track
Cross-Overs

F. Jarecki, J. Müller
Institut für Erdmessung, Leibniz Universität Hannover,Schneiderberg 50, D-30167 Hannover, Germany

Abstract. Besides external validation methods using
auxiliary data, internal integrity checks will be an
important technique to assure the full functionality
of the GOCE gravity gradiometer.
In this paper, cross-over validation is presented to
verify and to supplement other validation procedures
such as interpolation methods along the orbit. The
prospects of cross-over validation are discussed.
Cross-over validation, as a relative approach, is
capable to detect gross errors, data gaps and long
term drift parameters to some extent, whereas
geographically fixed error phenomena and constant
biases remain undiscovered. Adequate reduction
procedures to deal with altitude and attitude differ-
ences have been developed and applied. Simulated
gravity gradiometry data sets with different artificial
errors are processed. Combining data from different
epochs, drift behaviour and short-term biases are
very well identified through cross-over validation.
Single gross errors and jumps might better be
detected by continuous interpolation methods,
depending on their temporal extent.
Cross-over validation offers a fast approach to assess
the quality of space gradiometry independently with
almost global coverage.

Keywords. gravity satellite mission, GOCE, gravity
gradiometry, calibration, validation, cross-over

∂i∂j

(i, j = X, Y, Z) at the mEötvös (mE) level, several
calibration steps (in orbit and in post-processing) are
required. In addition, independent validation proce-
dures are needed to assure the accuracy standards of
the resulting gravity field quantities (e.g., gradients,
spherical harmonic coefficients or geoid heights). In
this paper, the use of cross-overs for in-orbit valida-
tion is addressed as one possible validation strategy
and its peformance is compared to other applicable
strategies like interpolation along the track.

Validation understood as monitoring the temporal be-
haviour of the gradiometer should be performed in
near real-time. Therefore, it can not be based upon
a GOCE-derived geopotential model (GPM) which
would not be available before some time of data as-
similation and processing. Here, in contradiction to
the validation of data products defined by Koop et al.
(2001), an in-orbit method is needed. Such a method
is provided by the analysis of the gradiometer mea-
surements in the same geographical position, which
is known as cross-over validation from satellite al-
timetry, see, e.g., (Shum et al., 1990), and was rec-
ommended for GOCE, too, e.g., by Albertella et al.
(2000). Those studies show the concept of cross-
over or repeat orbit validation for satellite gravity
gradiometry (SGG) data in principle. In addition to
those investigations, which used simplified assump-
tions on the orbit geometry, in this study a “more
realistic” GOCE test data set is applied, which was
derived within the GOCE-GRAND project of the
GEOTECHNOLOGIEN research programme. This
data set is based on an artificial GOCE-like orbit,
given in a simplified inertial frame, and gravity gra-
dients, noise-free synthesised from a geopotential
model in the orbit sample points and oriented along
the appropriate local orbit frame. For this GOCE-
GRAND test data set, as well the simulated gravity
gradients (from EGM96 up to degree and order 360)
as the attitude and position information is provided
with 1 Hz sampling rate in agreement with the mis-
sion design. The main orbit characteristics are semi-
major axis 6628 km, inclination 96.6

◦
and eccentric-

ity 0.001 as initial values for the integration. The 30
days orbit of this test data set, however, shows an in-
crease of the orbit eccentricity and a rotation of the
orbital ellipse. This leads to different satellite alti-
tudes at the same geographical position reached after
different time intervals and inhibits the formulation
of constant conditions for the data processing. There-
fore, on one hand, a concept for the determination
of ground-track cross-overs on a well defined projec-
tion surface has been developed. In contradicition to
satellite altimetry, where short-term repeat orbits are
realised leading to repeated cross-overs, in this sce-
nario, every single cross-over is unique and, there-



fore, has to be processed individually. On the other
hand, reductions have been calculated to consider the
measurement differences caused by the different al-
titudes and orientations of the satellite.

2 Concept of Cross-Over Validation

The first step of the cross-over determination is the
conversion of the orbit positions, given in a cartesian
inertial system, to geographical coordinates by
well known formulas, according to the test data
definitions. Here, a spherical earth model was used
for the determination of the projection direction and
for the determination of the ground-track cross-over
positions. The cross-overs are found by the intersec-
tion of the difference vectors between each two pairs
of consecutive sample positions at the projected
ascending and descending track, respectively.
An appropriate interpolation algorithm has been
developed for the computation of the exact position
of the ground-track cross-over (ϕ, λ) as well as for
the interpolation of the satellite altitude (radiir1, r2

on the ascending and descending track, respectively),
the orientation of the gradiometer (ϑXY Z1, ϑXY Z2)
and the measured gradients (to be validated).The
use of polynomials in the projected sample point
positions, cubic ones for the positions and bivariate
quadratic ones for the interpolation of the observed
gradients, provides sufficient position and gradient
accuracy (better than 1 m resp. 1 mE except for a
small number of outliers).For a detailed description,
see Jarecki et al. (2006). Obviously, the simple
concept “same position, same measurement” suffers
from the orbit characteristics not allowing repeated
measurements and from the strongly orientation-
dependent character of the gradiometer data. The
measurements are aligned with the satellite, which
is oriented completely different on ascending and
descending tracks intersecting (at least) as ground
track cross-overs. The most sensitive gradient,
VZZ , differs up to 24 E in the test data sets’ ground
track cross-overs. Even when filtered to the as-
pired measurement bandwidth between 5 mHz and
100 mHz those direct cross-over differences can
reach 1.2 E. To check the data against possible errors
in the mE range, those differences are completely
inappropriate. Therefore, dedicated reductions have
to be applied to reduce the gradients to a common
altitude and attitude.
Dealing with complete, unfiltered measurements
Vij , the differences in the gradients in two satellite
positions on crossing tracks can be calculated from
an existing geopotential model:

∆Vij(ϕ, λ) = (1)

Vij(ϕ, λ, r1, ϑxyz1) − Vij(ϕ, λ, r2, ϑxyz2),

where theVij are gradients in the local orbital frame
(i, j ∈ {X, Y, Z}), which is used as reference sys-
tem for the gradiometer here. Applying this differ-
ences as reductions obviously accounts for all pa-
rameterised altitude (rk) and attitude (ϑXY Zk, k ∈
{1, 2}) differences of the measurements, regardless
of which origin. Gradiometer reference frames devi-
ating from the local orbit frame would therefore be
considered in this reduction step and, consequently,
the concept holds as well for updated GOCE scenar-
ios, as long as the gradiometer orientation is known
with sufficient accuracy.
The accuracy of the reductions derived from (1) de-
pends strongly on the errors of the utilised geopoten-
tial model, which can be split into three error parts,
see e.g. Wenzel (1985): 1) The omission error repre-
senting those high frequency parts of the gravity field
which are not covered by the maximum degree of the
spherical harmonic expansion, 2) the commission er-
ror reflecting the uncertainties of the coefficients it-
self, and 3) the errors caused by the inaccurate input
values, in this case the cross-over positions and ori-
entations.
All three error parts have been checked with re-
spect to the height reduction calculation. The omis-
sion error for the reductions will not exceed 0.02 mE
utilising EGM96, which is a negligable order of
magnitude. This estimate is obtained, applying the
Tscherning-Rapp degree variance model (Tschern-
ing and Rapp, 1974) for radial gradients in GOCE
altitude. The commission error from the EGM96 co-
efficient variances for the reduction value applied on
cross-over gradients atλ, ϑ = 90◦ − ϕ with satellite
altitudesh1 andh2 (resulting in the height difference
∆h = h2 − h1) can be computed from

σ2
∆VZZ

=

(

GM

r
2
1 + r1∆h

)
l+3

(l + 1)(l + 2)

)

2

· σ
2
Yl

introducing Laplace’s surface harmonics

Yl(ϑ, λ) =

l∑

m=0
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Fig. 1. Accuracy of reduction for main gradients (lower pairs
of curves: VXX , VY Y ; upper pair:VZZ ) of the test data set
shown with respect to the height difference in the XO.

Due to the positive correlation, introduced by eval-
uating the GPM in the same geographical posi-
tion ϕ, λ, the commision error is strongly down-

weighted by the factor
(

∆h
r2

1
+r1∆h

)l+3

, resulting in

much smaller variances compared to complete grav-
ity field functionals. Hence, the commission error
for the reductions in the test data set (again from
EGM96) reaches only an amount of about 3 mE. Ob-
viously, it is strongly correlated with the satellite
height difference in the cross-overs and, as most of
the cross-overs show relatively small height differ-
ences, a huge amount of validation points with ade-
quate accuracy (> 80% of the tested cross-overs are
better than 1.5 mE) can be selected. Nevertheless,
one has keep in mind that correlations between the
GPM coefficients are not considered here, so the es-
timated commission errors might be too optimistic.
The contribution of the coordinate errors as third er-
ror part has to be analysed in theϕ, λ and the height
components separately. As discussed in (Jarecki et
al., 2006) the geographical position does not play an
important role: even hundreds of meters only cause
some mE of error, so orbit accuracies in the range
of one to some meters should be accurate enough.
The height component is much more sensitive: even
height reductions for small (< 1 km) height differ-
ences turn out to be as inaccurate as 1.8 mE for a
height error of 1 m. Hence one has to take care of
the altitude determination accuracy in both, the or-
bit determination itself and the cross-over interpola-
tion to achieve a value less than 1 m. Keeping this
margin, the height reduction derived from EGM96
is accurate engough for a huge amount of validation
points, which can easily be selected with a condition

depending on the height differences. Fig. 1 displays
the complete error budget for the reductions applied
to the VXX , VY Y and VZZ gradients in the cross-
overs of the test data set, where an altitude determi-
nation accuracy of 1 dm was assumed. The accuracy
is dominated by the commission error. Depending
on the accuracy level aimed for, a huge amount of
the tested cross-over differences can be reduced with
high accuracy; over 80% of the cross-overs are suit-
able from the accuracy point of view.

3 Error Models in Cross-Overs

3.1 Standard Cal/Val Parameters

Koop et al. (2002) introduced the parameter model
(5) for the external calibration of the gradiometer.
This establishes a function for the observed gradients
V G

ij , summing up real gradientsV R
ij , a constant bias

V ∗

ij , a linear trendV ′

ij and Fourier-type periodic dis-
turbances with coefficientsak, bk, finally multiplied
by an overall constant scaleλ:

V G
ij (t) = λ[V R

ij (t) + V ∗

ij + V ′

ijt+ (5)
n

∑

k=1

ak cos(kω(t)) + bk sin(kω(t))].

The relative approach applying cross-over gradient
differences is not able to recover all those parame-
ters: a constant bias cancels out and the scale pa-
rameter remains unrecovered, reappaering only in the
magnitude of the errors. The complete set of param-
eters projects into the cross-over differences as fol-
lows:
∆V G

ij

λ
=

V G
ij (t2) − V G

ij (t1)

λ
(6)

= V R
ij − V R

ij + V ∗

ij − V ∗

ij + V ′

ijt1 − V ′

ijt2 +
n

∑

k=1

ak cos(kωt1) + bk sin(kωt1) −

n
∑

k=1

ak cos(kωt2) + bk sin(kωt2)

= V ′

ij(t1 − t2) +
n

∑

k=1

ak(cos(kωt1) − cos(kωt2)) +

bk(sin(kωt1) − sin(kωt2)).

Equation (6) shows, that the linear trend projects di-
rectly into the cross-over differences (associated with
the time difference∆t = t1 − t2), whereas the peri-
odic parameters do not appear directly. For that rea-
son, linear trend and Fourier coefficients are adressed
separately now.



Fig. 2. Artificial trend on 30 d test data set cross-overs (black
asterisks) and estimated trend (grey line) versus time difer-
ences in the cross-overs.

3.2 Linear Trend

Focussing on the linear trend and neglecting the other
effects mentioned in Section 3.1, the cross-over gra-
dient differences according to (6) are
∆V G

ij = V G
ij (t2) − V G

ij (t1) (7)

= V R
ij − V R

ij + V ∗

ij − V ∗

ij + V ′

ijt1 − V ′

ijt2

= V ′

ij(t1 − t2) = V ′

ij(∆t),

thus being independent from the actual measurement
times t1, t2. Consequently, the trend parameterV ′

ij

can be estimated directly from the cross-over differ-
ences. Fig. 2 shows the effect of an artificial trend
superposed to the test data set on the cross-over dif-
ferences. According to (7), the trend parameterV ′

ZZ

(in this case -6.7974mE/d, growing to 200 mE for the
30 d data set) is directly visible in the cross-over plot
and can easily be estimated by least-sqares adjust-
ment. Especially a large number of sample points
and a long time base result in a perfect estimation
of the trend parameter. Applied as parameter for a
linear calibration function, this estimated trend is de-
picted in Fig. 2 as well. Discrepancies of the original
cross-over differences from the estimated trend are
due to cross-over interpolation errors, as discussed in
Sect. 2. To assess the effect of those interpolation er-
rors on the trend estimation, smaller intervals of the
cross-over data set have been analysed. The results
are summarised in Table 1. A trend parameter can
be obtained for each revolution, applying cross-over
differences of 1 d (resulting in about 30 cross-overs)
correctly and with sufficient accuracy. The formal
accuracy of the adjustment degrades for shorter time
base comparisons. For a single arc, the result is not
sufficient any more, but the trend parameter itself is
estimated correctly. Thus the method is well suited
to estimate daily trends or to check the stability of a
trend parameter over long time spans.

Table 1. Estimation of an artificial superposed linear trend (-
6.7974 mE/d) from different intervals of the 30 d test data set.

track section cross-overs estimated trend relative error
investigated with tracks from std [mE/d] # samples

1 arc 30 d -6.79675 0.01%
0.03347 ca. 500

1 arc 10 d -6.80794 0.15%
0.12976 ca. 170

1 arc 5 d -6.79388 0.05%
0.12742 ca. 80

1 arc 1 d -6.79586 0.02%
2.15051 16

1 revolution 10 d -6.7969 < 0.01%
0.0847 ca. 330

1 revolution 1 d -6.7969 0.12%
0.0847 ca. 30

3.3 Periodic Parameters

A simplified version of the complete error model (5)
is given by

V G
ij (t) = V R

ij (t) + a sin(ωt) (8)

for a single disturbing oscillation with 1 cpr fre-
quency. In the cross-over differences, corresponding
to (6) and (7), this simplified error will show up as

∆V G
ij = V G

ij (t2) − V G
ij (t1) (9)

= V R
ij − V R

ij + a sin(ωt1) − a sin(ωt2)

= a · (sin(ωt1) − (sin(ωt1) cos(ω∆t) +

cos(ωt1) sin(ω∆t))).

Like all periodic errors, the effect of this simple sinu-
soidal variation in the cross-overs does not only de-
pend on the cross-over time difference∆t, but also
on an absolute measurement timetk. Plotted ver-
sus the cross-over time difference, as shown in Fig.
3, a typical aliasing feature with a main period of
about 8 d appears. Nevertheless, periodic parame-
ters might be estimated from cross-over differences
as well, introducing two time parameters. To sam-
ple the complete disturbing function, a sufficiently
long time base has to be chosen for the investigation.
Table 2 shows formal standard deviations and esti-
mation errors rising to inadequate values for sparse
sampling scenarios, i.e. when applying only cross-
overs from one day. Longer time spans lead to rea-
sonable amplitude estimations, whereas the formal
accuracies are by far not as good as for the trend es-
timation. Resampling an 1 cpr period just from 1 arc
of satellite data obviously lacks some redundancy, so
main focus is put on longer test tracks here. The over-
all performance is not good enough to propose regu-



Table 2. Estimation of an artificial superposed sine (f=1 cpr,
A=1 mE) from different intervals of the 30 d test data set.

1 arc 10 d 0.99780 0.22%
0.58384 ca. 170

1 arc 1 d 1.03185 3.18%
13.9607 16

1 revolution 30 d 0.99044 0.96%
0.21956 ca. 1000

1 revolution 10 d 1.0010 0.01%
0.37795 ca. 330

1 revolution 5 d 0.99786 0.21%
0.22285 ca. 170

1 revolution 1 d 1.08250 8.25%
13.4741 ca. 30

lar, daily or weekly checks for changed periodic pa-
rameters, but the method holds for estimating global
parameters for the whole time series. Moreover, sam-
pling problems should diminish for disturbances with
higher frequencies.

4 Signal Disturbances in Cross-Overs

4.1 Gross Error Detection in Cross-Overs

Possibly, the GOCE gradiometer migth suffer from
malfunctions, which are not modelled in the time de-
pendent error model (5), such as single and continous
gross errors, data gaps and jumps in the gradiometric
time series. In this section, we investigate the recov-
erability of single and continous constant gross er-
rors, denominated as “short term biases”, with cross-
over methods and compare it with a standard inter-
polation approach below.

Fig. 3. Artificial 1cpr-sine signal on the test data set cross-
overs (black asterisks) versus∆t, note the aliasing feature, and
estimated sine (grey dots).

Table 3. Performance of cross-over detection of single gross
errors and “short term biases”. The 30 d input data set has been
superposed by 4400 single gross errors, affecting 1633 cross-
overs theoretically detectable, and by constant gross errors of
15 mE and 25 mE, resp., affecting 6045 cross-overs theoreti-
cally detectable.

# of alarms errors
threshold total correct type 1 type 2

single gross errors
1.5 mE 1773 1399 14.3% 22.9%
2 mE 1508 1152 29.5% 21.8%

”short term biases”
1.5 mE 6018 6001 0.72% 0.28%
2 mE 6007 6001 0.72% 0.09%

The 30 d 1 Hz data set has been superposed by a
equally distributed set of roughly 10000 gross errors
(10 mE outliers). 3731 of those are affecting sam-
ple points used in the procedure of cross-over deter-
mination and interpolation. First disadvantages of
the cross-over procedures show up here: In case of
the 30 d data set, about 30% of the data are covered.
Cross-over methods do not assure the check of every
single measurement. Vice versa, the identification of
a suspicious cross-over difference does not indicate a
single erroneous measurement, but affects all sample
points applied in the calculation.
For a more detailed investigation, a subset of 4400
gross errors had been chosen. Those outliers affect
1633 cross-overs in total. Table 3 shows the perfor-
mance of gross error detection in cross-overs with
respect to the alarm threshold applied in terms of
correctly and incorrectly suspected cross-overs. The
amount of cross-overs affected by a gross error, but
not identified in the procedure, is indicated as type
1 error and marks the performance of the procedure.
Vice versa, the type 2 error indicates the amount of
false alerts. A careful choice of an adequate thresh-
old is necessary: while the number of incorrectly
highlighted cross-overs remains in the same range,
the type 1 error is reduced by 50% by changing the
treshold from 2 mE to 1.5 mE. Unfortunately, the out-
standing high rate of false alarms, together with the
missing completeness of the check, decreases the ap-
plicability of the method in terms of detecting single
gross errors.
Dealing with longer erroneous intervals, the cross-
over method works much more effectively. To il-
lustrate this, three “short term biases” (several rev-
olutions) with an artificial bias of 15 mE or 25 mE,
resp., are superposed to the test data set and affect
32403 measurements or 6045 cross-overs. Due to the
structure of the errors, the cross-over differences are



affected severely. The interpolation process repro-
duces the error in the erroneous arc. Therefore, the
choice of the threshold is not as critical as with single
gross errors. Table 3 shows the good performance of
the cross-over approach in this error scenario.

4.2 Interpolation Approach

A standard method for searching gross errors and
outliers in measurement time series is just to inter-
polate each measurements from the neighbours in
the time series. For SGG data, this approach has
been proposed and tested e.g. by (Albertella et al.,
2000). Here, just a simple cubic spline along-track
interpolation scheme is applied to compare the ben-
efits of interpolation techniques with the cross-over
approach. With this approach, theVZZ gradients of
the 30 d 1 Hz test data set can be interpolated from
their four neighbouring samples (in the time series)
with an accuracy at the sub-mE level.
Applying this spline interpolation to the complete
gross error data set introduced in section 4.1 and
choosing an alarm threshold of 7 mE for the differ-
ence of measured and interpolated gradients at each
sample point, 9890 of the 9986 gross errors are found
correctly, alarming 9928 times. That means an type 1
error of just 0.96% and a false alarm rate of 0.38% is
caused, therefore the interpolation approach is a very
valuable method for the detection of single gross er-
rors, exceeding the performance of the cross-over ap-
proach by far.
Dealing with the “short term biases” data set, the re-
sult is quite different: only 24 of the 32403 affected
measurements from section 4.1 appear suspicious to
the simple interpolation approach. As a matter of
principle, this approach is only able to detect jumps
in the time series. Consequently, the measurements
suspicious to the interpolation approach just mark the
begin and end points of the biased intervals. A more
sophisticated interpolation approach would definitely
be able to classify the jump as one-way change and
careful analysis of this changes might lead to a safe
identification of the biased measurements, too, but
the cross-over approach identifies the erroneous in-
tervals directly.

5 Summary and Conclusions

The comparison of satellite gravity gradients in
ground track cross-overs is proposed as an approach
for validation. A determination and reduction con-
cept was introduced, which works with sufficient ac-
curacy for GOCE data validation: closed-loop tests
show errors in the range of only 1 mE for the full

gradientsVij . Consequently, cross-over differences
obtained from the tested procedure are used to esti-
mate parameters from the standard calibration model.
The differences are well suited for the estimation of
linear trends and it is possible to determine Fourier-
coeffients. Constant biases and scales can basically
not be recovered by the cross-over approach. Fur-
thermore, the cross-over differences are utilised to
recover single and multiple gross errors by compari-
son with certain thresholds. The differences are well
suited to detect gross errors, which are present over
a certain time span, here called “short term biases”,
whereas single gross errors might better and easier
be detected by simple along-track interpolation.
The results lead to the conclusion, that the cross-over
method adds a valuable test parameter to SGG vali-
dation, although it is not suited to detect every type
of error. On the other hand it offers unique features,
e.g. being the only method for trend estimation with-
out applying reference data or models.
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Inverting the Stokes and Vening Meinesz integrals 
using the Wavelet Transform 
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Abstract. A wavelet transform algorithm is used 
for inverting Stokes’s integral and evaluating the 
inverse Vening Meinesz integral. Orthogonal 
wavelet base functions are used. For inverting the 
Stokes integral, a set of equations is formed and 
solved using a preconditioned conjugate gradient 
method. The full solution with all equations 
requires a large computer memory; therefore, 
multiresolution properties of the wavelet transform 
are used to divide the full solution into parts. High 
compression levels are achieved by using global 
wavelet thresholding. The singularity level of the 
kernel is studied and the compression levels depend 
on the singularity properties of the kernels. Global 
thresholding achieved a 85% compression level in 
the case of the Stokes kernel and 97% in the case of 
the Vening Meinesz kernel without a loss in 
accuracy. These compression levels lead to large 
savings in computer memory and the ability to work 
with sparse matrices, which increases the 
computations’ speed. Hard thresholding is used in 
the compression of the matrices; however, soft 
thresholding is used for denoising of the data 
because of its smoothing properties. Conclusions 
and recommendations are given with respect to the 
suitability, accuracy, and efficiency of this method. 

Keywords. Wavelet multiresolution analysis, hard 
thresholding, inverse Stokes, inverse Vening 
Meinesz.  
  

1 Introduction 

For many years, the classical approach used for the 
efficient evaluation of geodetic integrals has been 
based on the Fast Fourier Transform (FFT). This 
approach is well established and is now a standard 
tool in the geodetic arsenal. In this paper, a wavelet 
approach is used as an alternative to the FFT to 
evaluate inverse geodetic integrals. 
The wavelet transform is a very efficient algorithm 
for decomposing and reconstructing signals 

[Keinert, 2004; Debnath, 2003]. It is a very 
powerful tool for evaluating singular geodetic 
integrals because of its localization and 
compression properties [Gilbert and Keller, 2000]. 
Kernels with singularity decay from the singular 
point rapidly and smoothly [Vanicek and Christou, 
1994]. The wavelet transform of such kernels leads 
to a significant number of small value coefficients. 
Thus, high compression levels of the kernels can be 
achieved.  
Rauhut (1992) tested different regularization 
methods for the solution of the inverse Stokes 
problem using simulated and observed data. Hwang 
(1998) utilized the inverse Vening Meinesz 
formula, which convert the deflections of the 
vertical to gravity anomalies. The formula was 
evaluated by a 2D FFT method. Sandwell and 
Smith (1997) computed gravity anomalies from a 
dense network of satellite altimetry profiles of geoid 
heights and a grid of the two components of the 
deflection of the vertical also by using 2D FFT.  
The previously mentioned approaches rely on 
stationary noise assumptions. The main advantage 
of the wavelet approach is its ability to deal with 
non-stationary noise. In this paper, two inverse 
geodetic problems are evaluated. The first is the 
inverse Stokes problem, which is solved using a 
combination of orthogonal wavelet transform by 
Mallat’s algorithm [Mallat, 1997], hard and soft 
thresholding, and a preconditioned conjugate 
gradient algorithm. In the second problem, the 
inverse Vening Meinesz is treated as a direct 
convolution problem and is evaluated in the wavelet 
frequency domain. 
The main objectives of this study are as follows: 

- Verify the wavelet approach as a 
regularization tool in solving the inverse 
Stokes geodetic problem under non-
stationary noise conditions. 

- Test the wavelet approach as an alternative 
to the FFT approach in the solution of the 
inverse Vening Meinesz integral. 



- Examine the efficiency of the combined 
global and level direction-wise 
thresholding compression wavelet 
approach in solving inverse geodetic 
problems. 

2 Wavelets as a Filtering Tool 

The wavelet theoretical background and the 
thresholding techniques used in this paper are 
briefly described in the other paper presented at the 
IGFS 2006 conference, by El-Habiby and Sideris 
(2006). The geodetic integrals evaluated using the 
wavelet technique are the Stokes integral and the 
inverse Vening Meinesz integral.  

2.1 Wavelet as a regularization tool 

Wavelet soft thresholding technique is used for de-
noising signals hidden in background noise. The 
main objective is to attenuate the noise while 
amplifying the signal. In the current case study, soft 
thresholding is used 
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The determination of the thresholding value is  

6745.0/)mnlog(2f ×= δδ   (2) 

where δ  is computed from the following two 
equations: 

)1levelat.coef.wavaildet(median=δ  (3) 
If it is equal to zero, then 

)1levelat.coef.wavaildetmax(*05.0=δ  (4) 

, n and m are the dimensions of the matrix, and 
0.6745 is a value obtained from Gaussian 
calibration and with an assumption that the wavelet 
coefficients are normally distributed [Keller, 2004; 
Donoho and Johnstone, 1994].  

2.2 Inversion of Stokes integral in the 
wavelet frame 

The equation for the Stokes integral in planar 
approximation is [Heiskanen and Mortiz, 1967]: 
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)y,x,y,x( 2211  are local Cartesian coordinates of 
the data points )y,x( 11  and the computational 
points )y,x( 22 , gΔ is the gravity anomalies and 
γ  is the normal gravity. 
The Stokes kernel produces the matrices used for 
determining the wavelet coefficients. These 
coefficients are used to build the design matrix 
needed for the inversion of the Stokes formula. For 
gridded data with equal spacing, which is the case 
in this study, the elements of the matrix in the 
spatial domain are as follows: 
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for )xx( 12 = and )yy( 12 =    
Equation (8) accounts for the singularity at the 
computational point. The procedure for inverting 
the Stokes integral in the wavelet frame is described 
in the following steps. 
The first step is the wavelet representation of the of 
the gravity anomalies, which are unknown in the 
case of Stokes integral [Chui et al., 1994]: 
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These coefficients are arranged in a column vector 
ju .  

The second step is the two-dimensional wavelet 
transform of the kernel: 
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These four sets of coefficients are computed for 
each kernel corresponding to every computational 
point and represented by a row vector.  
Using Belykin’s [1993] algorithm, and Daubechies  
wavelets with four vanishing moments 
[Daubechies, 1992], the kernel (equation 10) and 
the gravity anomalies (equation 9) are represented 



on a wavelet basis using the wavelet decomposition 
coefficients, h for the approximation decomposition 
and  g  for the detailing coefficients, as follows: 
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The summation is over dyadic intervals to avoid 
redundancy and decrease the computational effort. 
This reconstructed kernel formula (11) is 
substituted in the Stokes integral equation (5) to 
have the following equation [Salamonowicz, 2000]: 
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Then the unknown two-dimensional wavelet 
transform coefficients of the gravity anomalies are 
substituted in equation (12). By interchanging the 
order of integration and summation and 
subsequently integrating, the equation will be as 
follows: 
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This equation can be described as the element-by-
element multiplication of wavelet transform 
coefficients of the kernel and the gravity anomalies. 
Then, the product output matrix is summed up to 
have the geoid undulation directly at the 
computational point. It should be mentioned that the 
inverse wavelet transform step is done implicitly. 
Consequently, using this algorithm decreases the 
computational effort in comparison to standard 
algorithms. 
As mentioned before, four sets of coefficients are 
computed for each kernel corresponding to every 
computational point (equation 10) and are 
represented by a row vector. These row vectors are 
arranged in a one matrix jiA × . Consequently, the 
number of row vectors is equal to the number of 
computational points. The known geoid undulations 
are arranged in a row vector ir . The problem is 
formulated in the form of the equation below: 
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where 
NK

i jA×  is the design matrix containing the wavelet 
coefficients of the wavelet transform of the 
kernels; each line corresponds to one kernel. 

g
juΔ   is a vector containing the wavelet coefficients 

of the unknown solution (gravity anomalies 
in the case of Stokes’s integral) . 

N
ir    is a vector containing the known data (geoid 

undulations in the case of Stokes’s integral).        
i number of computation points 
j number of wavelet coefficients 
 
Equation (14) is solved using preconditioned 
conjugate gradient least-squares algrothim for the 
unknown wavelet coefficients ju [Barrett et al., 
1994].  

2.3 Inverse Vening Meinesz in the 
Wavelet Frame 

The inverse Vening Meinesz integral is 
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ζ  and η  are the two components of the deflection 
of the vertical.  
As shown in equation (15) there are two 
integrations. The first integral is taken as an 
example for describing the implementation 
procedure of these integrals in the wavelet frame. 
The procedure is described in the following steps: 
The first step is the wavelet representation of the 
vertical component of the deflection of the vertical 
[Chui et al., 1994]: 
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The second step is the wavelet transform of the 
kernel: 
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The wavelet coefficients of the vertical component 
of the deflection of the vertical (equation 16) and 
the kernel (equation 17) are implemented in the first 
integral of equation (15) using the same procedure 
introduced in equations (11) and (12). The same 
algorithm is repeated to obtain the wavelet 
coefficients of the horizontal component of the 
deflection of the vertical to solve the second 
integral in equation (15), which leads to the solution 
of the inverse Vening Meinesz integral. 
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This solution can be summarized as the element-by-
element multiplication of wavelet transform 
coefficients of the kernel and the data. Then, the 
product output matrix is summed up to have the 
solution directly at the computational point. The 
problem is formulated as shown in the following 
equation. 

K Kg
i i j j i j jr A u A uξ ηξ ηΔ

× ×= +    (19) 
where 

,K K
i j i jA Aξ η
× ×  are the design matrices of the wavelet 

coefficients of the wavelet transform of 
the kernels of the two components of 
the deflection of the vertical; each line 
corresponds to the kernel at each 
computational point 

,j ju uξ η  are the vectors of the wavelet 
coefficients of the two components of 
the deflection of the vertical. 

g
ir
Δ   is the solution vector (gravity 

anomalies) 

3 Data used and Results 

3.1 Data Used  
The data used are 3' × 3' grids of geoid undulations, 
the deflections of the vertical, and gravity 
anomalies in the area (18E-21.2E, 38.8N-42N) 
[Featherstone, 2006]. 

3.2 Gravity anomalies from geoid 
undulations 

The inversion of Stokes’s integral is done using 
equation (14). First, no compression is applied to 
the A matrix and the corresponding gravity 
anomalies are obtained with an accuracy of RMSE 
around 4 mGal of the differences between the 
solution and the reference data. Then, the solution is 
repeated with 78% compression level using global 
hard thresholding, which leads to RMSE 0.02 mGal 
from the first solution done with no compression 
(Figure 2). Higher compression levels are achieved 
with higher thresholding values. Table 1 shows that 
there is no loss of accuracy until the 94% 
compression level. The 94% compression level 
decreased the memory required for allocating the 
matrix from 182 MB to 15.2 MB. 

Wavelet solution with 78% compression
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Fig. 1 Wavelet solution difference from reference 
data 

Table 1 Wavelet solutions at different compression 
levels when inverting Stokes’s integral 

Comp
% 0% 78% 85% 94% 96% 98% 

Storage 
(MB) 182 49.7 35.1 15.2 7.24 5.58 

RMSE 
(mGal) 

ref. 
4.03 4.03 4.03 4.15 11.71 24.72 
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Fig. 2 Precondition conjugate gradient iterations 
versus relative residuals of full solution, 78%, 85%, 
94%, 96%, and 98% compression levels for the 
inverse Stokes integral 

3.3 Inverse Vening Meinesz 
The solution of the inverse Vening Meinesz integral 
gives almost identical results to the numerical 
integration solution. The A matrix is built for each 
term of the integral shown in (19) and then 
multiplied with the wavelet coefficients of each 
component of the deflections of the vertical. The 
same thresholding procedure is applied to the 
Inverse Vening Meinesz integral. A 97% 
compression level is achieved with no loss in 
accuracy (RMSE of 0.03). The computational time 
is less than half a second.  The comparison between 
equations (11) and (8) shows that the Vening 
Meinesz kernels drop faster than the Stokes kernel, 
thus leading to higher compression levels as shown 
in Table 2. 

Table 2 Differences among wavelet thresholding 
solutions and numerical integration solution 

Comp
% 0% 85% 94% 96% 97% 99% 

Storage 
(MB) 364 55 21.84 14.56 10.92 3.64 

RMSE 
(mGal) 0.00 0.00 0.001 0.01 0.03 9.80 

With 99% compression level a sudden degradation 
in accuracy can be seen. This is because wavelet 
coefficients representing the main energy of the 
kernel are removed. 
 

3.4 Wavelet as a regularization tool 
The inversion of the Stokes’s integral is repeated 
after adding non-stationary noise to the geoid 
undulations. Figure 4 shows the simulated non-
stationery noise.  

 
Fig. 3 Non-stationary simulated noise in metres 
with four different noise levels. 

The non-stationary noise is simulated using four 
different noise levels (±5 cm, ±15 cm, ±35 cm, and 
±55 cm). Each noise level is used for one quarter of 
the undulations matrix. A bias of 10 cm is added to 
the first noise level and a bias of 5 cm is added to 
the second. The solution using the gravity 
anomalies contaminated with the non-stationary 
noise has a large degradation in the accuracy to 221 
mGal, as shown in Figure 4. After applying the 
wavelet de-noising algorithm introduced by 
equations 15, 16, 18, and 19, the recovered 
undulations had an RMSE equal to 12 cm, and the 
solution improved to RMSE equal to 20 mGal, as 
shown in Figure 5. 
 

 
Fig. 4 Difference between reference gravity 
anomalies and gravity anomalies obtained using 
noisy geoid undulations 

 



Fig. 5 Difference between reference gravity 
anomalies and de-noised gravity anomalies obtained 
using de-noised wavelet algorithm 

4 Conclusions 

The Wavelet representation of inverse geodetic 
integrals is promising. Orthogonal wavelets are 
essential for the use of this algorithm. Through the 
wavelet hard thresholding technique, the number of 
multiplications and the required matrix storage are 
significantly reduced. The compression of the 
Stokes kernel can reach 80% of the matrices’ 
elements with less than a 0.05 mGal loss in 
accuracy. The preconditioned conjugate gradient 
algorithm is used for the solution of the linear 
equation problem. The iterations of the 
preconditioned conjugate gradient solution 
converged at 96% compression level with RMSE of 
11.71 mGal in comparison to the reference data and 
7.02 mGal in comparison to the full matrix solution 
with no compression.  The solution diverged and 
didn’t reach a solution at 98%. The compression 
levels achieved are mainly dependent on how fast 
the kernel drops to zero. Since the Vening Meinesz 
kernel decreases with power of -3 while Stokes’s 
kernel decreases with power of -1/2, higher 
compression levels are achieved in the former case. 
Wavelet filtering is a powerful regularization tool 
using soft thresholding. The filtering algorithm 
introduced in this paper is efficient for dealing with 
non-stationary noise. A 90% improvement in the 
solution accuracy of the inversion of the Stokes 
integral is achieved, when wavelet filtering is used 
to de-noise non-stationary noise.  
The compression of the Vening Meinesz kernel can 
reach 97% of the matrices’ elements with less than 
0.1 mGal RMSE in comparison to the numerical 
integration solution.  
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Abstract. The determination of accurate marine geoid 
models from satellite altimetry data usually suffers from 
the absence and/or in-accuracy of appropriate models of 
the quasi-stationary sea surface topography (QSST). 
This is the case for the Mediterranean Sea and espe-
cially for its eastern part, where global models are in-
adequate since: a) The differences between the various 
solutions exceed the magnitude of the QSST itself and 
b) they are most commonly in the form of a low-degree 
spherical harmonics expansion of the QSST, which re-
solves wavelengths much longer than the extension of 
the area under study. From that rationale, the present 
study focuses on the determination of a QSST model in 
the eastern part of the Mediterranean Sea, from a geo-
detic point of view. This geodetically oriented QSST 
determination stands upon the simple principle that the 
quantity under determination can be derived as the dif-
ference between a purely altimetric and a purely gra-
vimetric geoid model. From that initial solution an ad-
justed model is determined from its common adjustment 
with an oceanographic QSST model computed from in-
situ oceanographic data. Finally, the circulation in the 
area under study is determined by estimating the veloci-
ties and the direction of the sea currents. 

Keywords. Quasi-stationary sea surface topography, 
circulation, currents, velocities, adjustment. 
 

1 Introduction 

Since the early missions of GEOS-3 and SeaSat, altime-
ters onboard satellites have offered a tremendous 
amount of measurements of the sea surface resulting in 
the improved knowledge of the Earth’s gravity field 
over oceanic regions. A direct consequence of that is the 
continuous development of Mean Sea Surface (MSS) 
models of the oceans, which are usually combined with 
satellite-only Earth Gravity Models (EGMs) to estimate 
models of the Quasi-Stationary Sea Surface Topography 
(QSST). The QSST is defined as the semi-constant over 
large periods of time deviation of the mean sea surface 
from the geoid. It reaches a maximum of +2.2 m and in 
closed sea areas has very small variations over large 
regions. This is why most QSST models developed dur-
ing the last two decades are usually provided in terms of 
a spherical harmonics expansion of the QSST to low 

degrees, e.g., 20 (which corresponds to about 2000 km 
full wavelength). It can be easily concluded that when 
the area under study is rather small or is characterised as 
closed, e.g., the Mediterranean Sea, then such global 
models are insufficient. Moreover, in areas like the 
aforementioned the differences between the presently 
available global QSST models largely exceed the mag-
nitude of the signal under consideration itself. This sig-
nals both a significant uncertainty in the available mod-
els and a need for the development of reliable and accu-
rate local estimates of the QSST for use in geodetic and 
oceanographic studies.  

From a geodetic point of view, the QSST is needed 
for the reduction of the altimetric measurements from 
the sea surface to the geoid. This is so because the basic 
measurements of satellite altimeters, the sea surface 
heights (SSHs), refer to the sea surface and not the ge-
oid itself. Therefore, the reduction of these observations 
to the geoid is necessary to determine a geoid and not a 
MSS model. Additionally, shipborne gravity measure-
ments refer to the sea surface as well and need to be 
free-air reduced to the geoid to be used for the determi-
nation of a gravimetric geoid in the well-known Helmert 
scheme. The quantity needed for this reduction is the 
QSST, which is the “marine” counterpart of orthometric 
heights on land. It can be easily concluded that the 
QSST is significant for the precise and accurate deter-
mination of gravity-field related quantities, while local 
models are highly necessary as well to serve local to 
regional geoid modelling.  

These form the basis for the present work, i.e., to in-
vestigate whether a determination of the QSST from a 
geodetic point of view, i.e., using traditional geodetic 
methods and quantities, is possible. Furthermore, from 
this initial solution an adjusted model is determined 
through a combination with a local oceanographic 
model of the QSST. Studies on a geodetic determination 
of the QSST have begun since the work by Engelis 
(1983) who presented in a very elegant way their feasi-
bility (OSU83 QSST model). Consequently, there have 
been more works on a global determination of the QSST 
in terms of surface spherical harmonics (SH) (Engelis 
1984, 1985, 1987), while Knudsen (1992) presented a 
local model for the North Sea. Lemoine et al. (1997) 
estimated a QSST model complete to degree and order 
20 during the development of the EGM96, while Pavlis 
et al. (1998) used Proudman functions and data from the 
POCM-4 model to estimate the QSST to degree and 



order 20. Finally, Andritsanos (2000) and Andritsanos 
et al. (2001) estimated QSST models and current veloci-
ties from an analysis of altimetric exact repeat mission 
data using the Multiple-Input Multiple-Output System 
Theory (MIMOST) method. 

The area of the present study is the Eastern part of 
the Mediterranean Sea bounded between 33o ≤ φ ≤ 38o 
and 20o ≤ λ ≤ 28o. This region was selected due to a) the 
fact that it is a closed sea, thus global models are insuf-
ficient due to both their low degree of expansion and 
range of differences and b) some well-known currents 
are present so they can provide a reasonable validation 
of the proposed method. The determination is based on 
well-known geodetic algorithms and uses purely “geo-
detic” data, i.e. satellite altimetry geoid heights and 
shipborne gravity anomalies. For the estimation of the 
QSST, the simple formula connecting altimetric and 
gravimetric geoid heights, i.e., that their difference 
gives the QSST, was employed. With this as a starting 
point, the use of low pass filtering (LPF) with a Wiener-
type of filter and a blunder detection test is proposed to 
filter the resulting QSST field and lead to a better ap-
proximation of the SST. This filtering operation is nec-
essary to reduce high-frequency oceanic effects con-
taminating geodetic mission (GM) altimetry, while the 
blunder removal is needed to smooth the differences 
between the altimetric and shipborne gravity data, due 
to blunders in the latter. After this initial model is de-
veloped, an adjusted one is estimated through a combi-
nation with a local oceanographic one. This adjustment 
procedure is based on the well known least squares 
principle, where the vector of the observation equations 
is formed by the differences of the geodetic and 
oceanographic QSST models. Various deterministic 
parametric models are tested in order to describe the 
differences of the observations and finally construct a 
corrector surface for the adjustment of the geodetic 
QSST model. As a final step, the direction and veloci-
ties of the ocean currents in the area are determined 
based on the principle of geostrophic flow.  

2 Sea Surface Topography Modeling 

For the determination of the QSST an altimetric and a 
gravimetric geoid model for the area were used. These 
models have been developed by Vergos (2006) and Ver-
gos et al. (2005a, b) and by combining all available al-
timetric data in the area under study for the former and a 
recently constructed high-resolution and high-accuracy 
gravity database for the latter. The development of these 
models will be briefly discussed since the models them-
selves and the methodology followed are well docu-
mented in Vergos (2006), Vergos and Sideris (2003) 
and Vergos et al. (2005a, b).  

The altimetric geoid was estimated from a combina-
tion of ERS1 and GEOSAT GM data for the area under 
study. The well-known remove-compute-restore method 
was employed, while the EGM96 (Lemoine et al. 1998) 
global geopotential model was used as a reference sur-

face. Finally, an altimetric geoid of 1′×1′ resolution in 
both latitude and longitude was determined for the area 
under study.  

For the determination of the gravimetric geoid 
model, an effort was made to collect all available ma-
rine, land and airborne gravity data for the area under 
study. Then, an editing and blunder detection and re-
moval process, using least squares collocation, took 
place to construct a homogeneous and accurate gravity 
database. Finally, a gravimetric geoid model was esti-
mated using EGM96 as a reference surface and the 1D 
FFT spherical Stokes convolution to evaluate Stokes’ 
function (Vergos 2006; Vergos et al. 2005a, b). The 
statistics of the altimetric and gravimetric geoid models 
are summarized in Table 1.  

Table 1. Statistics of the altimetric and gravimetric geoid models. 
Unit: [m]. 

MODEL max min mean σ 
Ngravimetric  39.913 0.780 21.185 ±10.352 
Naltimetric 40.206 1.057 21.376 ±10.484 

Employing the so-derived geoid models for the area 
under study, a preliminary quasi-stationary sea surface 
topography model for the area was estimated as 

alt gravQSST N N= −  (1) 

where Nalt and Ngrav are the altimetric and gravimetric 
geoid heights respectively. It should be noted that the 
gravity anomalies used to determine the gravimetric 
geoid are free-air reduced, i.e., reduced from the sea 
surface to the geoid. The statistical characteristics of 
this preliminary QSST are given in Table 2, while the 
model itself is depicted in Fig. 1. From Fig. 1 (see solid 
circle) and Table 1 it is evident that the QSST estimated 
presents some unreasonably large variations within the 
area (3.3 m) and reaches a maximum of 2.2 m. There-
fore it is clear that blunders are present in the estimated 
field. Finally, from Fig. 1 some noisy features are evi-
dent (see the dotted circle), thus low-pass filtering 
(LPF) is needed to reduce these effects.  

Table 2. Statistics of the preliminary QSST model before and 
after the 3rms test. Unit: [m]. 

 max min mean σ 
before 2.177 -1.112 0.224 ±0.326 
after 0.977 -0.958 0.190 ±0.269 

For the detection and removal of blunders, a simple 
3σ test was performed, i.e., points with a QSST value 
larger than 3 times the standard deviation of the pre-
liminary field were removed. The statistics of the QSST 
model after this test are given in Table 2 as well. To 
low-pass filter the preliminary QSST model, a colloca-
tion-type of filter (Wiener filtering) was used, assuming 
the presence of white noise in the QSST field that needs 
to be filtered (Schwarz et al. 1990). Furthermore, it is 
assumed that Kaula’s rule for the decay of the geoid



  
Fig. 1: The preliminary and final geodetic QSST models. 

power spectrum holds, i.e., that the geoid heights PSD 
decays like k-4 where k is the radial wavenumber. Fi-
nally, we arrive at the filtering function shown in Eq. 2, 
where ωc is the cut-off frequency.  
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ω ω

=
+

 (2) 

To filter the wanted field, the desired cut-off fre-
quency needs to be selected. The latter relates to the 
final resolution of the filtered field and the reduction of 
the noise in the data. Thus, a trade-off is necessary, 
since higher resolution means more noise will pass the 
filter, while higher noise reduction means lower resolu-
tion of the final model. A high resolution is vital in the 
determination of regional to local QSST models, since if 
a high value cannot be achieved then a so-derived local 
model has little to offer compared to a global solution. It 
can be clearly seen, that the disadvantage of Wiener 
filtering is that the selection of the cut-off frequency is 
based on the spectral characteristics of the field only, 
while its spatial characteristics are not taken into ac-
count. Furthermore, the selection of the cut-off fre-
quency is based on solely objective criteria (noise re-
duction). Thus, a trial and error process, based on maxi-
mum noise reduction with minimum signal loss, is 
needed to determine the desired cut-off frequency. 

Various cut-off frequencies have been tested corre-
sponding to wavelengths of 5, 10, 20, 40, 60, 100 and 
120 km and finally we selected a wavelength of 100 km 
(about 1o or harmonic degree 180) since it offered the 
minimum signal loss with maximum noise reduction. 
Wavelengths shorter than 100 km left too much noise in 
the field, while those larger than 100 km were reducing 
not only the noise but the characteristics of the field as 
well. If we would select a longer wavelength, then, and 
if the area was significantly larger (e.g. the entire Medi-
terranean Sea) it would have been possible to identify 
larger in scale QSST features and distinguish them from 
smaller ones. The problem in this case is that shipborne 

gravity data in such high resolutions are not available 
for large regions.  

The final geodetic QSST field after the filtering is 
shown in Fig. 1, while the statistics are given in Table 3. 
From Fig. 1 it can be seen that the noise present in the 
preliminary model is reduced significantly, while blun-
ders cannot be identified. The QSST model estimated 
has been compared with a Mean Dynamic Topography 
model computed for the entire Mediterranean Sea from 
an analysis of satellite altimetry and oceanographic data 
(Rio 2004). The latter is given as a grid of mean QSST 
values of 3.75′×3.75′ resolution in both latitude and 
longitude. The statistics of the differences between the 
MDT and the estimated QSST model is given in Table 3 
(last row). From the comparison it can be concluded that 
the two models agree reasonably well to each other 
(standard deviation at the ±20 cm level). The maximum 
and minimum values of the differences are found close 
to land areas only, where both models are inadequate, 
while in purely marine regions range between -0.2 to 
0.2 m. This comparison gives evidence that the esti-
mated geodetic QSST model is at least in good agree-
ment with existing regional oceanographic MDT mod-
els. Nevertheless, the magnitude of the QSST that the 
geodetic model provides, and the velocities of the ocean 
currents resulting from that, is quite large for the area 
under study. The presence of the oceanographic model 
provides the opportunity to adjust the geodetic one, i.e., 
minimize their differences in a least squares sense and 
thus provide a better estimate of the QSST for the area. 
The corrector surface resulting from this adjustment 
scheme can then serve for the transformation/adjustment 
of future geodetic QSST models available for the entire 
Mediterranean Sea.  
Table 3. Statistics of the final geodetic QSST model. Unit: [m]. 

 max min mean σ 
QSST 0.675 -0.510 0.014 ±0.238 
MDT 0.096 -0.177   -0.047 ±0.052 

MDT-QSST -0.635 0.478 -0.058 ±0.200 



3 Common Adjustment 

In the common adjustment scheme of the QSST models 
the observation vector is of the form: 

( )alt grav c ocean c geod c ocean
i i i i i ib N N ς ς ς= − − = −  (3) 

where, and denote the geodetic and oceano-
graphic QSST models respectively. The observation 
vector entering the system of linear equations can then 
be describe as 

c geod
iς

c ocean
iς

T
i i i ib v= +a x  (4) 

where, x is the vector of the unknown parameters of the 
model selected and a is the vector of the known coeffi-
cients of the parametric model selected to describe and 
minimize the errors in the observations and estimate 
values in new points as well. The parametric models 
used in the present study are the well-known four- and 
five-parameter similarity transformation ones (see Eqs. 
5a, b) as well as polynomial models of degrees zero to 
three (see Eq. 5c).  

T x x cosφ cosλ x cosφ sin λ x sinφ= + + +a x

T
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T n
i q i o i o

m 0 n 0

x (φ φ ) (λ λ ) cos φ
= =

= − −∑∑a x  (5c) 

In Eqs. 5a-c φi, λi denote the geodetic latitude and longi-
tude of the point under consideration, φo, λo denote the 
mean latitude and longitude of the area under study. In 
Eq. 5c vector xq contains the q unknown coefficients, 
while q varies up to a maximum of q=(Μ+1)(Ν+1). 
Depending on the choice of the parametric model 5a-c 
the design matrix A of the system of normal equations 
(b=Ax+v) is formed, so that the adjusted vector of un-
known parameters is estimated as: x̂

( )ˆ =x A PA A Pb  (6) 

based on the minimization principle 

c geod c geod c geod c ocean c ocean c ocean
T T 1 T 1

ς ς ς ς ς ς
min− −= +v Pv v C v v C v  (7) 

In Eqs. 6 and 7 P and C are the weight and covariance 
matrices of observations, and v the vector matrix of er-
rors. The adjusted geodetic QSST  is then esti-
mated as: 

adj
c geodς

adj T
c geod c geod iς ς= + a x  (8) 

All aforementioned parametric models have been tested 
in order to select the most appropriate one, according to 

(a) the final differences between the adjusted geodetic 
QSST model with the oceanographic one, (b) the good-
ness of fit through the coefficient of determination and 
the adjusted coefficient of determination (see Eqs. 9a 
and 9b), and (c) parameter significance (Fotopoulos 
2003; Fotopoulos et al. 2004; Kotsakis and Sideris 
1999).  
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where, b  is the mean value of the observations,  are 
the adjusted observations, and n the number of observa-
tions. Both the adjusted and simple coefficients of de-
termination range between 0 and 1 and the closer they 
are to 1 the smaller the better the fit of the parametric 
model is. The adjusted coefficient of determination is 
superior to the simple one, since the latter is influenced 
significantly by the degrees of freedom of the system of 
linear equations, i.e, the smaller the degrees of freedom, 
(more parameters in the model) the closer R

îb

2 is to 1 (see 
Fotopoulos 2003; Sen and Srivastava 1990).  

Another criterion used to assess the parametric model 
performance and computed the adjusted geodetic QSST 
model was the condition number determined as the ratio 
between the larger and smaller eigenvalues of the matrix 
ATA, that is: 

max

min

λ
con

λ
=  (10) 

Larger condition numbers translate into more unstable 
parametric models therefore the results of the prediction 
tend to vary more with new observations.  

Finally, the significance of each model’s parameters 
has been tested according to Dermanis and Rossikopou-
los (1991). The entire procedure is based on first fitting 
to the data the highest order of the selected model and 
then eliminating the insignificant ones by testing a null 
hypothesis (backward elimination).  

Following this methodology the parameters of the 
two similarity transformation models and the polyno-
mial ones for degrees zero to three have been computed. 
The differences between the adjusted geodetic QSST 
models and the oceanographic one are summarized in 
Table 4 below. In that Table, A though D denote the 
zero, first, second and third order polynomial models, 
while E and F the four and five parameter similarity 
transformation ones. Characters in italics show the val-



ues of the corrector surface computed and regular ones 
the differences after the fit. From that table it is evident 
that the overall best fit is provided by the third order 
polynomial model, with a standard deviation (1σ) of the 
differences after the fit at the ±9 cm level and a range of 
60 cm. These large values refer to areas across the sea-
land boundary where both models suffer. Neglecting 
these regions, the range of the differences is at the 25 
cm level with a 1σ of ±3.5 cm.  
Table 4. Differences between the adjusted geodetic QSST models 
and the oceanographic one and statistics of each corrector model. 
Unit: [m]. 

 max min mean std 
A (trend) -0.058 
ςc geod – ςc 0.596 -0.577  0.000 ±0.201 
B (trend) 0.184 -0.298 -0.065 ±0.130
ςc geod – ςc 0.571 -0.369  0.000 ±0.167 
C (trend) 0.130 -0.755 -0.076 .±0 210
ςc geod – ςc 0.499 -0.245  0.000 ±0.105 
D (trend) 0.191 -0.737 -0.075 ±0.211
ςc geod – ςc 0.481 -0.233  0.000 ±0.092 
Ε (trend) 0.133 -0.532 -0.071 ±0.179
ςc geod – ςc 0.553 -0.278  0.000 ±0.130 
F (trend) 0.136 -0.614 -0.072 ±0.186
ςc geod – ςc 0.558 -0.283  0.000 ±0.131 

From that analysis it can be concluded that the model 
of preference is the 3rd order polynomial one, since it 
provides the smallest differences after the fit. During the 
adjustment for all models, the aforementioned statistical 
measures have been computed in order to test the good-
ness of fit of each one and the parameter significance. 
Table 5 summarizes the results acquired, from which it 
can be concluded that the 3rd order polynomial model 
provides the closest to one simple and adjusted coeffi-
cient of determination (0.68 and 0.74 respectively). This 
is much better compared to the second best four-
parameter similarity transformation model (0.63 and 
0.66 respectively). The results from the computation of 
the condition numbers are equivalent, strengthening the 
selection of the 3rd order polynomial model as the 
proper one. From the parameter significance test, all 
parameters were deemed as significant, while in the 
case of the five-parameter similarity transformation 
model it was concluded that the extra parameter com-
pared to the four-parameter model is not significant. 
Taking these into account, the 3rd order polynomial 
model was selected to provide the corrector surface (see 
Fig. 2) with the characteristics presented in Table 4. The 
resulting adjusted geodetic QSST model is depicted in 
Fig. 2 and its statistics are presented in Table 6. 
Table 5. Coefficient of determination, adjusted coefficient of 
determination and condition numbers for the various parametric 
models.  

 Α Β C D E F 
2
aR 0.44 0.51 0.56 0.68 0.63 0.59 

R2 0.46 0.54 0.62 0.74 0.66 0.60 
co
n 

1.6⋅10
2

4.4⋅10
3

6.7⋅10
4

2.6⋅10
5

1.2⋅10
7

7.3⋅10
7

 

4 Geostrophic Velocity Estimation 

From estimation of the final adjusted geodetic QSST 
models for the area under study, the direction and ve-
locities of the ocean currents can be determined. That 
was achieved by following the theory of geostrophic 
flow, i.e., that the Coriolis force and the pressure gradi-
ent acting on the currents are in balance. This method is 
more related to oceanographic studies and products, but 
its main advantage is that it can quickly provide velocity 
estimates and takes into account the properties of the 
ocean as a fluid. One of its disadvantages is that it di-
verges close to coastal areas, thus making the current 
estimates in such regions unreliable. The equations of 
geostrophic flow in spherical approximation, are given 
as (Pond and Pickard, 2000) 

φ∂
∂

−=
H

fR
gu s  (11a) 

λ∂
∂

φ
=

H
cosfR
gvs  (11b)  

where us and vs are the horizontal constituents of 
geostrophic flow, R is a mean earth radius (6371 km), φ 
and λ denote geographic latitude and longitude respec-
tively, f is the Coriolis force and H the QSST previously 
estimated. Using Eqs. 11a and b, the north-south (us) 
and west-east (vs) components of the currents' geostro-
phic velocities have been estimated for the area under 
study. Table 6 summarizes the statistics of the estimated 
velocities and the total velocity field (last row), while 
Fig. 2 depicts the direction and magnitude of the current 
velocities. From Fig. 2 we can clearly distinguish some 
well-known jets in the area like the Mid-Ionian (MIJ) 
and Mid-Mediterranean ones (Mid-MED Jet), the West-
ern Cretan Gyre (WCG), the Ierapetra Anticyclone 
(IAC), Rhodes Gyre (RG) and the Cyclades Anticyclone 
(CAC). Furthermore, South of the island of Crete we 
can identify a small (in terms of magnitude) jet (dotted 
lines), which can be either a branch of the Mid-
Mediterranean one or a jet by its own. Finally, there is a 
clear flow from the Aegean Sea (jets J1 and J2) which 
merge into the Western Cretan Anticyclone and prob-
able “feed” the MIJ. On the other hand they can be part 
of the Eastern Cretan Anticyclone which is closer to 
mainland Crete and thus not depicted very well due to 
the problems of geostrophic theory close to coastal ar-
eas. The same currents are identified in the studies by 
Mazella et al. (2001) and Rio (2004) with the exception 
of the IAC which is only depicted in Mazella et al. 
(2001) as known to exist in the area under study. The 
fact that the small IAC and CAC can be clearly identi-
fied from the proposed methodology, gives good evi-
dence that this “geodetic” estimation of the QSST can 
provide accurate and reliable estimates of the ocean 
circulation. From the geodetic part, the QSST can be 
used to reduce altimetric and marine-gravity measure-
ments from the sea surface to the geoid.  



Table 6. The final adjusted geodetic QSST model and the 
geostrophic velocities for the area under study. Unit: [m/s].  

 max min mean σ 
QSSTadj geod 0.332 -0.420 -0.040 ±0.133 

us 1.416 -1.239 -0.013 ±0.283 
vs 1.440 -1.185 -0.012 ±0.245 

total field 1.445 0.000 0.313 ±0.206 

5 Conclusions 

A method to determine the quasi-stationary sea surface 
topography from a purely geodetic point of view and 
using geodetic data has been presented. It is based on 
the simple relationship connecting altimetric and gra-
vimetric geoid heights, a blunder removal and noise 

filtering procedure and finally an adjustment with an 
oceanographic model. From the results obtained it can 
be concluded that the proposed methodology provides 
accurate and reliable results, since it gives small differ-
ences w.r.t. a MDT model derived from altimetry and 
oceanographic data. Furthermore, from the current ve-
locities estimated, it was possible to identify all known 
features of the circulation in the area under study like 
the Mid-Ionian and Mid-Mediterranean Jets, the West-
ern Cretan Anticyclone, the Ierapetra and Cyclades An-
ticyclones and Rhodes Gyre, which were clearly identi-
fied and outlined in the final field.    

Such a local QSST model is invaluable to geodetic 
studies for the reduction of altimetric sea surface heights 
from the sea surface to the geoid. Furthermore, it pro-
vides a reference surface for oceanographic studies, 

 

 

Fig. 2: The corrector surface (top left), the final adjusted geodetic QSST model (top right) and the direction and magnitude of the geostro-
phic currents (bottom). 



where other measurements can be referred. The results 
of the present study offer an encouraging prospect for 
the synergy between geodesy and oceanography with 
respect to sea level monitoring, sea surface topography 
determination and marine geoid modeling. 

 From the preliminary geodetic QSST model devel-
oped, it is evident that the initial estimate contains many 
errors since it gives very large values for both the QSST 
and the current velocities. This is clearly attributed to 
the errors in both the altimetric and gravimetric data and 
the differences in the vertical reference used for each 
data set. Therefore, the adjustment that followed is nec-
essary not only to adjust the geodetic model to an 
oceanographic one, but to minimize the aforementioned 
errors as well. Given that the QSST signal has a long-
wavelength nature and does not vary significantly espe-
cially in closed sea areas like the Mediterranean Sea, the 
corrector surface estimated can be used to adjust geo-
detic QSST models elsewhere in the Aegean Sea and 
the Mediterranean in general.  
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Abstract 
 
The ICESat laser altimetry mission has since January 
2003 provided satellite altimetry over the ice-covered 
Arctic Ocean up to 86°N. The laser altimetry surface 
elevation data is the sum of geoid, sea ice freeboard 
and ocean mean dynamic topography, but by a 
combination of lowest level filtering and GRACE-
based geoid models the signals may be separated, and 
sea ice thickness and gravity field information be 
recovered. In the paper we derive an improved 
gravity anomaly field for the Arctic Ocean using FFT 
Wiener filtering methods. The composite ICESat 
gravity grid shows all the major tectonic features of 
the Arctic Ocean at high resolution. The results are 
compared to the recently revised Arctic Gravity 
Project anomaly grid and airborne gravity. The 
results show that the laser altimetry data may provide 
excellent gravity results comparable to open ocean 
altimetry even over the most heavy ice conditions. 
 
1 Introduction 
 
Satellite altimetry missions have in the past decade 
improved the knowledge of the gravity field in vast, 
remote regions such as the oceans. Over the oceans 
altimeters map the mean sea surface (MSS), after 
correction for tides. The MSS represent the marine 
geoid if the mean dynamic topography (MDT) is 
neglected. The marine geoid can be inverted to 
gravity anomalies, e.g. by use of Fast Fourier 
Transforms.  

If we consider even more remote and hostile 
regions like the Arctic Ocean, access to satellite data 
are limited in coverage due to the inclination of the 
satellite orbits, leaving a gap around the pole. Since 
the launch in January 2003 NASA’s laser altimeter 
onboard the Ice, Cloud and land Elevation Satellite 

(ICESat) have for the first time collected data up to 
86°N. This is an improvement compared to the ESA 
missions ERS-1/2 and ENVISAT, which covers up to 
81.5°N. Another important factor in the Arctic Ocean 
is the presence of sea ice. To estimate the Arctic MSS 
it is necessary to remove the sea ice freeboard height 
(the part of the sea ice above sea level) from the 
altimetry measurements. The MSS can be expressed 
as 
 

MDT  N  F -h   MSS +==      (1) 
 
where h is the ellipsoidal height of the altimetry 
measurements corrected for tides, F the freeboards, N 
the geoid, and MDT the mean dynamic topography. 

The sea ice freeboards can be obtained directly 
from altimetry data. Methods to determine sea ice 
freeboards from radar altimetry were originally 
developed for ERS by Laxon et al (2003). Here we 
apply a lowest level filtering algorithm developed for 
airborne lidar flights, Hvidegaard and Forsberg 
(2002), to estimate sea ice freeboards from ICESat 
data. 

The studies in this paper are part of an ongoing 
ESA study ArcGICE, which have as a main objective 
to make an improved Arctic Ocean MSS, to be used 
as reference for future CryoSat measurements of the 
sea ice freeboard. In order to improve the MSS the 
aim is to improve the existing geoid and MDT 
models by combining surface, airborne and satellite 
measurements. Here we investigate ICESat altimetry 
observations to derive gravity anomalies and sea ice 
freeboards in the Arctic Ocean. 

A preliminary gravity field based on two ICESat 
epochs from 2003 was published by Forsberg and 
Skourup (2005). In this paper we investigate how the 
gravity field is influenced by including seven epochs 
of ICESat data covering the period 2003-2005, which 



 

 

 

 

Table 1. Used ICESat epochs 2003-2005 

LASER Period Year 
1 February 20 – March 29 2003 

2A September 25 – November 18 2003 
2B February 17 – March 21 2004 
2C May 18 – June 21 2004 
3A October 3 – November 8 2004 
3B February 17 – March 24 2005 
3C May 20 – June 23 2005 

 
we have gained access to within the ArcGICE 
project. The ICESat epochs to be included here are 
listed in Table 1. We also estimate an Arctic Ocean 
wide sea ice freeboard map for each of the ICESat 
periods, and compare the gravity anomalies derived 
from the MSS not corrected for sea ice freeboard 
heights (the raw altimeter measurements) to a field 
corrected for sea ice. This is done to investigate 
whether or not the resulting field is improved by 
removal of the sea ice from the altimeter data. In 
order to validate the three gravity fields, they are 
compared to the Arctic Gravity Project and airborne 
gravity campaigns carried out during the 1990’s. 

The results of the ICESat derived gravity anomalies 
can be used to improve existing gravity models in 
regions with sparse or poor data. The improved 
gravity field or geoid can then also be used to 
estimate better sea ice freeboards. 

 
2 Method 
 
In order to compute the gravity anomalies from 
ICESat observation data have to be corrected for tidal 
and atmospheric effects, and the sea ice freeboards 
need to be removed. 
 
2.1 Tide Corrections and Inverse Barometer 
Effects 
 
ICESat altimeter data have been corrected for tides 
using the global tide model GOT99.2 (GOT = 
Goddard/Grenoble Ocean Tide) [Ray, 1999]. This 
tide model is primarily based on TOPEX/Poseidon 
altimetry data available south of 66°N. We apply here 
the Arctic Ocean regional tide model by Padman and 
Erofeeva (2004), which uses a combination of 
TOPEX/Poseidon and ERS altimetry, and assimilates 
coastal and benthic tide gauges. Accordingly, the 
Padman model is expected to perform better in the 
Arctic regions.  

The tide corrections from the two models have 
been computed and applied to all the ICESat epochs. 
The differences between the two tide models are 
shown in Figure 1 for ICESat epoch February-March 
2003. Differences between the two fields are 
primarily seen in the coastal regions; the Canadian 
Arctic Archipelago, Nares Strait, the Baffin Bay and 
Labrador Sea. The regional as well as the seasonal 
variability obtained are on the order of a few 
centimeters. 

The inverse barometer (IB) effect removes some of 
the “trackiness” present in the altimeter data. The 
correction originating from inverse barometer (IB) 
effect can be calculated from the sea level pressure 
(SLP): 
 

IB = α (SLP - 1013.3)          (2) 
 
where the constant 1013.3 mbar represent the global 
mean sea level pressure calculated over the oceans, 
and the proportionality constant α is taken to be -11.2 
mm/mbar based on work done by repeated ICESat 
tracks in the Arctic by Kwok et al. (2006). The sea 
level pressure (SLP) fields used here to obtain the IB 
correction for each ICESat sample is linearly 
interpolated from 6-hourly NCEP/NCAR reanalysis 
products provided by the NOAA-ESRL PSD Climate 
Diagnostics Center Branch, Boulder Colorado. 
Spatial and temporal differences due to the IB effects 
are on the order of a few decimeters. 

Fig. 1 Differences between GOT99.2 and the Padman tide
models applied to ICESat epoch February-March, 2003. 



 

 

 

 

Fig. 4 The Arctic Gravity Project (ArcGP) gravity anomalies, 
version February 2006. Same colour scaling as in Figure 3. 
 

 
2.2 ICESat Sea Ice Freeboard Heights 
 
To estimate the sea ice freeboards from ICESat we 
are using a modified method developed for airborne 
lidar campaigns, Hvidegaard and Forsberg (2002). 
From equation (1) the freeboard (F), including snow 
cover, is given by  
 

F = h – N – MDT – e             (3) 
 
where h is the ellipsoidal height of the altimeter 
measurements after removal of tides, N is the geoid, 
MDT the mean dynamic topography, and e 
measurement errors. The first step is to remove the 
geoid from the altimeter data. We are here using the 
geoid representation from the Arctic Gravity Project 
(ArcGP) see Kenyon and Forsberg (2001).  

We apply a lowest-level filtering scheme to the 
height (h-N) by taking the average of the three lowest 
values of an along-track interval of 20 km. The 
lowest values are believed to represent open leads or 
thin ice in between the floes. A smooth curve 
determined by least-squares collocation is computed 
between the lowest levels, which we assume 
represent the sea surface height. Subsequently the 
freeboard heights are estimated by subtracting the 
smooth curve from the data. 

To remove false freeboard heights over open 
ocean, originating from the lowest-level algorithm 
favoring the trough of the waves, an open water mask 

is applied. The mask is obtained from SeaWinds 
scatterometer mission QuikSCAT, and combines 
backscatter and brightness temperatures to define a 
40% sea ice concentration.  

Figure 2 displays an example of an ICESat derived 
Arctic Ocean sea ice freeboard map from the period 
February-March, 2003. The typical winter ice 
situation shows thicker sea ice North of Greenland 
forced against the coast by the Beaufort Gyre, and 
thinner ice in the Russian Arctic. Some residual track 
noise, e.g. north of Russia, is also apparent. 

Fig. 2 Map of sea ice freeboard height in the Arctic Ocean
derived from ICESat data epoch February-March, 2003. 
 

Fig. 3 Gravity anomalies in the Arctic Ocean with all 
seven epochs merged into one field. Corrected for sea ice. 
 
 



 

 

 

 

2.3 ICESat-derived Gravity Anomalies 
 
Each of the mean sea surfaces computed from ICESat 
is cross-over adjusted, and the seven fields (listed in 
Table 1) are merged and draped into one combined 
MSS. This MSS is approximated to be the geoid by 
neglecting the MDT. The geoid is then inverted into 
gravity anomalies by techniques equivalent to the 
derivation of marine gravity anomalies from satellite 
radar altimetry over the open ocean. Here we have 
used Fast Fourier Transform (FFT). 

In the computations we take into account only the 
longer wavelengths of the freeboards, and use a 
Wiener filtering method to suppress short-wavelength 
noise. In the Fourier domain it is expressed as 

 
 

(5) 
 
 
where F is the two-dimensional Fourier transform, k 
is the wave number, and c is a resolution constant 
described by Forsberg and Solheim (1988), and also 
by Andersen and Knudsen (1998). The above 
technique is used in combination with a remove-
restore technique, to keep longer wavelengths from 
the global GRACE model GGM02S. 

The resulting gravity anomalies corrected for sea 
ice freeboards can be seen in Figure 3. The gravity 
anomalies based on the ICESat data alone, compares 
qualitatively well to the Arctic Gravity Project’s 
(ArcGP) gravity anomalies, cf. Figure 4, and maps 
nicely the major tectonic features, such as the Gakkel 
and Lomonosov Ridges, the deeper Canadian Basin, 
and the continental shelves. A similar procedure has 
been applied to compute the gravity anomalies with 
no sea ice corrections applied to the ICESat altimeter 
observations. The differences between these fields are 
outlined in the next chapter. 
 
3 Evaluation of Results 
 
3.1 Comparison to Airborne Campaigns 
 
For a more quantitative comparison of the ICESat 
derived gravity anomalies, the two fields derived 
above (one not corrected for sea ice freeboards, and 
the other corrected for sea ice), together with the 
fields based on only two ICESat epochs from 2003 by 
Forsberg and Skourup (2004), are compared to high-
resolution airborne gravity campaigns.  

The airborne campaigns were carried out by the US 
Naval Research Laboratory (NRL) in the Arctic 
Ocean during the years 1992-99, and by the Danish 
National Space Center (DNSC) in the period 1998-
2003. Four sub-regions have been selected for 
comparison, shown in Figure 5 by different colours. 
The NRL survey 1998-99 north of Svalbard, marked 
by red, are limited by latitudes 83-86°N, the DNSC 
survey north of Greenland (blue) are limited by 84-
86°N, and the NRL surveys of 1995 (yellow) and 
1994 (green) in the Canadian Arctic, are limited to a 
the latitude band 79-81°N. Biases between the 1994 
and 1995 survey from NRL data are found, and 
therefore the data are divided into two regions. 

Table 2 lists the mean and standard deviation of the 
differences between the ICESat gravity fields and the 
airborne gravimetry. It is seen that more data 
included to determine the gravity anomalies improves 
the estimated gravity field. In all but one case north 
of Greenland, the field is improved by taking the sea 
ice freeboard heights into account. For this particular 
area north of Greenland, with very compact ice, an 
airborne underflight of ICESat with high-resolution 
laser scanning (Forsberg, and Skourup, 2005), 
indicates that the freeboards based on ICESat are 
underestimated by approximately 35 cm, mainly due 
to imperfect lowest level filtering. The ICESat 
derived gravity anomalies, including data from 2003-
05 and sea ice correction, are comparable to gravity 
anomalies based on 7 years of ERS data (S. Laxon, 
pers.comm.). 

 
Fig. 5 Flight Lines from airborne gravity surveys used for 
evaluation of the ICESat gravity. NRL 98/99 survey (red), 
NRL 95 (yellow), NRL 94 (green), and DNSC survey 1998-
2003 (blue). 
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Table 2 Comparison of gravity anomalies derived from ICESat and ERS to airborne gravity campaigns. NRL and DNSC are 
airborne campaigns carried out by the Naval Research Laboratory and the Danish National Space Center, respectively, each with 
an estimated accuracy around 2 mGal. The four airborne comparison regions are displayed the different colours in Fig. 5. 
 

 NRL 98/99 (red) DNSC 98-03 (blue) NRL 95 (yellow) NRL 94 (green) 
Gravity Field mean std.dev mean std.dev mean std.dev mean std.dev 
ICESat 2003 -1.3 6.4 0.3 7.5 2.4 7.2 -11.5 10.9 
ICESat 2003-5 -0.6 5.2 0.5 6.6 3.4 4.2 -10.8 9.4 
ICESat 2003-5, 
ice corrected -0.7 4.9 3.5 7.5 3.5 3.8 -10.8 9.3 

ERS (Laxon) - - - - -0.2 3.5 -14.3 9.1 
 
 
4 Conclusions and Outlook 
 
ICESat based gravity anomalies for the Arctic Ocean 
has been derived based on seven epochs of ICESat 
data (2003-05). By neglecting mean dynamic 
topography and sea ice freeboards the mean sea 
surface (MSS) for each ICESat epoch were merged 
and draped into a combined MSS, and inverted into 
gravity anomalies by FFT Wiener filtering methods. 
When validated to airborne gravity surveys it is 
concluded that the gravity field estimated from seven 
ICESat epochs is improved compared to gravity 
anomaly fields based on the hitherto only two 
available ICESat epochs from 2003. Thus, the more 
ICESat data available, the better gravity fields can be 
obtained, as expected. 

A technique to estimate Arctic Ocean sea ice 
freeboard heights from ICESat data based on an 
along-track lowest level filtering was described and 
applied to the ICESat observations. The technique 
assumes the lowest levels to represent open water or 
thin ice in between the floes. The ICESat derived sea 
ice freeboards provides realistic Arctic Ocean 
freeboard heights with thicker ice north of Greenland, 
and thinner ice in the Russian Arctic. 

The sea ice derived freeboards are used to see 
whether or not the gravity anomalies are improved by 
removing the sea ice from the observed ICESat 
altimeter data (h-F). By including freeboard 
corrections the gravity field improves in all regions 
except for the area north of Greenland, which are 
believed to be due to a combination of very compact 
ice conditions with few sufficiently large open leads 
or thin ice to allow reliable lowest-level filtering. 

Overall the ICESat derived gravity anomalies 
compare qualitatively very well to the Arctic Gravity 
Project (ArcGP) gravity anomalies, and map in 
details the major tectonic features, such as the Gakkel 
and Lomonosov Ridges, the deeper Canadian Basin 
and the continental shelves. The ICESat gravity 

results will be used to improve the existing ArcGP 
gravity field models for the Arctic Ocean, especially 
for sectors north of Russia where some of the 
underlying data in ArcGP has a relatively poor 
resolution. 

 Future work for improved the ICESat gravity field 
should include corrections to the observed ICESat 
heights due to e.g. laser saturation, and the influence 
of the mean dynamic topography on the gravity fields 
should be investigated. 
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Abstract. The sea surface topography, which is 
directly linked to the shape of the geoid and to 
oceanic effects, is only measurable thanks to the 
spatial and temporal resolution of satellite altimetry. 
The contributions of satellite altimetry study in the 
Mediterranean have been considerable. The first 
maps of the marine geoid, with relative accuracy of 
one to two decimetres depending on the methods 
used, have contributed greatly to the understanding 
of geophysical phenomena.  
    Subsequently, thanks to reductions in orbital 
errors, improvements in gravitational models, and 
to the development of pseudo-geometrical orbit 
computations, the accuracy of determination of the 
absolute mean sea level has improved from several 
meters to a few centimetres.  
    The study presented here aims to determine 
seasonal variations in mean sea level in the Western 
Mediterranean basin by analysis of Jason-1 data 
corrected of different perturbations like the 
geophysical phenomena, the ocean wave influence, 
the inverse barometer effect, and the orbit error. 
    The analysis of altimetric data Jason-1 allowed us 
to observe a strong amplitude of variations of the 
average level in the Western Mediterranean basin, 
of the order of 20 cm, with a characteristic period of 
one year. 
    The comparison of the variation of the average 
height sea level at the harbour of Algiers obtained 
from analysis of altimetric data Jason-1 and from 
the harmonic analysis of tidal gauge measurements, 
showed almost identical results. 
 
Keywords. Jason-1, tide gauge, sea level, seasonal 
variations, Western Mediterranean sea. 

1. Introduction 

The United States were the first to have put in orbit 
an altimeter aboard satellites, on Skylab and Geos-
c, then on Seasat in 1978 and Geosat in 1985. 
Since the 90s, new altimetric missions were 
launched, ERS-1 (1991-1996), Topex/Poseidon 

(since 1992), ERS-2 (since 1995), Jason-1 (since 
2001) and Envisat (since 2003). 
    This paper presents the methodology of 
processing and analyzing of Jason-1 altimetric data 
to determinate the seasonal variation of sea level of 
the Western Mediterranean sea. 

2 Jason-1 mission 

JASON-1 is a follow-on mission to the highly 
successful TOPEX/POSEIDON (T/P) mission. The 
main goal of this mission is to measure the height of 
sea surface at least at the same performance level of 
T/P.  
    Launched on December 7, 2001, the Jason-1 
satellite measures the precise height of the sea 
surface using the POSEIDON-2 altimeter operating 
at 13.575 GHz (Ku band) and 5.3 GHz (C band), a 
system of positioning Doris (Doppler Orbitography 
and Radiopositioning by Satellite) in complement to 
the GPS receiver and Laser reflector and a 
Microwave Radiometer which provide the total 
water vapor content in the troposphere along the 
altimeter beam. 

3 Principle of computation of the level of the 
sea 

The radar altimeter embarked aboard a satellite 
gives out a signal to very high frequency to the 
vertical of this one in direction of soil, and receives 
in return the echo reflected by the surface of the sea.  
    The analysis of the echo permits to extract a very 
precise measure of time of round-trip journey 
between the satellite and the surface of the sea. This 
time is transformed then in distance by simple 
multiplication by the speed of light, speed to which 
propagates electromagnetic waves. 
    The height of the sea is therefore equal to the 
difference between the distance satellite-surface and 
the position of the satellite above the ellipsoidal 
reference. 



 
Fig. 2  Geometric principle of altimetry. 

4 Sources of errors 

    Altimetric measurements have many sources of 
errors. For instance, they need to be corrected for 
environmental perturbations like the geophysical 
corrections (wet troposphere, dry troposphere and 
ionosphere), the ocean wave influence (sea state or 
electromagnetic bias). Also, the tide influence 
(ocean tide, earth tide and pole tide) and inverse 
barometer effect have to be accounted for. 

4.1 Troposphere and ionosphere influence 

The atmosphere slow down the velocity of radio 
pulses at a rate proportional to the total mass of the 
atmosphere (dry troposphere influence), the mass of 
water vapor in the atmosphere (wet troposphere 
influence), and the number of free electrons in the 
ionosphere (ionosphere influence).  
� The dry meteorological tropospheric range 
correction is principally equal to the surface 
pressure multiplied by -2.277mm/mbar, with a 
small adjustment also necessary to reflect a small 
latitude dependence (Rummel, 1993): 

( )_  2.227 1 0.0026 cos(2 ) SDry Corr Pϕ= +       (1) 
where  is surface atmospheric pressure in 
mbar,

SP
ϕ  is latitude, is the dry 

troposphere correction in mm. 
_Dry Corr

� The wet troposphere correction expression  is 
(Rummel, 1993): 
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where  is surface atmospheric pressure in Pascal, SP

ϕ  is latitude, SE  is the partial pressure of the water 

steam and  is the temperature in Kelvin. ST

� The ionosphere correction for an altimeter bi-
frequency is given by (Rummel, 1993) : 
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where E  represent the total content in electron  
(TEC) and 1f  and 2f the frequencies. 

4.2. Sea state bias 

Due to the large footprint radar measurements, the 
sea surface scattering elements do not contribute 
equally to the radar return: troughs of waves tend to 
reflect altimeter pulses better than do crests. Thus 
the centroid of the mean reflecting surface is shifted 
away from mean sea level towards the troughs of 
the waves. The shift causes the altimeter to over-
estimate the height of the satellite above the sea 
surface. The Sea State Bias (SSB) is the difference 
between the apparent sea level as measured by an 
altimeter and the true mean sea level. 
    The nature of the sea state bias has been 
investigated using airborne radars and lasers 
capable of determining for various sea states the 
strength of the vertically reflected signal as a 
function of the displacement of the reflecting area 
from mean sea level. It is given as a function of 
wind speed and the skewness and kurtosis of the 
probability distribution of sea surface elevation due 
to the waves on the sea surface.  

4.3. Ocean tide 

It represents the response of the ocean to motion of 
the moon, the sun and the other planets. It translates 
itself by a transport of water masses.   
This correction is calculated from global models of 
tide : an empirical model GOT99.2 of the Goddard 
Space Flight Center or the FES 95.2 finite-element 
hydrodynamic model of the university of Grenoble. 

4.4 Solid Earth Tide 

The solid Earth responds to external gravitational 
forces similarly to the oceans. The Earth responds 
fast enough for it to be considered to be in 
equilibrium with the tide generating forces. 
    Then, the surface is parallel with the 
equipotential surface, and the tide height is 
proportional to the potential. The proportionality is 
the so-called Love number. It should be noted that, 
although the Love number is largely frequency 
independent, an exception occurs near a frequency 
corresponding to the K1 tide constituents due to a 
resonance in the liquid core (Wahr 1985). Such a 
tide is computed as described by Cartwright and 
Tayler (1971) and Cartwright and Edden (1973). 



4.5 Pole tide 

The Earth’s rotational axis oscillates around its 
nominal direction with apparent periods of 12 and 
14 months. This result in an additional centrifugal 
force which displaces the surface. The effect is thus 
indistinguishable from tides, and it is called the pole 
tide. The period is long enough to be considered in 
equilibrium for both the ocean and the solid Earth. 
The complete pole tide (in mm) expression is 
(Wahr, 1985): 
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where: Lon_Tra, Lat_Tra are longitude and latitude 
of measurement point, xpole, ypole is axis in the 
direction of the IERS reference meridian and axis in 
the direction 90°west longitude, xpole_avg   = 0.042 arc 
sec and  ypole_avg   = 0.293 arc sec. 

4.6 Inverse barometer effect 

As atmospheric pressure increases and decreases, 
the sea surface tends to respond hydrostatically. The 
ocean rises and falls, that is, a one mbar increase in 
atmospheric pressure depresses the sea surface by 
about 1 cm. 
    The instantaneous correction is computed using 
as input the surface atmospheric pressure (P_atm, in 
mbar) which is available indirectly via the dry 
tropospheric correction obtained from meteorology 
(Dry_Corr, in mm): 
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The inverse barometer correction (Inv_Bar, in mm) 
is then: 

( )_ 9.948 _Inv Bar P atm 1013.3= − −    (6) 

4.7 Orbital errors 

The effect of the orbital errors is directly visible to 
the height in intersections between ascending and 
descending altimetric tracks (crossover point).  
The correction of this effect is based on the 
principle of polynomial interpolation of residues on 
height at the crossover points. 

5 Processing and analysis 

The assessment of seasonal variations in mean sea 
level from the Jason-1 data made on a zone 
Covering the Western Mediterranean sea: zone 
understood between º35  and 

.  

º.5 44.5ϕ≤ ≤

0º º0 1λ≤ ≤

5.1 Jason-1 data used 

The used Jason-1 data are supplied by AVISO 
(Archivage, Validation et Interprétation des 
données des Satellites Océanographiques) under 
GDR Products DVD, containing the cycles from 
079 to 132 which correspond to dates from 
February 27, 2004 to august 16, 2005. 
    The pass numbers used for this application are 
illustrated in the following figure: 

 
Fig.3 Jason-1 tracks over Western Mediterranean sea. 
     
    GDR (Geophysical Data Records) files contain 
ten-day repeat cycles data. It contains all relevant 
data and corrections needed to calculate the sea 
surface height: location, altimeter range, 
troposphere and ionosphere corrections, Solid 
Earth, ocean and polar tide corrections, inverse 
barometer correction …  

5.2 Model of computing sea height 

The formulation of the model of computing sea 
surface height (SSH) is given as follows: 

 
_     ( _SSH Hp Sat H Alt )= − + Σ    (7) 

 
where  is the DORIS altitude of satellite 
center of mass above the GRS 80 reference 
ellipsoid,  is the altimeter range in Ku band 
and 

_Hp Sat

_H Alt
Σ  is the sum of corrections to be added to the 

altimeter range: 
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where:  is the dry meteorological 
tropospheric correction,  is the wet 
meteorological tropospheric correction, 

_y CorrDr
_Wet Corr

_ _Iono Cor ku  is the altimeter ionospheric 
correction on ku band, _ _ 1SB Corr kS  sea state 
bias correction in Ku-band,  is the _INV Bar



inverted barometer height correction, 
_ _H Eot FES  is the geocentric ocean tide height 

computed from FES 95.2 model,  is the 
solid earth tide height and  is the pole tide 
height.  

_H Set
_H Pol

5. 3 Processing and results 

For this application, each of Jason-1 cycle is treated 
independently of the others to obtain a sea surface 
height.  
    Afterward and in case if crossover points exist 
with a significant difference of sea surface height 
between an  ascending and descending altimetric 
arcs, an adjustment of the height of the sea along 
altimetric arcs is done. 
Next, the sea surface height is compared point by 
point to the EGM 96 global geoid model that is 
closely associated with the location of the mean sea 
surface. 
    The average differences obtained by cycle 
between sea heights stemming from Jason-1's 
instantaneous profiles and the EGM 96 geoid 
surface is represented in the following figure: 
 

 
Fig.4  Average differences between the altimetric sea heights 
and the EGM 96 geoid surface. 

The temporal variations in the Western 
Mediterranean basin between the instantaneous 
height of the sea and the EGM96's geoid have 
amplitude about 20 cm, with a maximum and a 
minimum respectively in autumn and in winter: this 
phenomenon is due mostly to the thermic 
expansion/contraction of the water under the 
influence of temperature variations. 
    The combination of Jason-1 cycles from 079 to 
132 has provided an altimetric mean level surface 
over the Western Mediterranean sea. The 
comparison of this surface with the EGM 96 geoid 
stands out differences between -50 cm and 50 cm 
with a average of 2 cm : 
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Fig.5 Altimetric mean level over the Western Mediterranean 
sea (in meter). 
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Fig.6 Differences in meters between the altimetric mean 
level solution and the EGM 96 geoid (in meter). 

6 Comparison with tidal gauge  
measurements 

The average Jason-1 altimetric height by cycle 
interpolated at the Algiers harbour is compared to 
the mean sea level obtained by the harmonic 
analysis of tidal gauge measures, obtained from 
analogical and automatic tide gauge installed at the 
same site of Algiers harbour. The periods of tidal 
gauge measurements analyzed are obviously 
equivalents to altimetric cycles.   
    These differences results of variation of the mean 
sea level at the Algiers harbour are very similar: 
 



 
Fig.7 Comparison between the mean altimetric level Jason-1 
(in blue) and the mean level obtained by harmonic analysis 
of the tidal data of the analogical tide gauge (in red) and the 
automatic tide gauge (in green). 

7 Conclusion 

The analysis of altimetric data Jason-1 allowed us 
to observe strong amplitude of variations of the 
average level in the Western Mediterranean basin, 
of the order of 20 cm, with a characteristic period of 
one year. 
    The comparison of the variation of the average 
height sea level at the harbour of Algiers obtained 
from analysis of altimetric data Jason-1 and from 
the harmonic analysis of tidal gauge measurements 
agrees well. 
    In terms of perspectives, the combination, on a 
bigger scale of time, of the data of Jason-1 with the 
data of the other missions of spatial altimetry such 
as Topex, Envisat, will allow certainly to observe 
with a good precision the main characteristics of the 
circulation in the Western Mediterranean basin and 
notably the seasonal swings. 
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Abstract.  Satellite  radar  altimetry  is  the  basic
means  for  global-scale  sea  surface  height  (SSH)
monitoring, constituting a major source for gravity
field improvements. In order to contribute to the im-
provement of sea level monitoring and to provide
local-scale information on the short-wave structure
of the marine gravity field, enhanced ground-based
methods for precise SSH measurements have been
developed,  consisting  in  airborne  laser  altimetry,
shipborne  multi-antenna  GPS  measurements  and
GPS-equipped buoys. Two local survey areas were
chosen in the vicinity of JASON-1 ground-tracks in
the Eastern Mediterranean. The gathered SSH data
could ultimately allow to contribute to the valida-
tion and calibration of radar altimeter missions.

Preliminary SSH results  from airborne laser al-
timetry  and  offshore  GPS  surveys  are  presented.
Furthermore comparisons with JASON-1 radar  al-
timeter  data and geoid heights from both EGM96
and GRACE-based GGM02 models are made.

Keywords.  Marine geodesy, airborne laser altime-
try, GPS buoys, shipborne GPS, sea surface height

_________________________________________

1  Introduction

Enhanced ground-based methods have been devel-
oped for precise ground-truth determination of sea
surface heights (SSHs), consisting in airborne laser
altimetry,  shipborne  multi-antenna  GPS  measure-
ments and GPS buoys. The SSH data provide local-
scale information on the short-wave structure of the
gravity field and can be used to improve local ma-
rine geoid solutions. They also contain information
on  local  dynamic  ocean  topography,  tides  and
waves, and can be used for the validation and cali-
bration of radar altimeter missions. In addition, they
provide a link between offshore radar altimeter data
and tide-gauge stations.

The key area for our  SSH investigations is  the
Eastern Mediterranean Sea, where two survey areas

were chosen around Crete and in the North Aegean
Sea, respectively (Fig. 1). Differences between pre-
liminary SSH solutions  and  both  EGM96 (to  de-
gree/order  360) and GRACE-based GGM02 geoid
models  have  been  computed  for  these  areas.  The
GGM02  model  used  in  the  comparisons  is
GGM02C  extended  to  degree/order  360  using
EGM96  coefficients  above  degree 200  (Tapley
et al. 2005).  The most striking feature revealed in
this area by the geoid model are the extreme gradi-
ents between the central Aegean Sea and the Hel-
lenic Trench area,  which amount to  40 m along a
distance  of  only  400 km  (Fig. 1).  In  the  Eastern
Mediterranean,  the  differences  between  GGM02
and EGM96 geoid heights reveal no systematic off-
set, although they locally exceed 0.5 m (Fig. 2). The
differences  in  our  survey  areas  are  around  0.3 m
near Crete and 0.6 m in the North Aegean Sea.

Geoid height  [m]

Aegean 
Sea

Hellenic            Trench

Crete

Fig. 1. Geoid heights in the Eastern Mediterranean Sea
from  GRACE-based  GGM02  model  extended  to  de-
gree/order 360 using EGM96 coefficients.  White rect-
angles: survey areas around Crete (airborne laser alti-
metry) and in the North Aegean Sea (shipborne/buoy
GPS).



GGM02 – EGM96  [m]

Aegean 
Sea

Hellenic            Trench

Crete

Fig. 2. Difference between GGM02 and EGM96 geoid
heights in the Eastern Mediterranean Sea.

2  Airborne Laser Altimetry

2.1  Technique

Airborne laser altimetry is based on georeferencing
a laser beam carried by an aircraft, yielding a  3D
vector between the aircraft and the ground surface.
The key elements are highly precise position and at-
titude of the aircraft. For this purpose, the latter was
equipped with an array of four GPS antennas. One
antenna is used for trajectory recovery and as a ref-
erence  for  moving baseline  processing,  where the
other three antennas are the remote receivers, yield-
ing three moving vectors used in attitude determina-
tion. As the attitude estimation is based on GPS vec-
tors, its accuracy is dependent on the geometry of
the antenna configuration. With a baseline accuracy
on the order of 0.01 m and baseline lengths of about
10 m, the expected angular accuracy is 0.05°, which
is sufficient for most applications.

2.2  Preliminary Field Measurement Results

A detailed  airborne  laser  altimetry campaign  was
carried out around the island of Crete in the frame-
work of the EU project GAVDOS in 2003 (Fig. 3).
The  aim of  the  latter  was the  establishment  of  a
European sea-level  monitoring and radar  altimeter
calibration  site  for  JASON-1,  ENVISAT  and
EURO-GLOSS (Pavlis et al. 2004). The calibration
site is located on the isle of Gavdos, at a crossover
of two JASON-1 ground-tracks. During the airborne
campaign an  area  of  200x200 km adjacent  to  the

Hellenic Trench was covered by 24 flight lines per-
formed at an altitude of 700 ft (210 m) with a laser
profiler operated at an observation rate of 1 kHz.

In order to derive a time-independent sea surface
topography from instantaneous  SSHs  obtained  by
altimetry, several corrections have to be applied, es-
pecially for tides and atmospheric effects (inverse
barometer effect).  In a first computation, tide cor-
rections  based  on  the  GOT00.2  tide  model  have
been  applied.  Inverse  barometer  corrections  have
been computed over  the entire  Mediterranean Sea
using ECMWF atmospheric pressure data.

Crete

Gavdos

Fig. 3. Flight-tracks with color-coded SSH profiles from
airborne laser altimetry around Crete.

Crete

Gavdos

Fig. 4. Sea surface topography obtained from airborne
laser altimetry SSH profiles of Fig. 3 (white lines).
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Height difference [m]
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Mean diff. : - 0.41m

Std dev.    :   0.39m

Sea surface height – EGM96  [m]

Crete

Gavdos

Fig. 5. Top: Height differences between SSH profiles
from airborne laser altimetry and EGM96 geoid heights
around Crete. Center: Distribution of the height differ-
ences. Bottom: Height differences shown as surfaces.

Sea surface height – GGM02  [m]

Crete

Gavdos

Gavdos

Height difference [m]

Mean diff. : - 0.17m

Std dev.    :   0.38m

Sea surface height – GGM02  [m]

Crete

Gavdos

Fig. 6. Top: Height differences between SSH profiles
from  airborne  laser  altimetry  and  GRACE-based
GGM02  geoid  heights  around  Crete. Center:
Distribution of  the height differences.  Bottom: Height
differences shown as surfaces.



The SSH results shown in Fig. 3 and Fig. 4 re-
veal  very  strong  gradients,  with  SSH  decreasing
from nearly 30 m in the North-East to 5 m towards
the  Hellenic  Trench in  the  southern part,  along a
distance of 200 km only.

2.3  Comparisons Between Local SSH and
Global Geoid Models

Height differences  between the SSHs obtained  by
airborne  laser  altimetry  and  both  the  EGM96
(Fig. 5)  and  the  GRACE-based  GGM02  (Fig. 6)
geoid  heights  have been computed for  the survey
area around Crete.  The distributions of the height
residuals have similar  standard deviation of  about
0.40 m for both geoid models. In this survey area,
EGM96 is systematically higher than the sea surface
(mean difference -0.41 m). The offset between the
SSH  and  GGM02  is  less  pronounced  (mean
difference -0.17 m), meaning that the long- and mid-
wave structure of the GGM02 geoid model fits the
SSH  better  than  does  the  EGM96.  A  striking
anomaly is the large positive difference around the
isle  of  Gavdos,  where  the  sea  surface  is  about
0.75 m  above  the  EGM96  and  1 m  above  the
GGM02 geoid.  The highs and lows of  the height
residuals are too pronounced to be explained only
by dynamic ocean topography effects and, therefore,
seem  to  be  related  to  local  short-wave  gravity
anomalies  that  are  not  seen  in  both  global  geoid
models.

3  Sea Surface Heights by GPS Buoys
and Shipborne Multi-Antenna GPS

3.1  Technique

The GPS-equipped buoys deployed for ground-truth
measurements  of  the  SSH  are  lightweight  buoys,
carrying  high-frequency  L1/L2  GPS  receivers
(Fig. 7).  The shell of the buoys is fabricated from
microwave-transparent  polycarbonate,  so  they can
be waterproof-sealed containing the receiver, anten-
na and power supply.

40 cm

Fig. 7. Left: GPS-equipped buoy containing receiver,
antenna and battery. Right: sailing boat equipped with
an array of four GPS antennas (arrows) for precise po-
sition and attitude determination.

Highly-precise GPS positioning of the buoys and
the boat is achieved by simultaneously operating the
buoy  receivers,  the  receivers  aboard  the  boat
(Fig. 7) and several permanent terrestrial GPS refer-
ence stations with coordinates known in the ITRF
reference  frame.  All  receivers  are  measuring at  a
sampling rate of 1 Hz. The kinematic positions of
the buoys and the boat are computed through differ-
ential  carrier  phase processing with respect  to the
reference  stations.  In  addition  the  multi-antenna
configuration abord the boat allows for precise atti-
tude determination, which is of great importance for
precise SSH retrieval.

3.2  Preliminary Field Measurement Results

Two campaigns for shipborne/buoy GPS SSH sur-
veys have been carried out in the North Aegean Sea
in 2004/2005, totaling more than 1000 nm of ship
tracks (Fig. 8).  The survey area was chosen in the
vicinity of the North Aegean Trough (NAT), which
is a tectonic graben-like feature characterized by a
zone of deep water reaching 1500 m and trending
from north-east to south-west in the North Aegean
Sea.  The NAT is  considered  to  form the western
continuation of the seismically active North Anato-
lian Fault Zone (McNeill et al. 2004).
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Fig. 8. GPS surveys in the North Aegean Sea.  Boat-
tracks  with  color-coded  SSH profiles  from  combined
shipborne/buoy  GPS  observations.  Black  lines:  JA-
SON-1  ground-tracks.  Background:  bathymetry  with
deep-water zone of the NAT.



In  order  to  derive  the  sea  surface  topography
from the instantaneous SSHs, the same procedure as
described in Chap. 2.2 has been applied.  In addi-
tion, the local tidal effects have been determined by
using own tide gauges installed in the survey area.

The SSH results  (Fig. 8)  reveal  that  the bathy-
metric low of the NAT is associated with a distinct
depression of the SSH which reaches a minimum of
37.5 m above the WGS84 ellipsoid, while the SSH
in  the  surrounding  area  is  more  than  39 m  and
reaches even more than 40.5 m towards the north of
the survey area.

3.3  Comparisons Between Local SSH and
Global Geoid Models

Height differences  between the SSHs obtained  by
shipborne/buoy  GPS  measurements  and  both  the
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Fig. 9. Top: Height differences between SSH profiles
from  shipborne/buoy  GPS  data  and  EGM96  geoid
heights. Bottom: Distribution of the height residuals.

EGM96  (Fig. 9)  and  the  GRACE-based  GGM02
(Fig. 10) geoid heights have been computed for the
survey area in the North Aegean Sea.

While EGM96 is systematically higher than the
sea surface (mean difference -0.75 m), the offset be-
tween  the  SSH  and  GGM02  is  less  pronounced
(mean  difference  -0.19 m),  which  means  that  the
long-wave structure of  GGM02 better  fits  the sea
surface. A striking anomaly is the large negative dif-
ference over the North Aegean Trough, where the
sea surface is more than 1.5 m below EGM96 and
1 m below GGM02. This distinct low of the height
residuals  can  be  considered  as  being  too  pro-
nounced to be explicable only by dynamic ocean to-
pography effects and seems, therefore, to be related
to a local short-wave gravity anomaly that is not de-
tected by both global geoid models.
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Fig. 10. Top: Height differences between SSH profiles
from  shipborne/buoy  GPS  data  and  GGM02  geoid
heights. Bottom: Distribution of the height residuals.



3.4  Comparison Between JASON-1 and
Ground-Truth GPS Data

For calibration and validation purposes of radar al-
timeter missions, the survey area has been chosen in
the vicinity of JASON-1 ground-tracks.  Dedicated
buoy  measurements  were  performed  along  these
tracks, including deployments with direct JASON-1
cross-overs,  which  provide  precise  ground-truth
SSH information during the overflight.

First  comparisons  between  JASON-1  radar  al-
timeter  SSH  data  and  the  preliminary  results  of
combined in situ shipborne and buoy GPS data have
been  successfully  performed.  Similar  tide  correc-
tions have been previously applied to both datasets,
as well as a cross-track correction to account for the
horizontal  offset  between  the  radar  altimeter
ground-points and the GPS profiles. The observed
height differences between the GPS buoy data and
JASON-1 data varied between 0.10 and 0.12 m on
six overflights. These values are in accordance with
NASA/CNES results obtained at calibration sites.

An  example  of  an  encounter  situated  directly
above  the  NAT  is  shown  in  Fig. 11.  The  mean
height  difference  along  this  profile  is
0.142 ± 0.042 m  standard  deviation,  whereas  the
maximum and minimum height difference reached
0.224 m and 0.085 m, respectively. This significant
variation of the height differences along the profile
seems to be geographically-correlated and is most
likely due to the effect of the different spatial reso-
lutions of the two methods amplified in regions with
strong sea surface height gradients and strong gradi-
ent variations.

Difference

JASON-1

GPS

Fig. 11. Comparison between a JASON-1 SSH profile
(green line) and the results  of  combined in situ  ship-
borne/buoy GPS data (red line). The encounter (closest
approach) is  marked by the dashed blue line on the
graph and the blue square on the map.

4  Conclusions

The  airborne  laser  altimetry  and  shipborne/buoy
GPS methods for precise SSH determination in lo-
cal  areas  have  been  successfully  developed.  First
SSH results are extremely promising in terms of ac-
curacy and repeatability, leading to a local high res-
olution sea surface topography solution at cm level.

Comparisons with JASON-1 radar altimeter data
along dedicated profiles showed encouraging results
but revealed geographically correlated variations of
the height difference between 0.1 and 0.2 m in areas
with strong sea surface height gradients.

Comparisons  between  EGM96  and  GGM02
global geoid models showed considerable local dif-
ferences  of  up  to  0.7 m  in  the  Eastern  Mediter-
ranean. When comparing the SSHs to the EGM96
and GGM02 geoid heights,  a significant improve-
ment of  the GRACE-based GGM02 model in  the
long- and mid-wave structure was observed, leading
to a reduction of the mean difference. Comparison
with the SSH's also revealed local anomalies in the
vicinity  of  the  Hellenic  Trench  and  the  North
Aegean Trough, reaching more than 1 m in these re-
gions of  high geodynamic activity.  These features
can be considered as being too pronounced to be ex-
plicable only by dynamic ocean topography effects.
Therefore they can be considered as indications for
distinct  mass  anomalies  causing  local  gravity
anomalies in the high frequency domain that are not
detected by the global geoid models.
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Abstract. In this paper we outline the principles of 
downward continuation and geoid determination in 
Mongolia, based on the 2004-5 airborne gravity 
surveys, surface gravimetry from various sources, 
and detailed digital terrain models from satellite radar 
interferometry (SRTM). A remove-restore method is 
used for terrain and global spherical harmonic 
reference models, with the residual gravity field 
signal downward continued by least-squares 
collocation, and the geoid and quasi-geoid computed 
by spherical Fourier methods. For reference field a 
GRACE and EGM96 combination field is used, and 
the geoid assessed using a subset of available GPS-
leveling data, indicating that recent GRACE fields 
still have detectable problems in the harmonic 
wavelength band 50-100. The gravimetric geoid 
model computed refers to a global vertical datum; the 
Kronstadt Baltic Sea level data used in Mongolia 
shows a difference of more than one meter to the 
global datum, and therefore it is essential to fit the 
gravimetric geoid to local height data to obtain an 
operational geoid model for GPS use. 
 
Keywords.  Airborne gravimetry, geoid, Mongolia 
 
 
1   
Introduction  
 
The Danish National Space Center, in cooperation 
with the Mongolian Administration of Land Affairs, 
Geodesy and Carthography (ALAGaC), MonMap (a 
private Mongolian survey company), US National 
Geospatial-Intelligence Agency (NGA) and the 
University of Bergen, Norway, carried out a 
complete airborne survey of Mongolia in 2004-5.    
    The primary purpose of the airborne survey was to 
provide data for global earth gravity models 
(EGM07). An additional purpose was to provide data 
for a new geoid of Mongolia, as part of the ongoing 
GPS modernization of the geodetic infrastructure; 
training of Mongolian scientists in geoid processing 
was part of this process. 

  
Fig. 1. Flight tracks of the airborne gravity survey: Western 
Mongolia fall 2004 (black), and Eastern Mongolia fall 2005 
(red).   

 
 
Fig. 2. Cessna Caravan aircraft used for the 2005 survey. The 
land gravimeter seen is used to tie to the Mongolian national 
gravity net, based on Russian absolute gravity measurements. 
 
    The airborne gravity surveys (Fig. 1) were carried 
out using an Air Greenland Twin Otter in 2004 and a 
Cessna Caravan aircraft in 2005 (Fig. 2). A total of 
420 flight-hours were flown at a track spacing of 10 
nautical miles. Because of the rough topography of 
Mongolia (Fig. 4), flight elevations of individual 
flight lines varied between 2100 m and 4800 m, 
necessitating a formal downward continuation. 
    All gravity measurements were made using a 
Lacoste and Romberg S-type gravimeter running the 
Ultrasys control system, with a number of GPS 
receivers onboard the aircraft and on ground 
providing the necessary kinematic positioning. More 
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details of the airborne gravity survey method are 
given in Olesen and Forsberg (this volume). 
    The estimated r.m.s. accuracy of the airborne 
gravity free-air anomaly data, as judged from cross-
over adjustments (cf. Table 1), is 2.2 and 2.4 mGal 
for 2004 and 2005, respectively. This indicates a 
slightly better performance over the mountains with 
the Twin Otter aircraft compared to the Cessna 
Caravan. No cross-over adjustment is performed in 
the final data set, as such process may be a source of 
aliasing, and is not necessary due to excellent 
stability of the used LCR gravimeter (Olesen, 2003). 
    Taking account the harmonic continuation effect, 
continuing the airborne data to a common level of 
3000 m, as outlined below, the r.m.s. error estimate 
from the cross-over analysis decreases to an average 
value of 2.2 mGal for the entire survey. With the 
inherent filtering applied in the airborne gravity 
processing, the along-track resolution is around 6 km, 
depending on the track (ground speeds varied 
significantly on tracks as a function of wind). 
    Figure 3 shows the airborne gravity anomalies, and 
Figure 4 a digital elevation model of Mongolia from 
SRTM data. The correlation of free-air anomalies to 
topography is evident. 
 
Table 1. Statistics of the cross-over errors of the airborne 
gravity survey of Mongolia, without downw. cont. Unit mGal. 
 
Year No of x-ings Max diff. RMS diff. RMS error
2004 201  9.5 3.1 2.2 
2005 206 10.0 3.4 2.4 

 

Fig. 3. Free-air anomalies at flight altitude from airborne 
gravity survey. Colour scale is from –75 to 75 mGal.  
 
2   
Downward continuation of airborne data 
and merging with surface data  
 
    The harmonic downward continuation of airborne 
gravity data is a classical unstable operation, making 
the collocation approach or stabilized Fourier 
methods the method of choice for treating this 
problem (Forsberg, 2002). 

 

 
 
Fig. 4. Topography of Mongolia from SRTM data. The 
elevations range from 4500 m in Western Mongolia to 600 m 
in the easternmost plains.  
 
    Downward continuation is essentially a high-pass 
filtering operation, which will amplify short-
wavelength noise in the airborne data. For geoid 
determination, this is offset by the gravity to geoid 
low-pass filtering operation; therefore, airborne 
gravity data are well-suited for geoid determination. 
Formulations for use of airborne gravity in geoid 
boundary value problems have been formulated by Li 
(2000); for more general studies on the downward 
continuation problem see e.g. Keller and  Hirsch 
(1992). 
    In the case of Mongolia, a relatively dense surface 
gravity data set exists, albeit of unknown accuracy 
and uncertain reference system. This data set, 
provided by GETECH for use in the geoid 
determination, was given as 5’ gridded values of 
Bouguer and free-air anomalies, together with a file 
of positions of the points used for generating the grid.  
    To utilise the GETECH data, the grid values were 
interpolated back to the given positions, a process 
which adds noise to the data. The location of the 
surface data is shown in Figure 5, together with a 
sparse ALAGaC gravity reference network data set. 
The surface data are especially useful for augmenting 
the airborne gravity data along the borders, because 
no flights were allowed within 25 km of the borders, 

 
 
Fig. 5. Location of surface gravimetry data in Mongolia. The 
thicker markings are the ALAGaC reference network points.  



    Because of the mix of airborne and surface data, 
and the varying flight altitudes, we use the method of 
least squares collocation for the downward 
continuation. We thus generate a 3’ surface free-air 
gravity grid from a combination of all data, prior to 
the geoid computation. 
    In least squares-collocation the gravity anomaly 
signal “s” at a ground grid point is estimated from a 
vector “x” containing all available surface and 
airborne data by 
 

1][ −+= DCCs xxsx
)     (1) 

  
Covariances Cxx and Csx are taken from a full, self-
consistent spatial covariance model, and D is the 
(diagonal) noise matrix. Because the gravity field of 
the earth is known to follow Kaulas rule, it is 
important to select covariance models which have an 
implied power spectral density decay in accordance 
with this. An example of such a self-consistent 
covariance model is the spherical earth Tscherning-
Rapp model (Tscherning and Rapp, 1974), and the 
analogous (and simpler) planar logarithmic 
covariance model (Forsberg, 1987). In the latter 
model, the gravity covariance between gravity 
anomalies at two altitudes is of form 
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where αk are weight factors combining terms relating 
to depth value terms (Dk = D + kT), with the “free 
parameters” D and T taking the role analogous to the 
Bjerhammar sphere depth of spherical collocation 
and a “compensating depth” attenuation factor. The 
attenuation of long wavelengths in the model are 
necessary when a spherical harmonic reference 
model is used. 
    All processing has been done using the remove-
restore method, where the gravity anomalies have 
been split into three terms 
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where the first term is a spherical harmonic reference 
field, the second term the terrain effects, and the third 
part the residual gravity. 
    For the spherical harmonic reference field, a 
composite model of the GGM02S satellite-only field 
from GRACE (Tapley et al., 2004) and EGM96 
(Lemoine et al., 1996) has been used. The GGM02S 
and EGM96 have been merged, so that GRACE data 
are used for harmonic degrees below 90, and EGM96 

for harmonic degrees above 100, with a linear 
transition in between. 
    The composite model, complete to harmonic 
degree N = 360, gives the geopotential V as a three-
dimensional expansion 
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    To properly take into account the height 
dependency of the spherical harmonics, a “sandwich 
grid” grid has been used. Here gravity anomalies Δg1 
(and height anomalies ζ1) are evaluated at grids at 
two elevations (0 and 4 km), from which both  
airborne and surface data are interpolated linearly 
with respect to both latitude, longitude and height. 
This ensures a rapid and consistent evaluation of the 
reference field effects. 
    The use of gravity terrain effects in the downward 
continuation process has significant advantages: It 
will – if properly applied – reduce the short-
wavelength information in the gravity data, and thus 
make the problem more stable; it will also diminish 
the topographic aliasing, especially important for 
surface gravity data, which typically do not have a 
random distribution relative to the topography 
(usually there is a relative abundance of gravity data 
collected in valleys). 
    In Mongolia SRTM elevation data, averaged to 
15” resolution, have been used to compute RTM 
terrain effects Δg2 on all surface and airborne data. 
The RTM terrain effects (Forsberg, 1984) takes into 
account topography relative to a mean height surface. 
This surface is produced from the SRTM data by 
low-pass filtering (Fig. 6). We have selected a 
resolution of 0.8° for the mean height surface, 
representing a trade-off between the smaller residuals 
of a more smooth reference topography, and the 
errors in the higher degrees of EGM96 (a too smooth 
mean surface implies in principle that terrain effects, 
already part of EGM96, are removed twice). 

 
Fig. 6. Mean height surface of Mongolia used for RTM terrain 
reduction. Colour scale ranges from 200 to 3100 m.    
 



    The RTM terrain effects are computed by prism 
integration using the TC program (Forsberg, 1984), 
assuming a constant density of 2.67 g/cm3 for all 
topography.  For airborne gravity data one important 
aspect must be taken into account: because airborne 
gravity data are inherently along-track filtered, the 
terrain effects computed at altitude must be filtered 
by the same filter algorithm as used in the airborne 
processing.  
    Table 2 shows the results for the reduction of the 
airborne and surface data for the GRACE/EGM96 
reference field and the RTM terrain effects. It is seen 
that the airborne data are nicely smoothed by the 
composite GRACE reference field and the terrain 
reduction. The resulting bias of only 0.1 mGal shows 
the essentially bias-free nature of the airborne data. 
    For the GETECH surface data, biases are evident 
in the data, likely coming from an unknown reference 
system. Assuming data to be given in the 
conventional Russian Potsdam/Bessel ellipsoid 
normal gravity system do not explain the bias seen. 
The GETECH data have therefore been fitted to the 
airborne data (and GRACE) by simply adding a 
constant to the data. 
 
Table 2. Statistics of the gravity data reductions. Unit mGal. 
 
Data Mean Std.dev. 
Airborne gravity data -17.1 25.9 
Airborne minus ref. field   0.2 19.5 
Airbore minus ref. and RTM   0.1 11.9 
GETECH interpolated 
surface gravimetry data 

 
  9.0 

 
19.0 

Surface minus ref. and RTM 12.9 11.4 
 
    For the final collocation run with the planar 
logarithmic  model (2),  D and T values were fitted to 
the airborne data, and the downward continuation run 
blockwise in 1° x 1° blocks expanded with a 0.6° x 
0.8° border around the block, securing data overlap 
between blocks. Standard errors were assigned to 
data as follows: airborne gravity 2 mGal, GETECH 
surface data 3 mgal, and 1 mGal for ALAGaC data.  
    Two basic collocation 3’ reduced free-air anomaly 
grids at the topographic surface were produced:  one 
using all data, and a second using airborne data only, 
to study the effect of adding the surface data to the 
geoid. In addition, the airborne gravity alone were  
continued to a common height level grid (3 km), in 
order to allow a consistent cross-over error analysis. 
 
3 
Gravimetric geoid computation  
 
Using the reduced gravity data, gravimetric geoid 
models were computed by spherical FFT methods.  

    In the used multi-band FFT method (Forsberg and 
Sideris, 1993), the fundamental Stokes’ formula is 
transformed into a spherical convolution in latitude 
and longitude (φ,λ) for a given reference parallel φref, 
and by utilization of a number of bands a virtually 
exact convolution expression may be obtained by a 
suitable linear combination of the bands. For each 
band the convolution expressions are evalutated by  
 
          ζ3 = Sref (Δϕ, Δλ) ∗ [Δg3(ϕ, λ)sinϕ]       

  = F -1[F(Sref)F(Δgsinϕ)]                     (5) 

  
where Sref  is a (modified) Stokes' kernel function, 
and * and F are the two-dimensional  convolution 
and Fourier transform, respectively. 
    In the actual implementation of the method, the 
data are gridded by least-squares collocation, and a 
100% zero padding is used to limit the periodicity 
errors of FFT.  
    A modified Wong-Gore Stokes kernel is used, 
where only spherical harmonics above degree 50 are 
allowed to modify the underlying GRACE reference 
field.  To avoid edge effects, the Wong-Gore kernel 
modification is linearly blended from degree 40 to 
50, for details see Forsberg and Featherstone (1998). 
The use of the degree 50 modification is based on 
test runs, looking for the lowest residual error in 
GPS-leveling comparisons, and is consistent with 
results from other regions (Scandinavia) showing that 
the GRACE fields might have relatively large 
systematic (striping?) errors above degree 50. 
    After the FFT transformation to the (residual) 
quasigeoid, the geoid terrain effects and the spherical 
harmonic terrain effects, computed at the level of the 
topography, are restored to give the final geoid. The 
terrain effects on the geoid were computed by a 
separate FFT computation, and are shown in Fig. 7.  
    The final gravimetric geoid model, referring to an 
implicit global vertical datum, is shown in Fig. 8. 
 

Fig. 7. Terrain restore effects on the geoid. Colour scale ranges 
from –1.2 to 1.2 meter.   
 



 
Fig. 8. Computed gravimetric quasigeoid of Mongolia.  
 

 
Fig. 9. Difference between geoids computed with and without 
the surface data. Colour scale ranges from –0.9 to 0.9 m. 
 
    The geoid models are, as earlier mentioned, 
computed both with and without the surface data. 
Figure 9 shows the difference between the two runs. 
As it can be seen, the impact of the surface data in 
the inner of Mongolia is small, but it makes a big 
difference to include the surface data in the border 
zone. 
  
4  
Geoid fit to GPS and levelling 
 
Gravimetric geoid models need to be fitted to local 
GPS-leveling data for operational GPS height 
determination use, in order to account for datum 
differences, residual long-wavelength geoid errors, as 
well as systematic errors in the leveling. 
    In Mongolia the basic height system is the 
Kronstadt datum, i.e. tied to the Baltic Sea level 
through the Russian leveling network. The first order 
leveling network is shown in Fig. 10. Recently a new 
national fundamental GPS net (MONREF97), tied to 
ITRF and processed by Bernese software, has been 
established in a Swedish-Mongolian cooperation. 
    The MONREF97 network has been used to tie in 
leveling points by GPS. Quasi-geoid heights can be 
derived at these leveled GPS points by 
 

ζGPS  = h  – H*                                   (6) 
 
where h is the ellipsoidal height and H* the normal 
height.  

 

     
 

Fig. 10. First order Mongolian levelling network. 
 

    To obtain a GPS-fitted geoid model, the difference 
between the gravimetric geoid ζ and the quasigeoid 
heights from GPS-levelling is modeled by a trend 
surface and a stochastic signal ε’ 

 
ε  = ζ  - ζGPS = 

 cosφ cosλ a1 + cosφ sinλ a2 + sinφ a3 + R a4 + ε’  (7) 

and then subtracted from the gravimetric quasigeoid, 
to obtain the final GPS-levelling consistent “geoid 
surface” in the Kronstadt system. 
    In eq. (7) a1 to a4 are empirical parameters, R the 
earth radius, and ε’ is the residual error, modeled by 
least-squares collocation. A second-order Markov 
covariance function is used with 80 km correlation 
length and 5 cm apriori noise, to secure some 
smoothing of the leveling corrections to the geoid. A 
total of 58 points have been used for the fit, and 
results are shown in Table 3 and in Figure 11. 
     
Table 3. Statistics of the quasigeoid comparison to GPS 
(before fit). Unit meter. 
58 GPS levelling points Mean Std.dev. 
GPS quasigeoid (h – H) -39.57 8.50 
Quasigeoid difference  ζ  - ζGPS 1.14 0.20 
 

 
 
Fig. 11.  Geoid fit residuals ε’, with location of GPS points. 
Colour scale is from –0.7 to 1.5 meter. 
 
It is seen from Table 3 that the Kronstadt system in 
Mongolia is apparently offset from the implicit 



global vertical system of the gravimetric geoid 
computation by 1.14 m. This is difference is likely 
due to offsets in the Kronstadt W0-value from the 
global average, as well as accumulated leveling 
errors and quasi-geoid errors. 
    It is seen that a fairly large standard deviation of 
20 cm exists in the r.m.s. GPS-leveling comparison. 
This is likely mostly due to errors in the leveling, 
where some loops are known to have large 
misclosures.  
    The overall r.m.s. of the fitted geoid at the control 
points is 6.8 cm, and comparisons to local, 
independent GPS data indicate that the new GPS-
fitted quasigeoid is accurate to 10 cm over much of 
Mongolia. The accuracy estimates of the gravimetric 
quasigeoid, computed by a formal least squares 
estimation on a manageable subset of the available 
data, have similarly indicated formal geoid errors in 
the interior of Mongolia at the 10 cm level. 
 
 
5 
Conclusions 
 
A major airborne gravity survey has 2004-5 covered 
Mongolia at 10 n.m. spacing. The overall survey 
accuracy, without using any internal cross-over 
adjustment are estimated at 2.2 mGal. The airborne 
gravity results have essentially no bias relative to 
GRACE gravity, confirming the bias-free 
performance of aerogravity even in the rugged 
topography across western Mongolia (Fig. 12).  
    We have in the paper outlined the procedure of 
downward continuation by least-squares collocation 
and geoid computation by spherical FFT and 
GRACE. This method yields a geoid model with a 
likely accuracy of 10 cm in the inner parts of 
Mongolia. The subsequent fitting of the geoid to 
GPS/leveling are done at the 5 cm level, with some 
residual errors likely due to levelling and GPS errors. 
The resulting geoid – MonGeoid2006 – will be used 
as a reference for the future modernization of the 
Mongolian geodetic infrastructure, and updated as 
new levelling and GPS data becomes available. 
 

 
 

Fig. 12. Flight over mountains of northern Mongolia, 2004. 
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Abstract. Gravity Gradiometry for exploration 
geophysics became reality after declassification of 
the Bell Aerospace Full Tensor Gradiometer system 
in the mid 1990’s. Initially the system was deployed 
seaborne for hydrocarbon exploration. Airborne 
applications ensued after improvements in acquisi-
tion procedures and data processing.  
Airborne surveys are typically flown with a Cessna 
Grand Caravan. - Post processing accuracy levels 
are in the order of 3 E over wavelengths of 400 
meters.  
Data processing is a five stage process. These in-
clude: high rate software to remove self gradient 
effects, terrain correction, a stage with redundancies 
and correlation to filter out obvious spikes and 
shifts, manual levelling to take out drift effects and 
“Full Tensor Processing” to remove uncorrelated 
noise in the tensor components.    
Slowing down the platform improves spatial resolu-
tion. This is currently observed with an instrument 
operating on a Zeppelin NT airship for De Beers 
exploration in Botswana. The results of this method 
are comparable to high resolution ground gravity 
offering less than 2 E over 100 meter wavelengths 
detectability.  
 
Keywords. Airborne Gravity Gradiometry,  Airship 
Gravity Gradiometry, Exploration Geophysics. 
 
 
1  Introduction  
 
The Full Tensor Gravity Gradiometer (FTG) system 
was developed in the 70’s by Bell Aerospace (now 
Lockheed Martin) to aid navigation in stealth mode 
for US submarines. Bell Geospace commercialized 
the technology for offshore hydrocarbon explora-
tion post military declassification in the mid 1990’s. 
In 2001 the system was successfully tested on a 
single engine aircraft. This new Airborne  FTG 
system was quickly adopted by the minerals indus-
try as a much anticipated novel exploration tool. 
This paper describes the current state of the art after 
five years of experience and gives a with few notes 

of what is expected as further developments in the 
near future.    
 
 2  Technology 
 
The 3D FTG system contains three Gravity Gradi-
ometry Instruments (GGI’s), each consisting of two 
opposing pairs of accelerometers arranged on a 
spinning disc with measurment direction in the spin 
direction. Following logic cf. Rummel (1986) pp. 
324-339, subtracting opposing accelerometer read-
ings cancels out disc acceleration and in first-order 
approximation the following relation remains:   
 

dai = Vij dxj       (1) 
 
where dai is the acceleration difference vector, Vij 
the gravity gradient tensor and dxj the coordinate 
difference between the two accelerometers. In case 
of an horizontal disk, defining a local triad with the 
z direction vertical we can set  
 

dx = D cos α     (2a) 
dy = D sin α     (2b) 
dz = 0      (2c) 

 
where α is the angle of x axis with the line connect-
ing the two accelerometers and D is the distance 
between the accelerometers. It then follows that for 
the accelerometer difference da on an horizontal 
disc, rotating with angular speed ω at time t that 
 
         da = ½D(Vyy-Vxx)sin2ωt  + Vxy cos 2ωt.  (3)       
 
Similarly for a vertical disk in the yz-plane it can be 
shown that  
 
         da = ½D(Vzz-Vyy)sin2ωt  + Vyz cos 2ωt.  (4) 
 
And a similar relation holds for a third perpendicu-
lar vertical disk in the xz-plane, so that three disks 
resolve all six tensor components.   
In reality the three GGI’s in the FTG instrument are 
arranged such that their axes are mutually perpen-



dicular, aligned 35 degrees with the vertical and are 
120 degrees apart. The assembly of GGI’s, called 
caroussel, is rotated at a rate of 0.5 Herz. It can be 
shown that this configuration resolves the six tensor 
components in a similar way. The configuration in 
fact measures Vxx, Vyy and Vzz independently and 
the consistency check offered by the Laplace Equa-
tion is one of the advantages of the Full Tensor 
system.  
 
3  Operation 
 
For fixed wing airborne surveys the FTG instru-
ment is mounted in a Cessna Grand Caravan, a sin-
gle engine aircraft with sufficient size and power. 
The single engine minimises vibration noise levels 
compared to multi-engine aircraft. Surveys are typi-
cally flown VFR at 80 meters AGL (drape) which is 
the lowest altitude deemed safe. Speeds average 
120 kph or 70 m/s. Surveys are flown with line 
spacings from 50 m. to 2000 m., depending on the 
expected signal, aliasing and the resolution required 
for the geologic target.  
Since 2005, Bell Geospace together with Zeppelin 
GmbH, funded and co-ordinated by De Beers have 
run airborne surveys from a Zeppelin NT. This is a 
rigid frame airship with an overall length of 75 m. 
and a diameter of 14 m. The stability of such an 
airship and the ability to travel at slow speeds 
makes this a perfect platform for the high resolution 
surveys that are required to detect small targets 
such as Kimberlite pipes as will be shown in the 
Case Studies Section.   
 
4  Processing 
 
Processing is a five stage process. The first stage,  
called High-Rate Processing, is designed to limit 
effects from external forces such as centripetal 
forces on the disks and self gradients relating to e.g. 
aircraft motion and fuel movement. After this step 
the tensor components can be constructed in the 
external Cartesian co-ordinate frame. Terrain ef-
fects are removed at this early stage by subtracting 
a forward model derived from a digital elevation 
model (DEM). Proper terrain correction is essential 
for gradiometry since terrain accounts for the larg-
est gradients in the data due to the proximity to the 
instrument. A next processing pass uses the Laplace 
equation and correlation between multiple survey 
lines to filter out obvious drift, spikes and shifts. 
The data can then be levelled taking out more subtle 
drift effects and remaining shifts. Levelling is still 
largely done manually as a network adjustment. 

The final step called Full Tensor Processing aims to 
reduce the uncorrelated noise by exploiting the rela-
tionships and integrity of the full tensor.  
Continuing developments in processing software 
concentrate on three areas.  

- Maintaining the integrity of the full tensor. 
In particular it is being investigated how 
levelling can be done on the tensor as a 
whole rather than on individual tensor 
components.  

- Quality Control Statistics; Several strate-
gies are investigated that exploit tensor in-
tegrity for quality assurance, such as 
methods proposed by FitzGerald (2006) 
that make use of Mohr diagrams, tensor 
eigenvector and invariant statistics. Also 
of interest is spectral analysis summarized 
e.g. by While et al (2006).  

- Optimising terrain correction routines. As 
gradiometry data resolution increases  the 
DEM’s have to be more detailed and ter-
rain correction needs to be more precise.  

 
5  Applications 
 
The advent of airborne Full Tensor Gradiometry 
has opened up the technology to land applications, 
and in particular to minerals exploration. Compared 
to hydrocarbon exploration, minerals exploration 
typically investigates relatively shallow but small 
sized geological features which are highly suitable 
targets for gradiometry. Table 1 gives a non-
exhaustive overview of geological target density 
contrasts of commercial interest causing gradient 
anomalies that are in the range of the FTG system 
sensitivity and resolution.  
 
 
Table 1 Economically interesting geological density 
contrasts. 
 
Geological Structure Commercial Interest  
Salt domes Oil and Gas Traps 
Kimberlite Pipes Diamonds 
Paleo Channels Placer Minerals  

(Diamonds, Gold) 
Hematite Ore IronOxide, Copper, Gold  
Chromite Ore Chromium   
Lithological Contacts Various Metals 
Igneous Intrusions Porphyry Copper 
Basin Edges Oil and Gas Plays  
Inclined Sheets of 
Massive Sulphides 

Gold, Massive Sulphides 

 
In general gravity gradiometry is not stand alone 
but  rather an enabling technology, even though 



Kimberlite pipe detection, salt dome and paleo-
channel mapping are examples where the technol-
ogy is often used as a primary integrative geophysi-
cal data exploration tool.  
 
In addition to the particular applications in Table 1, 
airborne gravity gradiometry is also employed for 
more general geological mapping where primary 
methods like seismic surveys are not economically 
viable or are technically inadequate. Examples in-
clude sub-salt, sub-basalt or sub-carbonate imaging 
and general mapping in inhospitable land areas.  
 
 
6  Case Studies 
 
6.1 Tracing and Quantifying Paleochannels  
 
Airborne Full Tensor Gravity Gradient data was 
acquired 2003 by Bell Geospace over an area of 
2150 km2 around Ventersdorp, South Africa, to 
identify and map the occurrence of buried paleo-
channels for Etruscan Resources Inc. The diamon-
diferous paleochannel gravels occur as long narrow 
snake-like bodies, locally termed "runs". These 
gravels vary from 20m to over 500m wide.  

 
Fig. 1 Outcropping Paleochannel near Ventersdorp, 
South Africa.   
 
The initial evaluation survey was carried out with a 
line spacing of 200 meter and tie lines every 1 km. 
Figure 2 shows the vertical gradient, Tzz of a part 
of this early survey. 
Over this area there was previously acquired 
ground gravity available with line spacing of 100 m 
and station spacing of 50 m. This was used to as-
sess quality levels of the airborne data.  
 
 

 
Fig. 2  Tzz Results of the Test Area near Ventersdorp. 
 

Comparison with the gradient of upward continued 
ground gravity by taking the standard deviation of 
the difference map in Figure 3, suggests accuracy 
levels in the order of 5 to 6 E at a resolution of less 
than 400 m half wavelengths.  

 

 
Fig. 3  Difference Map Measured Air-FTG® Tzz Minus 
Upward Continued Ground Gravity.  
 
Similar accuracy levels were reported on other sur-
vey work e.g. by Hatch (2004). On larger surveys 
where Full Tensor Processing can now be applied, 
accuracies improve slightly further and levels of 3 
to 4 E over less than 400 meter wavelengths are 
now routinely reported, e.g. Murphy (2006).   
 

Air-FTG® 

1200m 

Difference 

1200m 



This level of quality enables detailed quantitative 
anaylis of the bedrock potholes, by comparing ob-
served gradients with forward models. A 2D exam-
ple is shown in Figure 4. The size, shape and over-
burden predicted was subsequently confirmed to be 
within a couple of meters accurate by drilling.    
 
 

 
Fig. 4  Forward Modeling Paleo Channels. 
 
 
6.2  Detection of Kimberlites from an Air-
ship  
 
Kimberlite bodies are usually downward-tapering 
cylinders (pipes) that are the main source of dia-
monds. The pipes are generated by the melting of 
small amounts of the Earth’s upper mantle contain-
ing water and carbonate.  The liquid moves upward, 
gathering crystals and rock fragments along the way 
in an explosive volcanic event. Where they reach 
the surface they display a carrot-like shape. The  
crater comprises debris material with much lower 
density than the country rock. For this reason grav-
ity is considered a primary tool for Kimberlite pipe 
detection. Magnetic susceptibility and conductivity 
contrasts tend to be more inconsistent.  
Sizes at the shallowest point can vary from a diame-
ter of over 1000 m to less than 200 m. The resolu-
tion of fixed wing airborne gravity gradiometry as 
described above is sufficient to detect larger pipes 

but may miss smaller ones. Also, system noise has a 
significant component in the bandwith of the 
smaller Kimberlites, which could create false 
anomalies.  
Slowing down and stabilising the measurment plat-
form would be the obvious way to improve the 
data. A lighter-than-air platform has been suggested 
in the past. De Beers organised a cooperation with 
Bell Geospace and Zepplin Luftschifftechnik 
GmbH to put the idea into practise.  
 
 

 
Fig. 5  The Zeppelin NT Gravity Gradiometry Survey 
Platform Operating for De Beers.   
 
Figure 5 shows the platform of choice, a Zeppelin 
NT. The rigid structure allows engines to be  
mounted away from the gondola. This reduces en-
gine noise and vibrations as compared to the more 
common blimps. Due to the large dimensions gusts 
and turbulence have less effect than on fixed wing 
aircraft. A three-degree of freedom accelerometer 
demonstrated that acceration noise is between 10 
and 100 times less than that in a Cessna Grand 
Caravan (Hatch, 2006) .  
 
The airship surveys at airspeeds of 60 km/h and at 
altitudes of 80m. AGL. Figure 6 compares some 
results from an early survey in Southern Africa. 
The comparison with ground gravity data gives a 
standard deviation of the difference of 3 E before 
Full Tensor Processing and about 2.5 E after. The 
major gain however is in resolution. Data from a 
test survey flown with 100 m linespacing compared 
to a DTM showed very strong correlation with 
DTM peaks as small as 100 m. This confirms the 
intuitive figure of 100 meter resolution, given that 
the survey speed of the Zeppelin is about a third of 
that of the Grand Caravan.   
A system capable of detecting 2.5 E anomalies of 
100 meter width can safely be called the ultimate 
Kimberlite detection tool. The Zeppelin equipped 
with the Bell Geospace Full Tensor Gravity gradi-

Predicted Air-FTG™ Tzz response; Predicted Air-FTG™ Txz response; 
Predicted Air-FTG™ Txx response; Predicted Gravity response 

 

Overburden  
density  
1.6 g/cc 

Flying Height, 80m above ground 

Granite Bedrock 
Density 2.68g/cc 

Channel Structure 
Density 2.63g/cc 

> 80m of 
overburden 

present 



ometrer is therefore contracted on a long term ex-
ploration campaign for De Beers in Souther Africa.  
  

 
Fig. 6  Gravity Gradient Tzz from Airship (top), Ground 
Gravity (middle) and Cessna (bottom). The area is about 
10 by 3 km.  
 
 
7  Discussions  
 
7.1  Terrain Correction   
 
It can be shown that a 40 centimeter rise in terrain 
of 300 meter diameter will result in an anomaly of 3 
E at 80 meter height. As shown above this is detect-
able by Air-FTG® from a Zeppelin. This gives an 
idea of the quality level required of a DEM for ter-
rain correction.  
A detailed and accurate DEM is important for  data 
quality and to aid geological interpretation. Jekeli 
(2006) gives an excellent comparison of methods to 
compute the terrain correction.  
At the accuracy levels mentioned density differ-
ences in the weathered layer really cannot be ig-
nored. Taking the density of the weathered layer 
into account is not routinely done yet but this needs 
to be addressed in future software. One problem 
that is foreseen is that density information is gener-
ally discontinuous. The sharp density contrasts 
found in geological maps will create false anoma-
lies unless this contrast corresponds exactly to the 
real situation also in location and in size, which is 
unlikely since it is hard to measure directly and 
accurately.   
 
 
7.2  Quality Control   
 

Quality of airborne gravity gradiometry is affected 
by environmental factors at the time of measurment, 
particularly turbulence. Continuous Quality Assur-
ance is therefore necessary.   
To assess the quality one needs to have some form 
of redundant data. There are several options.   

- High resolution gravity from another 
source. This will only be available in a test 
scenario, e.g as described above and will 
overestimate noise since it compares two 
signals with noise.   

- Terrain data. But comparison with terrain 
data will give an incomplete picture of the 
quality since there of course are other sig-
nal sources.  

- Multiple passes or repeat line. This is an 
expensive option and hence can only be 
applied to a limited portion of any survey. 
It is not routinely done.  

- Analysis of crosspoints between inlines 
and tie-lines. Crossover points however 
can be quite sparse and for airborne sur-
veys applicability is reduced because the 
signal is “smeared” due to speed of the 
Grand Caravan.  

- Spectral relations and Laplace  equation in 
the  full tensor. This is an area of continu-
ous investigation. Tensor integrity charac-
teristics are succesfully used as a filter 
tool, but meaningful QA measures have 
not been adopted yet.   

- Autocorrelation of the gravity signal. Ap-
plication of Wiener filtering or Collocation 
techniques are not fully exploited and 
should be investigated further. Better un-
derstanding of the Autocorrelation behav-
iour of shorter wavelengths is necessary. 
Flury (2006) shows that local generalisa-
tion of the autocorrelation is possible but 
the  analysis should be extended to even 
shorter wavelengths.  

 
8  Summary & Conclusions 
 
Airborne gravity gradiometry has come of age and 
is now a recognized geophysical tool. The installa-
tion of the FTG system on a Zeppelin airship pio-
neered by De Beers is capable of very detailed den-
sity contrast investigation and direct kimberlite de-
tection.  
 
Future gradiometry techniques may yield better 
accuracies but at some point interpretation will be 
limited by geologic noise. Indeed, detailed knowl-



edge of topography and surface density to correct 
for terrain is an increasing challenge.  
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Abstract.  One major challenge in airborne gravim-
etry is increasing not only accuracy but also spatial 
resolution of both necessary observations for gravity 
g=a-b, total acceleration (a) and kinematic accelera-
tion (b). To this end, it is necessary to study system 
characteristics of all components involved. This 
enables to avoid subsystems mismatch resulting in 
information loss and to tune hardware and model 
parameters.  

The main observation subsystems in our approach 
are GPS (L1 or L1L2 50/s) receivers (Javad & 
Novatel) and QFlex_QA3000 accelerometers which 
are mass/spring systems indicating the specific 
force;  but also ancillary components such as damp-
ers, the aircrafts body itself etc. play a major role. 
The investigations are based on data from flights as 
also from experiments such as stroke tests and ob-
servations on a kinematic test stand for aircraft-like 
kinematic height variations.  

The system characteristics of various components 
were determined and represented by means of trans-
fer functions or parametric models. Some of these 
were in agreement with prior information, others 
were not. This shows that such own tests can make a 
significant contribution to the improvement of air-
borne gravimetry. Also, the various test approaches 
proved to be useful and complementary. 
 
Keywords.  Airborne gravimetry, system function, 
ARMA modelling, kinematic GPS 
 
 
1  Motivation 
 
The basic equation of airborne gravimetry is 

 
,         (1-1) 
 

where these vector quantities represent   g - gravity,  
a - total observed acceleration onboard a moving 
carrier, and  b - kinematic acceleration. In order to 
fully exploit the above equation, all quantities have 
to refer to the identical reference frame including 
identical location in space and time. For data fusion, 

also the system functions of the contributing subsys-
tems have to be known.  
This paper will focus on the latter requirement.  
 
System function studies will enable 
- to pinpoint component deficiencies and initiate 
improvements 
- to equalise signal contributions from different 
sensors 
-  to identify system characteristics if specifications 
of components are unknown.  
 
1.1 State of the art of airborne gravimetry 
 
The majority of existing airborne gravimeters for the 
observation of the total acceleration  a  is still 
dominated by scalar platform gravimeters for the 
vertical component only. Part of them evolved from 
ship-borne gravimetry such as the US LaCoste Rom-
berg 'Air-Sea Gravity System' or the Russian 
Elektropribor 'CHEKAN' or they are directly devel-
oped for airborne gravimetry such as the Canadian 
SGL company 'AirGrav' or the 'GT-1A' of Russian 
origin. Also because of long sensor response times 
and considerable filter lengths being typically in the 
range of 1-2 minutes, the spatial resolution is of the 
order of a few km.  Vector strapdown gravimetry is 
a big desire since decades, starting from off the shelf 
SINS (Strapdown Inertial Navigation System) of 
various brands or composing the components, see 
Boedecker G, Stürze A (2005). The components 
typically have very short response times and sam-
pling rates of e.g. 100 /s or more. 

In contrast to marine gravimetry, where the verti-
cal kinematic acceleration was simply averaged out, 
the kinematic acceleration  b  of the aircraft has to 
be observed with a compatible accuracy, typically 
using GNSS. The sampling rate is typically 10 /s, 
but may be as high as 100 /s.  
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This means, the observation sampling rate would 
allow a much higher spatial resolution1, provided the 
observation noise is sufficiently low and the subsys-
tem functions are known. This will be studied in this 
paper, focussing on the system characteristics of the 
participating sensors. 

 
2  Methodology 
 
We shall make use of different types of system mod-
elling and system description in the time domain or 
spectral domain e.g. by nonparametric transfer / 
system functions or by using parametric modelling 
such as ARMA (Auto Regressive Moving Average) 
models. The basic formulae will be given further 
down in this section. Then we shall focus on the 
application of these approaches to the real physical 
system comprising various subsystems of our proto-
type airborne gravimetry system SAGS42 such as 
GNSS receivers, accelerometers, mechanical com-
ponents, various signal processing modules etc.  As 
pointed out above, an important aim is to analyse the 
relation of the  a  signals of the accelerometers and 
the  b  signals deduced from GNSS receivers.  This 
could be achieved by directly relating these two 
types of sensor signals. This approach would allow 
us to study the relative transfer function between 
these two sensors. We could use data from test 
flights where both sensors participated. However, 
we could not conclude as to which of the sensors 
and other components has any specific characteris-
tics that could be improved.  

Therefore, besides other approaches, we chose to 
aim at an (quasi) absolute transfer functions, i.e. to 
compare both signals to a reference signal of supe-
rior quality. One straightforward approach would be 
to track the aircrafts trajectory by means of an 
earthbound (e.g. laser-) tracking system. However, 
in view of the aimed at accuracy of 1 mm or better 
and the introduction of yet another ancillary refer-
ence point at the hull of the aircraft, this seems to be 
very ambitious and costly. For this reason, we chose 
to create a lift device to be used on the ground.  
More technical details are given in the section 'Ex-
periments'. All sensor readings, i.e. GNSS position-
ing, accelerometer and lift vertical scale readings, 
are independently referred to GPS time at the micro-
second level. Hence, we can independently study the 

                                                 
1 Given typical values for an aircraft speed of 200 
km/h and a sampling rate of 100 /s, we have 1 ob-
servation every 0.55 m. 
2 SAGS4: Strapdown Airborne Gravimetry System, 
prototype #4, c.f. Boedecker G, Stürze A (2004) 

absolute transfer functions of the  a  and the  b  sen-
sors.      

Looking at the orders of magnitude of the partici-
pating signals, we recognize that in the aircraft the 
variation of  a  and  b  will be of the order of 10 ms-2 
while the variation of  g  will be marginal. This 
means, for system behaviour, we may neglect the 
variation of  g.   

For this study, we have carried out three types of 
experiments: 

1. Impulse experiments 
2. Aircraft experiments 
3. Lift experiments 
This investigation does not take into account e.g. 

the rotation sensors that are also necessary for 
(strapdown) airborne gravimetry. Rather, we restrict 
our view to the linear acceleration in one direction.  

In the said lift experiments, we can be sure that 
the sensors refer to the identical reference location, 
i.e. the cage of the lift. This is different from the real 
scenario in the aircraft, where we have the GNSS 
antenna at the upper fuselage of the aircraft and the 
accelerometers inside the hull. This means, we have 
to take into account the relative deformations of the 
reference points of the participating sensors.  

As we shall see below, the total 'airborne gravim-
etry' system consists of several subsystems, these 
again of subsystems etc. The depth of this fragmen-
tation is arbitrary. However, it does not make sense 
to breakdown the system into the tiniest subsystems 
if there is no chance to acquire information about 
their characteristics either from own observations or 
from else information. Therefore, we stay at a me-
dium breakdown level.   Some of these partial sys-
tems are accessible, many are not.  

In principle, we could find out about the overall 
system characteristics by a composition of the sys-
tem functions of all subsystems. However, from own 
experience, this sometimes may be successful, in 
other cases it is not, because the available informa-
tion is quite inhomogeneous. 
 
For the above reasons, we decided to carry out real 
observations of  a  and  b  on a test bed, refer these 
observations to a common quasi absolute reference 
and to infer on some major system component char-
acteristics from the analysis of these observations. 
This main approach is complemented by other ex-
periments. The analysis will make use of some tools 
of system analysis and signal processing. 
 
3  Basics 
 
3.1 System representation 
 



The real physical system is a composition of sensor 
and signal processing components and ancillary 
components. The conceptional mathematical 'system 
model' may be found by 'system identification'. 
However, we shall not dig into theory of modelling 
and system identification, nor shall we carefully 
observe peculiarities of continuous time vs. discrete 
time observations etc. Comprehensive presentations 
of the matter can be found e.g. in Kiencke U, Jäkel 
H (2002), Kronmüller H (1991), Lahti BP (2005); 
for similar applications see Eissfeller B (1997) . 
Rather, we shall focus on the insights provided by 
these concepts for our work. See some system struc-
tures in fig. 1: 

Fig. 1: System structures 
 
The graphs also include formulae for the composite 
system function to be explained in the next section. 
 
3.2 Spectral domain system description 
 
A systems behaviour may be characterised by its 
impulse response, e.g. input and output can be re-
lated by the time domain convolution 

 
       (3-1)

        
 
 
 

 
Using the Fourier transform,  

 
       (3-2) 
 

we get the frequency response G(f) in the spectral 
domain 
 

            (3-3) 
 

Similarly, we can make use of the power spectra and 
cross-spectra: 
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Using the Laplace Transform                             
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we get the transfer function or system function being 
the Laplace transform of the impulse response, viz. 
the transfer function G(s): 
 

          (3-6)
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In this paper, we shall make use of the frequency 
response and time domain system descriptions. 
 
3.3 Time domain ARMA modeling Type 1: Type 3: 

 
If we relate the current system output  yn  on a dis-
crete time scale n=1, 2, … to the original observa-
tions  xn-k , (3-1) may specialize to 

Type 2: Type 4: 
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where it is obvious that the first term on right hand 
side refers to past system output (AR, auto-
regressive) and hence is the recursive part, whereas 
the second term refers to the past original system 
input and performs a weighted averaging (MA). 
Because a system also may be considered a filter, 
the  a  and  b  coefficients are also called filter coef-
ficients.   
 
4  Lay-out of experiments 
 

response Impulse    
Output    
Input    

)(
)(
)(

),()()(

tg
ty
tx

txtgty ∗= Physical system 
The system model scheme outlined in section 3.1 
will be applied to the real hardware and software we 
are using. An impression of the hardware is provided 
by fig.2: 
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Fig. 2: SAGS4 in aircraft (here: montage for better 
visibility) 



The photograph in Fig. 2 shows the two main sen-
sors in their real setting, c.f. Boedecker G, Stürze A 

mass accelerometers inside 'SAGS4', typi-

tel OEM4G2 at 20 to 50 /s, represented by the 

 as the 

t a selection.  

 

: SAGS4, 1: test accelerometer near antenna,  

 
Fig. 4  for stroke 
xperiment 

r not to introduce any more vibratory 

mounted at different 
laces of the aircraft, e.g. directly at the GNSS L1L2 

ts 

 
Fig. 5

antly, we have been using a lift, c.f. fig 
, in order to relate the observed signals for  a  and  

namics similar to 
the

lex itself. 

(2004): 
- a  is observed by the high precision QFlex QA3000 
spring / 
cally sampled at 100/s, attached to the co-pilots seat 
rails. 
-  b  is observed by GPS receivers Javad JNS100 and 
NovA
L1L2 antenna on the fuselage of the aircraft.  
Besides these two main sensor systems, we have to 
take into account also other subsystems such
vibratory spring-mass system of the aircraft itself, 
the shockmounts etc. and the subsystems of the 
sensor systems such as filters etc. An initial idea 
shall be provided by fig. 3. For the fusion of the two 
respective data streams, we have to relate these to an 
identical location.  

There were several experiments carried out. Sec-
tions 4 and 5 presen

Fig. 3: System of Sensors and Aircraft 
0
2: test accelerometer near seat rails 
  
4.1 Stroke experiments 

:  SAGS4 on its base plate ready
e

SAGS4 on its standard baseplate was put on loose 
sand in orde
subsystems. An impulse was generated by a stroke 
with a hammer on the baseplate. One accelerometer 
was mounted to the base plate recording at 500 /s the 
immediate input signal. The acceleration signal 
passes through the SAGS4-shockmounts, is con-
verted to an electrical signal by QFlex, analogue 
filtered with Bessel characteristics, A/D converted 
and subsequently digitised, c.f. fig. 3.  The partial 
system to be studied in this experiment comprises a 
series of subsystems, particularly the damper and the 
analogue filter, c.f. system type 1 of fig. 1 
 
4.2 Aircraft experiments 
 
Test accelerometers were 
p
antenna, fig. 3 (1), in order to find out about the 
vibratory dynamical load that may affect the GPS 
receiver control loops, or at the base plate of 
SAGS4, fig. 3 (2).  
 
4.3 Lift experimen
 

: Lift 
 
Most import
5
b  to a quasi-absolute standard. 

The lift cage can be moved up and down over 
0.60 m height amplitude and at dy

 aircraft. The cage can carry the GNSS antenna 
and the accelerometer. An electronic vertical scale is 
capable of vertical positioning sampling at rates > 
100 /s at a resolution of <0.001 mm. This way, the 
lift provides a superior height positioning quality 
and time resolution for ground truth kinematic ac-
celeration and thus enables the determination of 
quasi absolute system functions. 

Note that no dampers and no analogue filters 
were used, i.e. we focus on the QF



5 

5.1 Stroke experiment 
 
The impulse response Laplace transformation pro-
vides immediately the transfer function, the periodo-
gram provides the spectral domain PSD frequency 
response. The shockmounts and the electrical ana-
logue filter subsystems will have the biggest effects 
on the signal transfer. The electrical analogue filter 
was of Bessel type, the filter characteristics of the 
shockmounts were provided by a curve. 
    In fig. 6, the resulting periodogram of the imme-
diate impulse response (up) shows near zero fre-
que en spec-
trum down) 
sho s and 
an ms the 
sam  three 
time  in the 
data e very 

expected. 
This s. This 
stat ude sig-
nals  of the 
shoc r ex-
periments with higher amplitudes in the lower fre-
quency range.   

Fig. 6: Stroke frequency response of SAGS4  
 
5.2 Aircraft experiment 
 
The vertical accelerations of a normal flight with 
acceleration observed as described in sec. 4.2 were 
used to estimate the transfer function according to 
(3-4). We recognize from fig. 7 that it is similar to 
the above stroke experiment, as it should be, with 
plausible differences because of higher motion am-
plitudes and a different setting. It is confirmed that 
the damping in the range about 3 …8 Hz is higher 
than to be expected from the given information 
about the shockmount filter curve. This has to be 

remedied either by means of more appropriate 
shockmounts or by a proper post filter that corrects 
for the undesired effect on the signal.    

 Fig. 7:  Transfer function estimate of SAGS4 
mounted in aircraft 
 
5.3 Lift experiments 
 
From a first look at fig 9 (for details see further 
down) at a sampling rate of 100, we are confirmed 
by the unfiltered vertical accelerations that  
• the raw data, viz. the immediate unfiltered sec-

ond derivative of the vertical scale position pro-
vides superior ground truth accelerations over 
amplitudes of ± 1 g and over a similar motion 
spectrum as our aircraft 

• the delay and other characteristics of the accel-
erometer control loop become visible 

This will be analysed further: 
 
Nonparametric transfer function estimate: 
The frequency domain transfer function estimate has 
been used to (pre) calibrate the accelerometer and it 
exhibits a rather linear phase. However, we shall 
focus on the parametric system modelling. 
Parametric (ARMA) modelling: 
We have applied two different approaches to deter-
mine coefficients a, b for (3-7): 
• Steiglitz-McBride 
As described in Ljung L (1999), p. 354, the Stei-
glitz-McBride method finds the coefficients by itera-
tion. Details of the Matlab® function used are not 
known. 
• In an own procedure, we computed an LS-

approximation without iteration.  
The aim is to find an appropriate time domain 

system model for the real accelerometer system 
described by autoregressive (AR) coefficients  ak  
and moving average (MA) coefficients  bk  to map 
the real acceleration input signal  xk  taken from the 
second derivative lift heights and the output signal  
yk  taken from the accelerometer. Because both sig-
nals – the second derivative with time of the lift 

 Results 
 

ncy a slight dislocation and further an ev
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ws the overlay damping of shockmount
alogue filter, as was designed, and confir

pling rate of 100, because this is about
s the highest frequency contribution seen
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heightings and QFlex output - are strictly referred to 
PS time within microseconds, and because the 

the scale are calibrated 
pendently, we need not introduce any more 

well ex-

th e that 

an  
bl

6  Conclusions / Summary 
 
Recognizing  the necessary improvement in resolu-
tion of airborne gravimetry, it is necessary to have 
good system models for all components as a prereq-
uisite for data fusion, see e.g. Bendat JS, Piersol AG 
(2000).  
• Time domain ARMA models and spectral do-

main transfer functions studies have been ap-
plied  

• Different experiments provided complementary 

ift provides ground truth values 
and hence permits absolute modelling in an en-

 aircraft dynamics.  
 A procedure for the inverse problem, i.e. to 
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parameters. 

As to the number of coefficients na, nb, we tested 
several variants by their r.m.s. residuals, see fig. 8, 
and selected na=4, nb=3 at the noise floor. The 
computation time for our own procedure was much 
shorter and the r.m.s. residuals were about 10…20% 
smaller than using Steiglitz-McBride. 

Fig 8: ARMA modeling rms error for different or-
ders 
 
A look at fig. 9 confirms the usability of our proce-
dure: The QFlex accelerometer output is 
plained by the ground truth acceleration input and 

e linear model identified. Particularly, we se
the spikes in 'acc out' curve are not noise or outliers 

d hence are not to be filtered out by a physically
ind low pass filter. 

Fig 9: ARMA modeling rms error for different or-
ders 
 
Lift experiments for GNSS: 
Similar investigations have been carried out for the 
GPS receivers and this way optimum receiver pa-
rameters for PLL (Phase Locked Loop) order and 

bandwidth were found, see Stürze A, Boedecker G 
(2004), Boedecker G, Stürze A (2005). 
 

information 
• The kinematic l

vironment similar to
•

compute optimum acceleration values from ac-
celerometer output, will be published in a forth-
coming paper. 
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Abstract. Airborne gravity is capable of providing 
an accurate and bias-free extension of satellite 
gravity models and thus bridges the spectral gap 
between these models and the fine structure of the 
gravity field as mapped by the newest digital 
elevation models (SRTM). Airborne gravity is 
therefore an ideal base for regional gravity/geoid 
modeling. Airborne gravity may also be an efficient 
tool to validate existing datasets e.g. older marine 
surveys and is the only efficient way to cover the 
near coastal zone where altimetry derived gravity 
fails to deliver reliable data. 

This paper describes some recent surveys 
undertaken by Danish National Space Center 
(DNSC) including both surveys over marine areas 
in the Arctic and the North Atlantic region and 
surveys over land covering all of Malaysia and 
Mongolia. The purpose has been to contribute to 
regional and global models (ArcGP and EGM2006), 
to provide geoid models for national height systems 
and reference surfaces for ocean current studies. 
The measurements were done with a LaCoste & 
Romberg marine/airborne gravimeter owned by the 
University of Bergen. This type of gravimeter has 
an excellent drift characteristic and can when the 
data are properly processed provide bias-free results 
also for airborne applications. 

The main source for a bias in airborne data 
obtained with stabilized platform systems is the so-
called tilt correction, which basically is a modeling 
of the platform orientation error. A new platform-
response-modeling approach to account for this 
effect will be described. This approach seems to 
give virtual bias-free results. 
 
1 Introduction 
 
Today airborne gravimetry is a truly operational 
tool for gravity mapping and it offers a fast and 
economic coverage of large areas. One of the big 
advantages of airborne gravimetry is the uniform 
and seamless coverage of the near-coastal region, a 
region that so far is only poorly covered in many 

areas of the world due to shallow water, which 
don’t allow for marine measurements. Satellite 
altimetry derived models are in general not reliable 
near the coast (Andersen and Knudsen, 1998). This 
region is at the same time an area where one may 
want the most precise geoid due to the high 
population density and the economic interests 
related to infrastructure developments here. Also 
natural hazard management like flooding control 
and tsunami warning systems require a good coastal 
geoid determination in order to make use of fast and 
cheap GPS levelling instead of tedious and costly 
spirit levelling. Another advantage of airborne 
surveys is the ability to cover remote and otherwise 
inaccessible areas like mountains and jungles. 

It is common practice to subject marine and 
airborne gravity profile data to an adjustment 
procedure that minimizes the misfit at the crossing 
points, either as a linear trend or a bias removal. It 
may be justified to do this to marine data, see 
LaFehr and Nettleton (1967) for a discussion, but 
for airborne data obtained with a long-term stable 
gravimeter like the LaCoste & Romberg meter and 
a proper reduction for motion induced effects there 
seems to be little physical justification for such an 
adjustment. The gravimeter is virtual drift-free 
during the short time span of a flight (Valliant, 
1992), so bias or tilt problems in the data may 
indicate that the processing algorithm is less than 
optimal. The situation is different for systems 
utilizing sensors, which are known to drift, such as 
INS equipment (Glennie, 1999), but it doesn’t make 
the crossover adjustment healthier. Any crossover 
adjustment will by nature distribute point errors at 
crossing points into along-track corrections, and 
thus provide a way for short-period random errors 
to leak into the longer wavelengths. Using a dense 
net of tie lines in the crossover adjustment will 
reduce this leaking, but it may be quite expensive 
especially for regional scale surveys. 

 Avoiding the need for crossover adjustment of 
the airborne track data therefore means that one can 
get away with much fewer tie lines than in a survey 



that requires crossover adjustment since the tie lines 
now only serve as internal quality estimators 
(repeatability at line crossing points). 

 
2 Tilt effect and biases. A new platform 
modeling approach 
 
The effect of a tilting platform is both to make the 
gravimeter less sensitive in the vertical direction, 
and to make it sensitive to horizontal accelerations. 
The traditional approach to account for this effect 
leads to a correction term that is non-linear in the 
accelerations. The correction term can be found in 
Valliant (1992) or in Czombo (1994) and writes:  
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where fk denotes accelerations measured by the 
gravimeters three accelerometers and qk denotes 
horizontal kinematic accelerations derived from 
GPS. Valliant (1992) gives an approximate 
expression derived from equation (1) under the 
assumption that gandgfz ≅ >> y,xf : 
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last equation is good in the sense that it highlights 
the problem with the tilt correction. It is basically a 
small difference between two potentially huge 
numbers. Furthermore, the two potentially huge 
numbers are derived by squaring discrete and very 
noisy measurements. In addition to that, the noise 
on the separate terms must be expected to have 
different signatures, so the noise on the squared 
terms is not likely to cancel out due to the 
subtraction. Such an approach will certainly cause 
problems, problems that cannot be filtered out by 
the final low pass filter, since the squaring will 
change the characteristics of the noise signal. A 
zero-mean noise will after the squaring have a 

positive mean value. In this way the tilt correction 
may become a way for zero-mean noise to bias the 
gravity estimates. Pre-filtering of the data before the 
tilt correction is derived may reduce the problem, 
but the optimal amount of filtering is somewhat 
ambiguous.  
The tilt angles may alternatively be estimated from 
the combined gravimeter and GPS observations. For 
small tilt angles the following approximations hold 
for one axis, see also Figure 1: 
 

gqfqf)sin(qf xzxzxx ⋅φ+≈⋅φ+≈⋅φ+=     (3) 

or 

g
qf xx −≈φ                             (4) 

It was shown in Olesen et al (1997) that the tilt 
angle has no spectral components above 
approximately 0.01 Hz. See also LaCoste 1967 for a 
thorough discussion of the spectral behavior of the 
LaCoste & Romberg marine gravimeter’s stabilized 
platform. With this knowledge the tilt angles can be 
well modeled and filtered. High frequency noise in 
the tilt angle estimation can be effectively removed 
with a low-pass filter that matches the platform 
period. This leads to the computation of the tilt 
correction being split into two parts, (i) the 
modeling of a physical system with known 
properties (the stabilized platform) and (ii) the 
correction for tilt computed as a linear combination 
of three acceleration components:  
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This implies, that zero-mean noise on the 
acceleration estimates will propagate unbiased as 
zero-mean noise into the tilt correction and will 
therefore not induce any bias into the gravity 
estimates. 

Table 1 shows the performance of the two 
different tilt correction algorithms. Two tracks from 
the Greenland 2001 survey are analyzed, where one 
track was flown under turbulent conditions and the 
other was flown under smooth conditions. It is seen 
that the two algorithms yield the same results when 
no filtering is applied. This should not surprise, 
since the two methods are identical in that case. The 
table shows a dramatic change in mean value when 
filters are applied, especially for the dynamic flight, 

Figure 1. Tilting platform 
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from 13.3 mGal to –2.1 mGal for the traditional 
approach, when a 1 seconds filter is applied before 
calculating the correction. Further filtering is seen 
to change the mean value several mGal, when we 
still look at the traditional approach. This shows 
that the tilt correction can add severe biases to our 
data, as it is unclear which amount of filtering is 
optimal. Moreover, the optimal filter length may 
change due to the dynamics of the flights. The 
modeling approach, on the other hand, is seen to be 
much less filter-sensitive for realistic filter lengths. 
Besides, the optimal filter length is more or less 
given from the platform natural period (Olesen 
2003). A filter around 60 to 80 seconds should be 
adequate. 

 
Table 1: Comparison of the two different tilt correction 
algorithms 

Traditional approach 

Quiet flight Dynamic flight Pre- 

filter Mean St dv Mean St dv 

0 sec 0.32 1.49 13.26 8.42 

1 sec -0.46 0.97 -2.09 4.29 

2 sec -0.76 0.91 -3.87 3.92 

3 sec -0.88 0.89 -3.98 3.75 

5 sec -0.92 0.86 -3.64 3.47 

10 sec -0.87 0.77 -2.82 2.81 

20 sec -0.77 0.61 -1.84 1.83 

 
Modeling approach 

Quiet flight Dynamic flight Platform 

filter Mean St dv Mean St dv 

0 sec 0.34 1.48 13.30 8.42 

20 sec -1.01 0.93 -5.46 4.06 

40 sec -1.02 0.93 -4.48 4.01 

60 sec -0.99 0.95 -4.26 4.18 

80 sec -0.98 0.95 -4.18 4.37 

100 sec -0.98 0.95 -4.03 4.32 

120 sec -0.97 0.95 -3.79 4.20 

 
The standard deviation of the tilt correction in Table 
1 shows somewhat the same dependency on filter 
length as does the mean value. But, the mean value 
is the main concern for us, as the data are intended 
for geodetic use. The modeling algorithm described 
in this section is a more sound way to establish the 
correction for platform errors, than is the traditional 

algorithm. The modeling approach incorporates the 
known physical properties of the platform system in 
its algorithm in contrast to the traditional approach. 
 
3 The Arctic surveys 
  
Geodynamics Department at Danish National Space 
Center has since 1998 gathered approximately 
150,000 line km of airborne gravity data in the 
arctic region. The surveys constitute a seawards 
extension of the helicopter-based conventional 
gravity campaigns along the Greenland coast, see 
Forsberg et al (1998) and Forsberg and Rubek 
(1998). The surveys around Greenland have mainly 
been funded by US National Geospatial-Intelligence 
Agency as part of the Arctic Gravity Project, see 
http://earth-info.nga.mil/GandG/ wgs84/agp/. 

To the north, in the Polar Sea, the operations 
were coordinated with the surveys performed by US 
Naval Research Laboratory (Brozena 1991, 
Childers et al 2001). Surveys around Svaldbard 
were done in cooperation with and partly funded by 
Statens Kartverk, Norway. The survey over Foxe 
Basin, Canada, was done under contract to Geodetic 
Survey Canada.  

The survey stretching from Greenland’s East 
coast via Iceland to Scotland and Norway was done 
within the frame of the GOCINA project (Geoid 
and Ocean Circulation in the North Atlantic). The 
aim was to provide a Mean Dynamic Topography 

Figure 2. Arctic surveys between 1998 and 2003 



model (MDT) for the area in question. The MDT 
would be based on a Mean Sea Surface (MSS) from 
satellite altimetry and a gravimetric geoid (Knudsen 
et al 2004). The airborne gravity data provided the 
constraints needed to do a healthy bias adjustment 
of the existing gravity data in the area before 
computation of the geoid. The inclusion of the 
airborne data had significantly effect especially 
along the Greenland coast were other reliable data 
sources are sparse. 

Statistics from crossover analyses of the datasets 
are shown in Table 2. For all years the RMS 
crossover misfit was 2.5 mGal indicating a 1.8 
mGal noise level on the individual tracks (2.5 mGal 
divided by sqrt(2) based on the assumption that the 
noise is uncorrelated from track to track). The 
results seem to be pretty constant from year to year 
only the year 1998 stands out with a 1.8 mGal RMS 
crossover error, that fits nicely with the fact that the 
1998 survey was over the frozen Polar Sea with 
very smooth flight conditions. The 1.8 mGal misfit 
indicates a 1.3 mGal noise on the track data. 

 
Table 2: Crossover error statistics for the Arctic surveys 
(units: mGal) 

Data set Number of cross RMS misfit 
1998 86 1.8 
1999 74 2.5 
2000 96 2.8 
2001 66 2.6 
2002 101 2.6 
2003 46 2.1 

All years 670 2.5 
 

Comparison to surface data is very consistent with 
the noise estimates from crossover analysis, 2.5 
mGal when comparing to a high quality marine data 
set from NUNAOIL, the national oil company of 
Greenland. These marine data are scattered along 
most of the Greenland east and west coast and are 
believed to be accurate at the 1 mGal level or better 
(Strykowski and Forsberg, 1995). The comparison 
to ice surface data over the Polar Sea gave a 1.3 
mGal agreement, exactly the same number as the 
internal noise estimate from the 1998 dataset. In 
both cases the surface data was compared directly 
with the airborne free air anomalies, no upward or 
downward continuation was performed to the data. 
The airborne surveys were flown at an altitude of 80 
to 200 meters so the attenuation due to upward 
continuation is marginal. This is especially true 
over the ocean where the gravity anomaly sources 

are located below the surface. The good agreement 
between internal and external error estimates 
indicates that there are only little internal bias 
problems left in the airborne datasets. Applying a 
bias adjustment to the airborne dataset will off 
course lower the crossover misfit but the derived 
error estimates will be too optimistic and will no 
longer reflect the real noise level. Table 3 also 
shows that mean differences between airborne and 
surface data as well as global models are at the sub-
mGal level suggesting that the mean value and the 
longer wavelengths in the airborne datasets are very 
precisely determined.  
 
Table 3: Comparison to surface data within 1 km and to 
global models (units: mGal) 

Data set 
Number 
of points 

Mean 
diff. 

Standard 
deviation 

NUNAOIL 
marine data 

1178 0.1 2.5 

Canadian sea  
ice data 

12 0.4 1.3 

GGM01C NA 0.2 23.2 
EIGEN-

GRACE02S 
NA -0.3 24.6 

 
 
4 The Malaysian and the Mongolian surveys 
 
Geodynamics Department from National Survey 
and Cadastre-Denmark (now with Danish National 
Space Center) was asked by the Department of 
Surveying and Mapping Malaysia (JUPEM) to 
perform a nationwide airborne gravity survey. This 
as part of an ambitious plan to establish a modern 
GPS based height system integrating a precise geoid 
model and a real time kinematic GPS positioning 
system. This would allow the GPS user to get 
precise heights above sea level at the ‘push of a 
button’ everywhere in the country.  

The airborne survey covered approximately 
500,000 km2 at a 5 km line spacing, see . It was 
flown between September 2002 and May 2003, a 
total of 530 hours airborne time. Tropical 
conditions with high temperatures and humidity 
causing unstable weather to build up almost every 
day together with a rather mountainous terrain 
peaking at more than 4000 meters makes it a 
challenging task to do airborne gravimetry here. 
Time constraints forcing us to fly almost every day 
no matter the weather conditions added to the 
challenge of getting quality data out of our efforts. 



The crossover analysis in Table 4 should be seen in 
this light; 2.6 mGal RMS difference from almost 
2000 line crossing points indicating a noise level 
around 1.8 mGal. This is to our opinion a very 
satisfactory result and demonstrates that airborne 
gravimetry is truly operational for regional gravity 
field mapping also under diverse and difficult 
conditions like in Malaysia. 

 
Table 4: Crossover error statistics for the Malaysian and the 
Mongolian surveys (units: mGal) 

Data set Number of cross RMS misfit 
Malaysia 1965 2.6 
Mongolia 504 3.1 

 
Table 5: Airborne gravimetric geoid compared to global 
models (units: meters) 

Global model Standard dev. of difference 
GGM02S to 160 1.11 
EGM96 to 360 1.08 

EIGEN-CG03 to 360 0.57 
 

It was also the task of Geodynamics Department to 
compute a best possible geoid model based on the 
airborne data in combination with some terrestrial 
data, GRACE based geo-potentials models and the 
SRTM digital elevation model (Shuttle Radar 
Topography Mission, see http://srtm.usgs.gov). 
Table 5 shows the final geoid model compared to 
different global models over Sabah province in 

Eastern Malaysia (Malaysian part of Borneo 
Island).  The residual is at the meter level for most 
models and even for the newest high-resolution 
model the EIGEN-CG03 to degree 360 the residual 
signal is 57 cm. This residual is due to 
shortcomings in the global models and underlines 
the need to collect more gravity data in many areas 
in order to produce geoid models of a quality 
suitable for GPS leveling. 5 centimeter precision or 
better is a typical requirement. The difference 
between the airborne geoid and the EIGEN-CG03 
geoid is also portrayed in Figure 3 and it is seen that 
also in the important near coastal zone the global 
model has significant problems. This will be the 

Figure 3. Difference between airborne geoid and the EIGEN-
CG03 global model to degree 360 

Figure 4. Ground track pattern for the Malaysia survey. The Peninsula or Western Malaysia to the left and Malaysian Borneo to the right. 
Flight lines could be extended over Thai and Brunei territory whereas it was not possible to get permission to enter into Indonesian or 
Singaporean airspace. A total of 530 hours where flown during the months of October to November 2002 and February to May 2003.  
Flight lines were in general planned to follow main topographic features, e.g. along a mountain ridge instead of crossing it in order to 
reduce the number of climbs or descents. The location of suitable airports also played a major role for the overall track layout 



case in many other areas around the world and 
airborne gravimetry offers a fast and economic way 
of collecting new gravity data to supplement 
existing surface data and global models. 

The Mongolian survey was done in the autumn 
months of 2004 and 2005 as this period is the most 
stable with mainly clear sky and not too much wind. 
The survey covered all of Mongolia, 1.6 million 
square kilometers, at a 10 nautical miles line 
spacing. Only a 25 km no-fly zone along the border 
to neighboring Russia and China was omitted. The 
project was a joint effort between Mongolian 
Administration of Land Affairs (ALaGAC), US 
National Geospatial-Intelligence Agency (NGA) 
and Danish National Space Center (DNSC). The 
aim was to establish a modern GPS based height 
system for Mongolia and to make a contribution to 
the soon-to-be-released geo-potential model 
EGM06. NGA provided the funding for the survey 
and DNSC was responsible for the airborne survey 
in cooperation with local partners. The slightly 
higher noise level for the Mongolian data compared 
to the Malaysian survey is ascribed to the different 
aircraft used for the two surveys and to the presence 
of mountain waves in Mongolia. Mountain waves 
are a wind generated and relatively long-wave 
motion of the air in mountainous areas. 
 
Conclusion 
 
Airborne gravimetry with a LaCoste & Romberg 
airborne/marine gravimeter has over the years 
proved to be a very reliable concept for acquiring 
quality gravity data for various geodetic 
applications. The survey in Malaysia showed that 
the method is also applicable under demanding 
conditions like in tropical and mountainous areas. 

The new platform modeling approach to correct 
for platform off-level errors seems to yield virtual 
bias free data and thus eliminates the need for a bias 

crossover adjustment of the data. It also means that 
single or coarse distributed lines can be utilized to 
validate existing data sets, e.g. old marine data sets. 
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Gravity field modelling from airborne gravimetry
using fundamental solutions of Laplace’s equation
in Cartesian coordinates
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Abstract. We present a new approach to reduce edge
effects in regional gravity field modelling, which oc-
cur when fundamental solutions of Laplace’s equa-
tion in Cartesian coordinates are used to parameterize
the disturbing potential. The base functions implic-
itly assume periodicity of the gravity signal, which
results in highly oscillating distortions in the adjusted
gravity disturbances near the boundaries of the area.
These distortions cause long-wavelength errors in the
geoid solution over the whole area. A new method
to solve this problem is introduced, which performs
better than those tried earlier, such as zero-padding
or data tapering. We demonstrate the performance
of the developed methodology using airborne grav-
ity data acquired during the CHICAGO survey per-
formed by GFZ Potsdam, offshore the coast of Chile.
To improve the results, we estimate nuisance param-
eters, such as scaling factors and biases, simultane-
ously with the gravity field parameters.

Keywords: Airborne gravimetry, regional gravity
field modelling, edge effects, gravimeter scaling fac-
tors

1 Introduction

One of the most suitable techniques to determine the
regional gravity field with high accuracy is airborne
gravimetry, since it can provide accurate gravity data
in a fast and efficient way. To improve the accu-
racy and resolution of regional gravity field solutions,
we are developing a new approach for the process-
ing of airborne gravity data. The approach com-
bines several individual pre-processing steps, such
as band-pass filtering, gridding, and bias and trend
removal, with the estimation of the gravity field pa-
rameters. The methodology was described in detail
by Alberts et al. (2005); a short summary is given
in section 2. The performance of this approach in
terms of RMS errors is similar to more traditional

methods such as least-squares collocation (see Klees
et al., 2005), but the solution may be affected by
strong artifacts near the boundaries of the area. In Al-
berts et al. (2006) several approaches to reduce these
edge effects were investigated. Among these meth-
ods were zero-padding and data-tapering. The best
results, however, were obtained when least-squares
(LS) prediction was used to estimate gravity distur-
bances outside the data area. Nevertheless, the solu-
tion still suffered from long-wavelength geoid errors.
Therefore, a new method to reduce edge effects is
proposed, which is described in section 3. Further-
more, the results are compared with previously in-
vestigated approaches as described in (Alberts et al.,
2006).

The developed approach is used to process air-
borne gravity data, acquired during the CHICAGO
survey (Meyer and Pflug, 2003), which was per-
formed in 2002 near the coast of Chile. Grav-
ity disturbances are directly computed on a grid at
ground level from the data along the tracks at flight
level. A proper choice of scaling factors of the air-
borne gravimeter plays an important role in the pre-
processing. Instead of using the initial laboratory val-
ues, these parameters are estimated per profile, to-
gether with bias and gravity field parameters. The
data processing strategy and the results are discussed
in section 4. The paper concludes with a short sum-
mary and an outlook to future work.

2 Representation of the gravity field

For the representation of the disturbing potential we
use a linear combination of harmonic functions, that
are fundamental solutions of Laplace equation in
Cartesian coordinates (Alberts et al., 2005):

T (x, y, z) =
L

∑

l=−L

M
∑

m=−M

Clm ϕl(x)ϕm(y) e−γlmz,

(1)



where Clm are the unknown coefficients. The base
functions are given as

ϕl(x) =

{

cos 2πlx
Dx

, l ≥ 0

sin 2π|l|x
Dx

, l < 0

ϕm(y) =

{

cos 2πmy
Dy

, m ≥ 0

sin 2π|m|y
Dy

, m < 0

and

γlm := 2π
√

(l/Dx)2 + (m/Dy)2,

where Dx and Dy are the lengths of the computa-
tion area in the x and y directions. By applying the
z-derivative to Eq. (1), a linear relationship is ob-
tained between observed gravity disturbances Tz and
the coefficients Clm, where a small difference be-
tween the radial direction and the z-direction is ne-
glected, i.e. ∂T/∂z ≈ ∂T/∂r. The functional model
for this linear relation may be written as a standard
Gauss-Markov model

y = Ax + e; E{e} = 0; D{e} = Qy, (2)

where y is the n×1 observation vector containing the
gravity disturbances, e is the vector of random obser-
vation noise, Qy is the noise covariance matrix and x

is the r×1 vector of unknown coefficients. These co-
efficients can be solved for using least-squares tech-
niques.

3 Edge effect reduction

3.1 Controlled area extension

The base functions used in the representation of the
gravity potential, Eq. (1), are periodic in the hori-
zontal directions, whereas the gravity signal is not.
Inequality of gravity at the opposite boundaries of
the computation area result in strong oscillations, that
propagate into the area. In Alberts et al. (2006)
five approaches to reduce the edge effects were in-
vestigated. Among these methods, the best results
were obtained when least-squares (LS) prediction
was used to estimate gravity disturbances outside the
data area. Due to the nature of LS prediction, the
signal gradually approaches zero for distances larger
than the correlation length. Unfortunately, the result-
ing gravity disturbances at ground level still showed
some artifacts near the boundaries of the original
area. Furthermore, the geoid heights were distorted

by long-wavelength errors which affected the whole
area. Therefore a new approach to reduce edge ef-
fects, called ’controlled area extension’, will be dis-
cussed here. As mentioned in section 2, the area size
is determined by the parameters Dt (with t being ei-
ther x or y). Increasing the parameter Dt by ∆t,
makes the estimated signal periodic on the interval
Dt + ∆t, whereas data are only available on the in-
terval Dt. This simple modification reduces edge ef-
fects significantly, especially for larger ∆t. However,
an increase of ∆t also results in an increase of the
condition number, i.e. the system of normal equa-
tions becomes unstable. Thus, the optimal value of
the parameter ∆t has to be found. Testing showed
that an extension of the area by at least twice the
smallest wavelength to be estimated, which is set by
L and M , already provides a sufficient reduction of
the edge effects, when the system of normal equa-
tions is stabilized using regularization.

3.2 Simulation study

To assess the performance of the controlled area ex-
tension, we used the same test setup as in Alberts
et al. (2006). Gravity disturbances were generated
from GPM98b (Wenzel, 1998) at an altitude of 4000
meters for an area of 400 km × 400 km, with a grid
spacing of 5 km. The frequency content was limited
to the spherical harmonic degrees 360 to 1800. Us-
ing these noise-free data, coefficients Clm were es-
timated, and then used to compute disturbing poten-
tial values and gravity disturbances at ground level.
The results of the new approach are compared with
the case when no action is taken to reduce edge ef-
fects and with the method that previously provided
the best results: extension by LS prediction. For
the controlled area extension, the parameter ∆t was
set equal to 25 km, which equals twice the smallest
wavelength to be estimated. To stabilize the solu-
tion, Tikhonov regularization was applied with vari-
ance component estimation to determine the regular-
ization parameter (e.g. Koch and Kusche, 2002). The
errors are shown in figures 1 and 2, and statistics are
given in tables 1 and 2 for the computed gravity dis-
turbances and geoid heights, respectively. Both fig-
ures and statistics show a large improvement with re-
spect to the previous results. Especially the geoid
height errors at ground level show that the results
are no longer affected by long-wavelength errors in
the whole area. Only near the boundaries of the area
some errors of a few centimeters remain.
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Figure 1. Gravity disturbance errors at ground level. From left to right: no reduction of edge effects, extension by LS
prediction and controlled area extension [1 mGal contour lines].
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Figure 2. Geoid height errors at ground level. From left to right: no reduction of edge effects, extension by LS prediction
and controlled area extension [1 cm contour lines].

Table 1. Statistics of gravity disturbance errors [mGal] at
ground level.

Method Min Max RMS
no edge effect reduction -10.24 15.94 1.12
extension by LS prediction -1.23 1.95 0.11
controlled area extension -0.85 0.75 0.07

Table 2. Statistics of geoid height errors [m] at ground
level.

Method Min Max RMS
no edge effect reduction -0.119 0.115 0.017
extension by LS prediction -0.085 0.036 0.011
controlled area extension -0.035 0.045 0.005

4 Airborne gravity processing

4.1 Data description

The data for which the performance of the devel-
oped methodology is tested was acquired in 2002
by GeoForschungsZentrum Potsdam (GFZ) during
the CHICAGO campaign in Chile (Meyer and Pflug,
2003). The area is of particular interest due to the
Peru-Chile trench; a subduction zone west of the
South American continent. As a result, strong gravity
gradients are observed. The survey consisted of 13
off-shore flights near the coast of Chile and 4 flights
above the Chilean mainland, resulting in 27 off-shore
profiles (of which 24 were used in the computations)
and 12 on-shore profiles. All off-shore flights, except
one because of an island, were performed at about
300 meters altitude, whereas the flights above the
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Figure 3. The off-shore flights tracks and the main
bathymetric features in the investigation area.

mainland were flown at an altitude of 2100 - 3000
meters. To minimize the effect of downward contin-
uation, we only use the data from the off-shore pro-
files for this study. The flight tracks and the main
bathymetric features of the area are shown in figure
3.

4.2 Estimation of nuisance parameters

The gravimeter used during the survey was a LaCoste
& Romberg air/sea gravity meter, which consists of a
highly damped, spring-type gravity sensor mounted
on a gyro-stabilized platform. Because of the high
damping, the motion of the gravity meter beam can
be described by the following differential equation
(Valliant, 1992)

g + z̈ + kḂ − cS = 0, (3)

where g denotes gravity, z̈ the vertical acceleration,
Ḃ the beam velocity, S the spring tension, and k and
s are scaling factors. This equation is just an ap-
proximation and correction terms, known as cross-
coupling, are applied as well. The scaling factor k,
which is usually called k-factor, and the scaling fac-
tor c (or spring tension calibration factor) may be
determined by laboratory calibration. An alternative
method to determine the k-factor is given in Olesen et
al. (1997). Here we propose to estimate the scaling
factors simultaneously with the gravity parameters,
by incorporating beam velocities and/or spring ten-
sion values in the functional model. The functional
model for estimating one k-factor for the whole data

set can be written as

y = Ax + Bδk + e; D{e} = Qy, (4)

where B = (Ḃ1 Ḃ2 · · · Ḃn)T and δk is the correction
to the k-factor kp that was initially used in the pre-
processing, i.e. the estimated k-factor k̂ is obtained
as k̂ = kp+δk̂. The model can easily be extended for
the estimation of one k-factor per profile. The same
holds for including the calibration factor or bias and
tilt parameters (see also Alberts et al., 2005).

4.3 Results

Gravity disturbances were computed on a grid at
ground level from 85000 pre-processed observations
along the tracks at flight level. For the parametriza-
tion of the potential 624 base functions were esti-
mated. In the first test the initial values of the k-
factor (k = 39.0) and calibration factor (c = 1.014)
were used. The result is shown in figure 4. Next
we estimated one k-factor and one calibration fac-
tor for the whole data set. This yielded values of
k̂ = 39.121 ± 5 · 10−3 and ĉ = 1.01531 ± 1 · 10−5.
The estimated k-factor deviates only slightly from
the original value and this difference has little ef-
fect on the gravity solution: the maximum effect is
around 3 mGal. The difference in c is also small, but
because spring tension values are between 9000 and
12000 cu, a non-negligible bias is introduced. When
we estimate one k-factor and one calibration factor
per profile the differences with respect to the initial
values are larger, which is demonstrated in figures
6 and 7. For some profiles, the variation of the k-
factors results in a change in gravity with respect to
the original solution of about ±15 mGal, whereas the
variation of the calibration factor has an effect on the
solution of -10 to +40 mGal. The resulting gravity
disturbances are shown in figure 5. When compared
to the results obtained with the initial values (cf. fig-
ure 4), it is clear that the solution of figure 5 is much
smoother. Note that the obtained values of the cal-
ibration factors should not be interpreted as new in-
strument values, but as corrections that result from
inconsistencies in the spring tension data.

When the estimation of calibration factors is com-
bined with the estimation of bias parameters, we
found that these parameters are highly correlated
(almost equal to -1), i.e. they cannot be estimated
simultaneously. When bias parameters are estimated
instead of spring tension calibration factors, nearly
the same results are obtained. Differences between
both solutions were below 1 mGal for the whole
area. The estimated bias parameters (cf. figure 8)



show the same pattern as the calibration factors in
figure 7. Correlations computed between k-factors
and bias parameters, and between k-factors and cali-
bration factors are much smaller (below 0.5).
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Figure 4. Gravity disturbances at ground level using the
initial scaling factors.
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Figure 5. Gravity disturbances at ground level. Scaling
factors k and s were estimated per profile.
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Figure 6. Estimated k-factors per profile. The dashed line
shows the initial value.
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Figure 7. Estimated spring tension scaling factors per
profile. The dashed line shows the initial value.
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Figure 8. Estimated biases per profile, multiplied by -1 to
show the similarity to figure 7.



5 Summary and outlook

In this paper we introduced a new method to re-
duce edge effects and compared the results with
solutions obtained in a previous study. This new
method, which uses a controlled extension of the
computation area, reduces edge effects much more
efficient, especially in terms of geoid heights. The
developed methodology for airborne gravity data
processing was used to process data acquired during
the CHICAGO campaign, performed by GFZ Pots-
dam. Nuisance parameters, such as scaling factors
and bias parameters, were estimated simultaneously
with gravity field parameters. The estimated scal-
ing factors show significant changes with respect to
the preset values, leading to a smoother gravity field
solution. In future work we will validate the results
using ground truth data and make a comparison with
other approaches such as least-squares collocation.
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Abstract.  To determine a more accurate geoid 
model for North America, several refinements must 
occur in theory and data holdings. This paper fo-
cuses on the improvements to the data to provide a 
consistent, seamless gravity field for such a geoid 
model, particularly in the poorly covered littoral 
regions. A LaCoste-Romberg Air-Sea Gravimeter II 
from the Naval Research Laboratory was loaded 
onto the NOAA Citation II aircraft to collect data in 
the northern Gulf of Mexico region in January 
2006. An Applanix IMU was mounted onto the 
gravimeter to provide information about aircraft 
movement in addition to the dual GPS receivers and 
antennas. NASA’s Laser Vegetation Imaging Sen-
sor was also mounted to collect lidar profiles nadir 
to the aircraft flight lines. Data were collected in 41 
north-south lines spaced at 10 km and at 10.5 km 
altitude. Each was 500 km long; hence, the covered 
region is 400 km by 500 km. Individual flights were 
processed for all corrections, and a 420 second filter 
was applied to dampen out most of the noise. The 
resulting profiles agree at crossovers at about 4 
mgal RMS, which indicates 3 mgal accuracy along 
the profiles. The resulting grid of gravity compares 
very favorably with upward-continued surface grav-
ity. The differences appear to be related to either 
geophysical or oceanographic sources and represent 
a potential improvement in resolving ambiguities 
between mean sea surface and geoid models. Fur-
ther refinements will be made when GPS/IMU data 
are processed and a comparison is made with the 
LVIS data and an available dynamic topography 
model. 
 
Keywords. Gravimetric geoid, airborne gravimetry, 
lidar, ocean dynamic topography, datums. 
_________________________________________ 

1 Introduction 
 
Coastal regions of the northern Gulf of Mexico re-
main a priority for understanding the complex inter-
actions between sea and land. A study area encom-
passing the coastal regions of the states of Florida, 
Alabama, Mississippi, and Louisiana was selected 
to coincide with a VDatum (NOAA 2006) model 
being developed for the same region. VDatum en-
ables the user to transform between various oceano-
graphic and terrestrial datums. It has a geoid model 
built in as the primary mechanism for transforming 
between ellipsoidal and orthometric heights. The 
Gravity-Lidar Study for 2006 (GLS06) comple-
mented this VDatum study by refining the gravim-
etric geoid model and obtaining lidar profiles of the 
instantaneous sea surface for later comparison. 

In addition to the VDatum tool, a model of the 
Mean Dynamic Topography (MDT) is also avail-
able (Patchen 2006) to account for the expected 
differences between Mean Sea Surface Heights 
(MSSH) and the geoid. The combination of geoid 
heights, MDT, and VDatum-derived tidal surfaces 
would be compared to the lidar-observed sea sur-
face at the time of the gravity observations. The 
expected level of agreement is about decimeter as a 
result of a number of factors. One of these is the 
longer baselines associated with the kinematic GPS 
solutions for the aircraft’s position. Another relates 
to ambiguities in resolving the off-level correction 
for the gravimeter. The desire is to make the aero-
gravity as error-free and internally consistent as 
possible, particularly at longer wavelengths that 
more directly impact geoid height models. Then, 
they can be used to evaluate other sets of data. 



The aerogravity from these flights will be used to 
ensure a seamless transition of the gravity field 
from onshore through far offshore regions. Such a 
consistent gravity field would reduce artifacts in the 
existing gravity data and fill in coverage gaps in the 
near shore environment where shipborne and al-
timetric anomalies are lacking. A gravimetric geoid 
height model developed from such data would be 
more consistent in testing available datum trans-
formations and observed heights. 

In turn, the geoid height model can be compared 
at Tidal Bench Marks (TBM’s) where the height 
above the North American Vertical Datum of 1988 
(NAVD 88) is known (Zilkoski et al. 1992). Such 
an analysis would enable the estimation of the abso-
lute errors in NAVD 88 for the first time. This 
would directly benefit Height Modernization (Daley 
et al. 1998) efforts in that region intended to better 
define the vertical reference system in the United 
States. This should result in better estimates of 
flooding potential due to storm surge, tsunamis, etc. 

2 Observation Campaign 
 
Forty-One (41) north-south profiles were flown that 
were designed to begin 50-100 km inland to ensure 
coverage in relatively stable interior regions (Figure 
1). These profiles were to extend several hundred 
kilometers offshore to reach oceanic regions where 
altimetric anomalies from GSFC00.1 (Wang 2001) 
are fairly reliable (generally with depths greater 
than 500 m). In the generation of gravimetric geoid 
models for the U.S., altimetric anomalies are usu-
ally excluded inside the 500 m depth curve (Smith 
and Milbert 1999, Smith and Roman 2001, Roman 
et al. 2004). Hence, these aerogravity profiles rep-
resent the only other source of data in that region 
aside from shipborne tracks. Eight east-west tracks 
were flown to provide sufficient crossover analysis. 

The aircraft utilized for this study was a Cessna 
Citation II made available by the National Oceanic 
and Atmospheric Administration (NOAA) Airborne 
Operations Center. 
 

 

 

 
Figure 1. Available terrestrial and shiptrack point gravity data are shown in colored dots. Overlain are the 500 m depth 
contour (parallel to the shoreline) and the actual flight legs where aerogravity and lidar data were collected. Note the gaps 
in coverage near shore. 



The aircraft is equipped with two GPS antennas 
and receivers. A Universal Avionics Flight Man-
agement System (FMS) and Applanix AV-410 Iner-
tial Measurement Unit (IMS) resolved aircraft ac-
celerations for the gravity observations. The Naval 
Research Laboratory (NRL) placed their gravimeter 
in the rear of the aircraft and mounted the IMU di-
rectly to its frame. Loading the gravimeter and IMU 
in the baggage compartment, located nearly be-
tween the engines provided for more stability, while 
keeping a reasonable lever arm to the GPS receiv-
ers. Sea surface heights were measured by the Laser 
Vegetation Imaging Sensor (LVIS) from NASA 
GSFC’s Laser Remote Sensing Branch (Blair et al. 
1999) for later comparison. 

For flight stability, the profiles were flown at 500 
km/h at an elevation of 35,000 feet (approximately 
10.5 km). The profiles were spaced 10 km apart to 
minimize aliasing and to provide a consistent signal 
across track as well as along track. The main north-
south profiles were flown in pairs (one heading 
south and another heading back north). As the pro-
files were 500 km long, this kept total flight times 
below 3.5 hours, the aircraft’s endurance limit. Sev-
eral of the east-west profiles were flown individu-
ally due to transit times. All profiles were collected 
in about a month’s time from about mid-January to 
mid-February to minimize the impact of adverse 
weather during the more tropical times of the year. 

3 Data Processing 
 
The NRL team reduced the aerogravity data follow-
ing standard methodology (Childers et al., 1999). A 
filter using a frequency-domain cosine-taper with 
half-amplitude point at 420s was selected. It best 
retained the expected signal content while providing 
sufficient short-wavelength noise attenuation to 
reduce crossover RMS to 4 mgals and, therefore, 
the along track signal to 3 mgals.  This is more fil-
tering than has been required with previous surveys 
and the cause of that is still under investigation.  

Figure 2 shows the free-air anomaly gravity field 
created from the filtered profiles. Four of the pro-
files were adjusted for bias problems based on 
crossover analysis. However, most profiles remain 
unadjusted. This signal compares very favorably 
with a similar set of aerogravity data previously 
collected by NRL at very low altitudes for this same 
study region. The commonality of the two different 
sets of data support the approach used here to col-
lect high altitude data as a means of rapidly collect-
ing a gravity field sufficient for geodetic analysis.  

 
Figure 2 Grid at two arc-minutes of aerogravity profiles 
collected at 10.5 km height in the North-Central Gulf of 
Mexico region. Created using 41 N-S and 8 E-W profiles 
filtered at 420 seconds with 4 profiles adjusted for bias. 

The aerogravity provide a consistent reference 
from which to determine if NGS surface gravity 
(Figure 1) may have potential errors of omission or 
commission. Assuming uniform data collection and 
processing, the aerogravity will ensure consistency 
in the gravity field from onshore to offshore. 

Figure 3 shows the difference from that in Figure 
2 with a grid of the analytically upward-continued 
(Eq. 6-75 in Heiskanen and Moritz 1967) surface 
data. There are still some track-related features, 
however, significant features with lateral extents 
across multiple survey lines can be observed. 

 

 
Figure 3 Grid of residual gravity anomalies produced 
from the total signal in Figure 2 less an upward continued 
NGS surface gravity data. Note the prominent positive 
and negative features on either side of the 500 m curve. 



Some sinusoidal signal remains along the pro-
files, but significant large scale features can still be 
seen across the tracklines. In particular, note the 
large region of positive anomalies south of the 500 
meter depth curve. North of that curve (i.e., in water 
shallower than 500 m), a region of negative anoma-
lies is observed. There is a mixture of features in the 
onshore portions as well. 

The grid shown in Figure 3 was processed using 
a 1D FFT with 100% padding on each side to re-
duce errors. The resulting pseudo-geoid grid is 
shown in Figure 4. 

 

 
Figure 4 Residual pseudo-geoid signal derived from the 
data shown in Figure 3 using a 1D FFT of the Stokes 
function. Significant offshore features follow the 500 me-
ter depth curve. Other features are seen over land. 

As used here, the term pseudo-geoid implies the 
difference between the geopotential and ellipsoidal 
potential surfaces at 10.5 km elevation instead of on 
the ellipsoid where geoid heights are normally 
given. Since the residual gravity field implies the 
difference between aerogravity and existing surface 
gravity from the NGS database, the residual 
pseudo-geoid implies the change in geoid heights 
expected to result from use of this new data. The 
magnitude of the features seen in the pseudo-geoid 
is expected to be similar but greater at the surface 
than at elevation.  

4 Residual Pseudo-Geoid Model Analysis 
 
Several significant features can be observed in Fig-
ure 4. The most obvious are the decimeter magni-
tude offshore features near the 500 meter depth con-
tour. These features derive from several possible 
sources. A first possibility is that they represent 

erroneous signal in and between the altimetric and 
shipborne data.  

The gravity data used to make the reference field 
derive in part from altimetric anomalies derived 
from the GSFC00.1 data. These data become unre-
liable inshore and are generally rejected in the near 
shore environment at depths less than 500 m. The 
significant contrast in signal seen around the 500 
meter curve may represent the unmodeled MDT 
signal present in the GSFC00.1 data used to make 
the reference field. Comparisons with other MDT 
models being developed as a part of the VDatum 
study will be needed to refine this. 

Another possible source for these differences 
would be errors of omission. The near shore data 
are much sparser in some regions. The observed 
differences may derive from signal lacking in the 
surface data and present in the airborne data. Other 
possibilities will also be investigated as well. 

The signal seen in the northwest corner is more 
problematic in that it describes a difference between 
the airborne and terrestrial data. The consistency of 
the airborne data between profiles and at crossovers 
argues that the difference may lie in the terrestrial 
data. The region represents the easternmost portions 
of the Louisiana subsidence region (Shinkle and 
Dokka 2004) where the terrestrial data were col-
lected several decades ago. Over time, most of this 
region has subsided but some areas may have un-
dergone uplift. Hence, a real change in gravity field 
over time may have occurred. However, this is in 
the corner of the collection area and is not suffi-
ciently constrained to offer a firm answer. Addi-
tional aerogravity profiles to the west and north of 
the region may help resolve the question. 

The signal observed in the northeast corner ap-
pears more a function of the lack of coverage and 
the filtering algorithms. The signal there can vary 
based on the filtering applied. Weather and other 
factors (air traffic control, etc.) affected collections 
here and reduced crossovers and available data. 
Only further collection here will resolve this region. 

Probably the most useful outcome for this study 
relates to the signal seen along the shoreline. Deci-
meter sized undulations can be seen along the 
shoreline from +0.12 m in the west to -0.10 cm in 
the middle and then back to zero near the east. 
These features represent the possible uncertainty in 
the geoid in the coastal regions. Given the desire for 
a cm-level accurate geoid to go with cm-level accu-
rate GPS, this is unacceptable. 

 



5 Conclusions and Future Work 
 

Aerogravity profiles collected from onshore to off-
shore have helped to identify possible problems in 
existing surface data coverage. The profiles were 
filtered in such a way as to reduce short wavelength 
signal likely associated with collection but still not 
create artificial effects at longer wavelengths. The 
optimal filter length was determined to be at 420s 
for these purposes. However, the filtering process 
will remain an area for further refinement in future 
work. 

All other available data held by the National 
Geodetic Survey were combined and the resulting 
grid upward continued to flight elevation. This grid 
was removed from the processed aerogravity grid to 
create residual gravity anomalies at altitude. These 
data were then processed to create a residual 
pseudo-geoid, which was examined for features that 
might indicate areas of disagreement between the 
aerogravity data and the various forms of surface 
gravity data (terrestrial, shipborne, and altimetric). 
These features may represent previously unmodeled 
signal or represent an error in the existing data cov-
erage related either to the gravity data or mean dy-
namic topography (MDT) models that affect al-
timetric anomalies.  

The analysis of the gravity data will be made in 
conjunction with several other analyses. MDT and 
other tidal surface models are being developed as a 
part of the VDatum study. These datums can be 
combined with the geoid height models developed 
from these airborne gravity data to compare with 
the lidar-observed sea surface heights at the time of 
the gravity collections. The LVIS lidar data are be-
ing processed to develop profiles nadir to the air-
craft. A direct comparison of the models to the pro-
files will provide decimeter-level accurate absolute 
error estimates of the entire system.  

In turn, the geoid heights can then be compared 
to heights above the NAVD 88 datum at tidal bench 
marks to obtain NAVD 88 errors with respect to 
actual MSL at the same level of accuracy. This 
would provide the basis for further evaluating the 
utility of the NAVD 88 datum in coastal regions 
prone to storm surge and tsunamis. 

Additional comparisons will also be made with 
gravity derived from GPS/INS. The GPS and IMU 
information collected during the flights will eventu-
ally be processed to generate an equivalent gravity 
field. Similarly developed data are also being ac-
quired from Intermap Technologies, Inc. The intent 
of such comparisons would be to determine if the 
GPS-IMU-derived data sufficiently model the grav-

ity field for the purposes of determining a geoid 
height model. These data may not be as useful in 
the dynamic coastal regions but may prove benefi-
cial in stable interior regions. 

Lastly, the region covered by this study is ap-
proximately 400 km by 500 km. This is sufficient to 
compare directly with newer EGM’s derived using 
GRACE (Tapley et al. 2004) data. Such compari-
sons will help to decide to move forward from using 
EGM96 (Lemoine et al. 1998) as a reference gra-
vimetric model. Reduced long wavelength differ-
ences between independent data such as were col-
lected here and from GRACE data would point to 
improved global and regional geoid height models. 

As a final note, this study highlights the need for 
continued research into littoral aerogravity to sup-
plement existing terrestrial coverage. The im-
provements that will likely result to geoid height 
models in and near the shorelines will enable the 
use of GPS-derived orthometric heights and a better 
understanding of the land-ocean interface. 
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Abstract 
 
  The present paper outlines the main aspects of a new 
method of forward space-domain modeling of the 
gravitational attraction from known sources. 
Compared to the methods known from the literature– 
the presented method has a potential to improve 
decisively. Complicated mass density models 
(reflecting the real geology) will not increase the 
computational task, because, unlike in the existing 
methods, the field point computations are not done by 
integrating the source attraction for each field point, 
but from the pre-computed and stored mass density 
information. This is done only once and completely 
independent of the field point. A very large class of 
functions approximating the mass density 
distributions and interfaces between geological layers 
can be used. Expressions for higher order derivatives 
of the gravitational potential are automatically 
obtained and make use of the same stored mass 
density information. The mathematical formulation, 
based on power series expansion of the reciprocal 
distance function, uses a setup with local Cartesian 
coordinates, but is able to handle the ellipsoidal 
Earth’s models (for positioning and for reference 
gravity) automatically. The quality of approximation 
for all derivatives of the gravitational potential is pre-
defined and controlled.  
 The paper outlines the mathematical structure of the 
method and shows clearly that ‘it can be done’. 
However, to be fully operational a good strategy for 
storing the integrated mass density information must 
be invented. The brute-force implementation of the 
method will not work because the dimensionality of 
the problem is too big.  
 
1 Introduction 
 
To date, the forward modelling in space-domain of 
the gravity and magnetic signals generated by known 
sources in 3D (potential fields) is based on two main 

techniques: the elementary bodies and the Gauss’ in-
tegral formula; see the general overview of methods 
in e.g. (Torge, 1989) or (Blakely, 1996). 
   The elementary bodies. The source volume Ω  is 
approximated by a finite set of disjoint three-
dimensional bodies of simple geometrical shape; the 
elementary bodies. Commonly, for each elementary 
body iΩ , a constant source strength (the density iρ ) 
is assumed. Furthermore, for an arbitrary field 
point P the potential field quantity iχΔ  generated by 
each elementary body can be described by a closed 
functional expression. Thus, for a given type of 
potential field quantity χ (e.g. the gravitational 
potential, the gravity disturbance, the gravity 
gradients … etc.) the following is valid:   
 ( ) ( )          P∑ Δ=

i
iiP χρχ (1) 

 
  The elementary bodies are e.g. homogenous 
rectangular prisms (Nagy, 1966), a stack of infinitely 
thin laminas with a polygonal shape (Talwani and 
Ewing, 1960) or a polyhedron (Paul, 1974; Barnett, 
1976). A number of authors have also been looking 
into elementary bodies with varying source strength; 
the exponential (Cordell, 1973; Chai & Hinze, 1988), 
linear (Genzwill, 1970; Holstein, 2003) or quadratic 
(Rao, 1990). 
   The Gauss’ integral formula or Gauss’ divergence 
theorem (Heiskanen & Moritz, 1967, sec. 1-5; Sigl, 
1985, sec 6.1). This general theorem is applied twice 
so that the attraction of 3D-bodies bounded by planar, 
triangular facets is computed efficiently. The volume 
integration is replaced by a surface integration, which  
is replaced by a line integration (Petrović, 1996; 
Götze & Schmidt, 2002).  In the present paper, this 
technique is viewed as a speed-up of the elementary 
body method for homogenous polyhedrons.    
   Some important common features of the existing 
techniques in relation to the present paper are: 

• The gravitational attraction is computed  
       from ‘scratch’ by source integration for each 



 

 

 

 

        field point.  
• Limited class of mass density functions. 
• Finite number of volumetric ‘building 

blocks’ to approximate the source. Complex 
models (reflecting real geology) require 
more elementary bodies and the increased 
computational task.   

 
 
2 The Power Series Expansion of the 
Reciprocal Distance Function  
 
Following Sigl (1985), we will start with the power 
series expansion of the reciprocal distance function. 
The derivations here are more general and involve 
both the field point-domain and the source point-
domain (only one domain is considered by Sigl).  
   The basic setup is as shown on Fig. 1. We have two 
fixed points, P for the field point–domain PΩ , and 

 for the source point-domain       .  For simplicity, 
we choose the domains to be cubic and centered at 
the fixed points, so that the domains are characterized 
by one parameter; the side lengths  and        . 

Q

P
  Within each of the two domains we have variable 
points

L

*P , P , and ,                . The idea is to 
express the reciprocal distance between the two 
variable points,         , as a power series expansion 
with respect to the reciprocal distance between the 
two fixed points,          . 

P Ω∈* *Q

    The elementary vector algebra gives                   : 
 
 
 
 
 
 
 
 

(2) 
where 

 
where  
 
Thus, from eqs. (2)-(3) the reciprocal distance is:  
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i.e. approximated by a truncated ( is the truncation 
degree) binomial series. The convergence criterion 
for the binomial series is: 

N

 
Few important general comments. Firstly, the role of 
the field point-domain and the source point domain is 
to ensure a pre-defined quality of approximation for a 
given truncation degree in the approximation of the 
reciprocal distance function by the truncated series. 
Thus, the domains are not the elementary bodies.        

N

   The second comment concerns the last part of eq. 
(3). Introducing the unit-length vector  and the 
two “local vectors”        and          (one in the source 
point-domain through   , and scaled by the fixed 
distance , and one in the field point-domain 
through       , scaled by the fixed distance ).            
Identical quantities were obtained in eq. (3) had we 
chosen          to be given in a local Cartesian frame of 
reference, LCFR, with the origo in  and obtained 
from the original Cartesian frame of reference by a 
simple translation, and similarly for        which can be 
expressed in a local Cartesian frame of reference for 
the field point-domain. This splitting into the LCFRs 
is quite important for the method. Conversely, by 
introducing the LCFRs we can integrate locally the 
gravitational effect of possibly very detailed and local 
mass density information and compute its attraction 
locally for any point in a field point-domain.    
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    The final comment is on the convergence. From 
eq. (3), the convergence criterion of eq. (4), and after 
some simple considerations it is valid ( 1=PQe ):  

which is equivalent to 

 
Thus, a simple and rough criterion for convergence of 
the binomial series is:  
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By comparing with the definitions in eq. (3) the 
general convergence criterion of eq. (5) limits the 
absolute size of the cubical domains by limiting  
and . Formally, the following is valid: 
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(6) 
which in combination with eq. (5) can be used to find 
the maximal domain size for a given . PQr
 
3 Relation to Physical Geodesy  
 
In this section we will relate the mathematical 
formalism introduced in sec. 2 to the practical 
forward modelling problems in physical geodesy 
(Heiskanen and Moritz, 1967; Moritz, 1980). The 
reciprocal distance function is the fundamental kernel 
function for the Newtonian gravitational potential 
(Heiskanen and Moritz, 1967). The observable 
quantities of the gravitational attraction are obtained 
by means of linear- or linearized functionals applied 
to the gravitational potential (Moritz, 1980). 
   Unlike the method of elementary bodies (see 
Introduction), where finite set of volumetric building 
blocks is used, the proposed method addresses the 
source as infinitesimal mass elements. In sec 4 we 
will demonstrate that the class of possible mass 
density distributions that can be included is larger 
than in standard methods, see Introduction  
      The standard methods (the elementary bodies and 
the Gauss’ integral formula) compute the attraction of 
the known sources by source integration for each 
field point individually. Thus, even if the new field 
point is in the vicinity of the old one, the 
computations start from scratch as if nothing was 
known. Conversely, the present day methods are 
‘memory less’.  In contrast, the main idea behind the 
proposed method is to pre-compute and to store the 
information about the sources in the fixed field points 

and use this information for high-quality field 
recovery in the associated field-point domain. 
P

    To be of practical use, the proposed technique 
should address the relation to the ellipsoidal Earth’s 
model used globally both for positioning (GPS) and 
for the reference gravity field (GRS80). The two 
LCFRs, one for the field point domain, and one for 
the source point–domain, and associated with the fix 
points  and  should be the standard local North-
East-Zenith frames of reference. Thus, there is no 
need to switch to e.g. the ellipsoidal coordinates to 
relate to the ellipsoidal Earth model. 

P Q

    In this context, the notion of LCFR follows a 
standard in satellite geodesy (Seeber, 1993) relating 
the global body-fixed Cartesian frame of reference 
(GCFR, the origo in the CM of the Earth, the xy-
plane in the equatorial plane, x-axis pointing towards 
the Greenwich meridian and the z-axis pointing to the 
North along the axis of rotation) and the local 
Cartesian frames of reference (LCFR). Forward and 
inverse transformations from GCFR to LCFR involve 
a translation, rotation and there is a change from a 
right-handed frame of reference to the left-handed 
North-East-Zenith frame of reference.  
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   Consequently, the two LCFR are related to each 
other by a simple translation and rotation through 
GCFR. The expression for the relative rotation matrix 

(from LCRF for the source point-domain to the  QPR
LCRF for the field point-domain) is lengthy, but 
straightforward. It involves the ellipsoidal geographic 
coordinates and height ( )h,,λϕ  of both  and Q in a 
sequence of inverse- and forward transformations 
between GCFR and the two LCFR. The net result is 
(in the LCRF for the field point domain):    

P

 
(7) 

 
and where          and         are in the respective LCFR. 
   Concerning the convergence properties of the 
binomial series, in sec. 2 the developed formalism 
was for the two LCFR that were aligned, i.e. related 
by a simple translation. Fig. 2 shows the setup where 
the two LCFR are rotated with respect to each other. 
For simplicity, the corresponding cubic domains are 
also rotated. The convergence properties for the 
rotated domain are the same, but it is smaller in size. 
    Another remark concerns the arbitrary field point 

within the domain *P PΩ  associated with . For 
reasons explained below, we want in eq. (7) to 
be expressed as 

P
*PPr

*PPr′ in a LCFR associated with . 
This new LCFR has still the origo in , but it is 
rotated with respect to -LCFR. If PP  is a rotation 
matrix from -LCFR to -LCFR, eq. (7) becomes:  

*P
P

P *R
*P P

 
 
 

(8) 
Conceptually, after source integration (see sec. 4) the 
information is stored in the LCFR associated with . 
Subsequently, when using the stored information it is 
convenient to express it in the LCFR associated 
with , becauset the general structure of the scalar  

P

*P
            is a 2nd order polynomial of six variables: 
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(9) 
where                    is a constant [only 29 out of the 
possible 729 (=36) constants are non-zero] and where 
                                      and   
This general structure is preserved for the powers 
of , see eq. (4), but for a higher maximal degree 
(which is twice the power of       because eq. (9) 
yields a 2nd order polynomial).  

**PQq

  The structure of eq. (9) has two important 
consequences (which are also valid for the powers of 
        and, thus, for the truncated series in eq.(4)): 
     1. The source point coordinates and the field point 
coordinates are separated. Thus, source integration 
can be done independently of the field point, sec. 4. 
     2. Higher order derivatives of the gravitational 
potential, which affect only the coordinates of the 
field point, and which in physical geodesy are used to 
model any observable quantity of the gravitational 
attraction (Moritz, 1980), can be approximated by  
differentiating the truncated binomial series, eq.(4): 
 
 
 

(10) 
Subsequently, each power of      , which according to 
the above discussion has exactly the same structure as 
shown in eq.(9), can be differentiated. For example, 
 
 
 

 
 
 

(11) 
where                       is a constant for a similar 
expression to eq. (9) but for  
    Thus, the differentiation is again independent of 
the source integration. Furthermore, the fact that the 
coordinates of are expressed in a *P *P -LCFR (see 
above) has as a consequence that the directional 
derivatives are aligned with the ellipsoidal normal 
and the North- and East component. Thus, for the 
ellipsoidal Earth’s models it is possible to make use 
of the simplicity of the local Cartesian coordinates 
without the need to go into spherical- or ellipsoidal 
geometry. 
 

4 Source Integration – storing the 
information 
 
Using the formalism introduced in the previous 
section, we will now address the problem of 
integrating the contributions from all sources. We 
start with the contribution to the gravitational 
potential kVΔ from the source point-domain 

kΩ associated with a fixed point (see eq. (4)) kQ
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where G is the gravitational constant, ( )*Qρ  is the  
density distribution within the domain and where:  
 
 
 

(12) 
 
 
The definition given by eq. (12) shows, in principle, 
how this can be done. One detail is that the formula 
makes use of eq. (7) rather than eq. (8), i.e. it 
involves coordinates [ ]**** ,, PPPPP zyx≡r  in -
LCFR. This is the LCFR that we use for storing the 
information. As explained above, the recovery of the 
field quantity for an arbitrary point within the 
field point domain requires additional rotation, which 
is only known once the field point is known. 

P

*P

    In sec. 3 we showed that the source integration is 
independent of the field point and that it is unchanged 
for other derivatives of the gravitational potential. 
This is an interesting property, which at least in 
principle, makes it possible to pre-compute and to 
store the source information. The same integrals can 
be used for all the derivatives of the gravitational 
potential. Consequently, it is not necessary to store 
the information individually for all the derivatives.   
   Another important issue is the class of functions for 
the source approximation that can be integrated. It is 
larger that those known in the literature for the 
elementary-body techniques (see Introduction). For 
example, the piecewise polynomial functions of the 
type:  
 

  (13) 
can easily be integrated. Also, the interfaces between 
geological layers approximated by surfaces like:  
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(14) 
can also easily be included. This opens a possibility 
of computing the attraction from very complicated 
(i.e. realistic) structures.  
   At the present, we do not as yet have a good 
strategy for storing the source information. The 
dimensionality of the brute-force approach is simply 
too big (there is a trade-off between the truncation 
degree and the size of the field point domain which 
we want to have as big as possible). Looking at eqs. 
(3)-(4), i.e. for the problem prior to the integration, 
we can see the analogy to how it could work. Once 
the arbitrary point within the field point domain is 
known we have the value of       for this point. We 
can than take powers of this value and insert them 
into the truncated binomial series, see eq. (4). This  
relationship is no longer valid for after the 
integration.  Conversely, and looking at eq. (11) 

*P

 
 

(15) 
To the author’s opinion, there is no doubt that there 
must be a way.  The reason is that the field away 
from the physical sources is smooth. Conversely, it 
only requires few low-degree polynomials to describe 
the field. It should be noted that the present paper 
does not address the problems of optimizing the 
technique by only adding the most significant 
contributions. One reason is, that we want to use the 
same mathematical formalism (and the same stored 
information) for all derivatives of the gravitational 
potential. This requires that the truncation degree of 
the binomial series is higher than what is strictly 
necessary for e.g. a high-accuracy approximation of 
the gravitational potential. Another reason is that we, 
at this stage, want to investigate the problem in its 
full scale and see if we can come up with some good 
strategy. Looking at eq. (12) we also understand how 
the density information translates into gravitational 
attraction and for all the derivatives – which is useful 
for techniques of geophysical inversion.   
   At the present we investigate the possible recursive 
structure of the integrals . This would be 
analogous to the above example. Another point, not 
discussed here, but which is the integral part of the 
present investigations, is how to store and, 
subsequently, how to add the information from 
different source point-domains.  

)(i
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   The considerations in sec. 2 about the domain sizes 
(  and ) in relation to the convergence of the 
binomial series of eq. (4) are, in fact, more refined. 
We have tried to design techniques for assessing the 
maximal possible truncation error for a given 
truncation degree and for a given size of the domains 
– both for the gravitational potential and for higher 
order derivatives. This would allow us to assess the 
maximal error for the forward model computed by 
truncated series as compared to the ‘true model’ 
computed by means of infinite series (‘exact’). 

PL QL

   We found, that it is convenient to study these issues 
on the truncated binomial series prior to the 
integration of sources (see eq.(4)). The reason is, that 
we can use for comparison simple point-mass 
formulas for the gravitational potential and its 
derivatives as a ‘true’ absolute value. Thus, for all 
points ,  and for all points ,  in 
a field point domain, we study the maximal 
truncation error of ‘approximated’ (eq. (4) or its 
derivatives) versus the ‘exact’ (point–mass attraction 
for and 

*Q QQ Ω∈* *P PP Ω∈*

*Q *P ). Only if this maximal approximation 
error is 100% correlated for all in the source point 
domain the error after integration would be the same. 
Otherwise, it must be less. Thus, the truncation error 
in relation to the problem after mass integration is 
less than what is found. 

*Q

**PQ

  We can show that, for a set of parameters ,  
and and for the setup shown on fig, 1, there is a set 
of characteristic points  ( ,

PL QL
N

*Q *P ) within both domains 
so that the truncation error becomes maximal. This is 
valid for the gravitational potential (and probably 
also for other derivatives).  We are still working on 
formal proofs of that.  
   Finally,  we will illustrate what can be expected in 
practice. Consider a problem of detecting the land 
uplift in Scandinavia studied from GRACE (altitude 
300 km – 500 km) by tracing point-by-point, and 
along the satellite orbit, the signal coherent with the 
attraction of the topography. Regional DEMs used 
for the computation of the Scandinavian geoid have a 
spacing of 0.01° × 0.02° (approx. 1.1 km × 1.0 km). 
The maximal heights in the area [52°N - 72°N , 4°E - 
32°E  (approx. 2224 km × 1462 km)] are 2366 m. 
Thus, it is possible to design source point domain 
with fixed points in height 1200 m and =2400 m 
(corresponding approximately to 2 x 2 grid points of 
the DEM). For the field point-domain we could place 
the fixed points with a spacing of 1° × 2° at the 
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‘mid’-altitude of GRACE of 400 km and =200 
km. For = 30 the following maximal relative 
[(‘approximated’-‘true’)/’true’] misfit errors 

PL
N

ε  were 
found for different orders of the derivative:  
 
0-order (gravitational potential) ε <6.01×10-12  
1-order (gravity vector)  ε <1.12×10-9 
2-order (gravity gradient)   ε <6.38×10-7 
3-order    ε <5.99×10-5 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 The setup, see sec 2. The cubical field point-
domain ( P -fixed point in the center, *P arbitrary 
point, -side length of the cube, LCFR with origo 
in 

PL
P ); The cubical source point-domain ( -fixed 

point in the center, arbitrary point, -side length 
of the cube, LCFR with origo in Q ) 

Q
*Q QL

 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Ensuring the quality of approximation when 
the domains are not-aligned, see sec. 3. The rotated 
domain is smaller than the original one.     
 
6 Conclusions 
 
In this paper we have outlined a new space-domain 
method of forward modelling for computation of the 
gravitational attraction from known sources.  Compa- 
red to the existing methods known in the literature the 
proposed method has the following advantages: 

• The source integration is done once, inde-
pendently of the field point, and stored. The 
same stored information can be used for all 
derivatives of the gravitational potential. 

• It is possible to accommodate, a large class 
of mass density distributions (including the 
geologically realistic density models in 3D) 

• Controlled accuracy of approximation. 
• Local Cartesian Frames of reference are 

used. All the important aspects of the  
ellipsoidal Earth’s models can be included. 

 
   One serious outstanding issue  is, that there is no 
good strategy for storing the integrated source infor-
mation. However, there is reason to believe that this 
must be possible. 

 

   Smaller outstanding issues are the mathematical 
proofs ensuring bounds on the maximal errors of 
truncation for the higher order derivatives of the 
gravitational potential. 
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Residual Terrain Correction on the Sphere by an FFT
Algorithm

D. Sampietro, G. Sona, G. Venuti
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Abstract. The computation of the vertical at-
traction due to masses above the mean topogra-
phy (Residual Terrain Correction, RTC) is still
a matter of study in the high precision geoid
estimation by remove-restore technique. This
topographical effect can be evaluated from the
knowledge of a Digital Terrain Model (DTM)
in two different ways: numerical integration by
prisms or Fast Fourier Transform (FFT) tech-
nique. Both these methods can’t be used when
wide areas are considered, the first approach,
more rigorous, requires an excessive computa-
tion time, while the second one, faster, implies
restrictive hypotheses like planar approximation
of the topographical surface. For these reasons a
new algorithm, based on a convenient transfor-
mation of the starting DTM, has been studied
and implemented. This new method enables the
use of planar formulas also with the spherical
approximation of the area. The new algorithm
is presented both from a theoretical and practi-
cal point of view, particular attention is paid to
neglected terms that are of the order of about
10−5Gal. The method has been studied in order
to compute the RTC in a large area like that im-
plied by the new European geoid project. Some
tests have been performed for proving the good-
ness of the model.

Keywords. Residual Terrain Correction, FFT

1 Introduction

Modeling of local details of the gravity field via
Newton integral with accuracies that can meet
modern demands requires the use of high resolu-
tion digital terrain models (DTM) and applica-
tion of the Newton Integral in terms of geodetic
coordinates over a large amount of data (Ardalan
and Safari, 2004 [1]). The first problem can be
solved by means of photogrammetric and remote
sensing techniques, that made it possible to de-
velop high resolution DTMs, the second problem

is still a matter of study: the Fast Fourier Trans-
form techniques (FFT) in fact make it possible to
compute Newton integral in a fast way, but only
in planar approximation (see for details Sideris,
1984 [8] or Forsberg, 1985 [4]), while the integral
in terms of geodetic coordinates can be evaluated
only using numerical methods, but this approach
is very time consuming (see for example Tsoulis,
1998 [10]). With the aim to overcome the lim-
its of classical models, advanced algorithms, like
the one implemented in TcLight, have been de-
veloped.

In this work we analyse an improvement that
allows the use of TcLight planar formulae also
considering spherical approximation. In order to
prove the goodness of this new method numeri-
cal results for a synthetic and a real DTMs are
presented. This study is a continuation of the
efforts of IGeS to develop a tool for computing
RTC over a wide area in a fast and rigourous
way.

1.1 TcLight, an Overview.

In planar approximation, with the geometry
shown in Fig. 1 and with a constant density dis-
tribution (σ(P ) = σ = cost),the potential gen-
erated at a point P (n, e, h) by the masses of a
body of base B is (Heiskanen and Moritz, 1967
[5]):

V(P) =G σ
RR

B
dxdy

R z

0
dζ√

(n−x)2+(e−y)2+(h−ζ)2
.(1)

Reminding that δg = −∂V /∂h and assuming the
Newtonian operator to be evaluated only inside a
disk of assigned radius D, and that outside D the
terrain can be supposed to have zero heights, the
following Eq. 2 was proved (Sansò et al., 1998 [7]):

δg(n, e, h) = kG

ZZ
B

"
dxdyp

l2 + (h−H)2
−

− dxdyq
l2 + (h− eH)2

35 =

= kG (Γ1 − Γ2 − Γ3 + Γ4)

(2)



Figure 1: Geometry used in TcLight.

where:
kG = Gσ; Γ1 = 2πh; Γ2 = πh2

�
D2 + h2

�− 1
2 ;

Γ3 = 1
2

R 2π

0
dθ
R D

0
dl x(θ,l)2

[1+x(θ,l)2]
3
2

;

Γ4 = 1
2

R 2π

0
dθ
R D

0
dl x(θ,l)3z′(θ,l)

[1+x(θ,l)2]
3
2

;

x(θ, l) = h−z(θ,l)
l

; z′(θ, l) = ∂z
∂l

(θ, l);
and (θ, l) are polar coordinates in the plane with re-
spect to P, (x, y).

To numerically compute these integrals TcLight
adopts different approaches according to the charac-
teristics of the integrand functions: particularly the
domain is divided into two parts, the first defined as
a square near the computational point P (called inner
domain) and the remaining part of the DTM called
outer domain. In the inner domain Eq. 2 is solved
by describing the topography inside every DTM cell
as a bilinear surface and applying numerical integra-
tion. In the outer domain Γ3 and Γ4 are reduced to
convolution integrals, which can be solved by FFT
technique. In this way we are able to obtain results,
comparable with that of numerical integration, prac-
tically as fast as classical FFT computations also in
rough topography. For a more detailed description
of TcLight see Biagi and Sansò 2001 [3].

2 Spherical Approximation

2.1 Theoretical Approach.

In general, considering again the hypothesis of a
constant density of the topographical masses (σ =
σ(Q) = cost) and with geometry shown in Fig. 2,
the gravity effects of an extended mass body Ω is
given by:

δg(P ) = −−→ν P · −→∇P

ZZZ
Ω

σG dΩQ

lPQ
(3)

where Ω are topographical masses between the ac-
tual and the mean topographical surface.

If we call σG = µ, Eq. 3 can be written as:

δg(P ) = µ−→ν P ·
ZZZ

Ω

−−→∇P
dΩQ

lPQ
. (4)

Figure 2: Geometry used for modeling at the
observation point P the gravity effect due to the
point Q in ellipsoidical approximation.

Figure 3: Geometry used for computing |−→l PQT |

The domain of the integral in Eq. 4 can be split into
two parts, the first referred to points near P (at a
maximum distance of about 4◦ as we shall explain
in the sequel of the paragraph) and the second one
referred to all other points. Concentrating on the
first part all we have to do is just to rewrite Eq. 4
simplifying some irrelevant terms and to compute the
integral over a conformal projection of the DTM.

First of all, applying Gauss theorem to Eq. 4 and
considering −→n the direction of the normal to the to-
pographical surface pointing up, we get:

δg(P ) = µ

�ZZ
T

−→ν P · −→n QT dT

lPQT
−

−
ZZ

TM

−→ν P · −→n QTMdTM

lPQTM

� (5)

where T refers to actual surface, while TM refer
to the mean topographic surface. We can observe
that numerators in the two integrands of Eq. 5 are
merely the projections of dT and dTM on a plane
perpendicular to −→ν P . Just to simplify the notation
we shall consider then: −→ν P · −→n QT dT = dS; and−→ν P · −→n QTMdTM = dS′. Let us consider for the

moment only |−→l PQT | From Fig. 3 we can note that:

hP
−→ν P +

−→
l PQT =

−→
l PeQ0 + HQ

−→ν P so
−→
l PQT is :



−→
l PQT =

−→
l PeQ0 +(HQ − hP )−→ν P and with a plainly

algebraic step we find:

|−→l PQT |2 = |−→l PeQ0 |2 + (HQ − hP )2−
− 2|−→l PeQ0 | (HQ − hP ) cos α

(6)

where α = 1
2

(ψ + δψ)+ π
2
. From the geometry of the

problem we notice that δψ is negligible in compari-

son with ψ, in fact: ψ =
|lPeQe |

R
∼= 60km

6000km
= 10−2rad

while dψ =
|lPeQ0 |

R
=

HQ sin ψ

R
∼= 10−2

103 = 10−5rad.
With this simplification, assuming cos ψ ∼= 1 and
sin ψ ∼= ψ and recalling that cos

�
π
2

+ θ
�

= − sin θ
Eq. 6 becomes:

|−→l PQT | ∼=
q

l2 + (HQ − hP )2 − l (HQ − hP ) ψ (7)

As ψ is so small and hQ = HQ cos ψ, we can consider
hQ

∼= HQ. This simplification implies an error of
about 5HQ · 10−5. With this remark we find that,
with good approximation, the following expression
holds:

‖−→l PQT ‖ ∼=
q

l2 + (hQ − hP )2 − l (hQ − hP ) ψ

=

r
l2 + ∆h2 − l∆h

l

R

(8)

where l = |−→l PeQe |2 ∼= |−→l PeQ0 |2. We can note
that the last term in Eq. 8 is 10 time smaller
than the second one and 1000 time smaller than
the first one. In fact if we suppose: l ∼= 60km;

R ∼= 6300km; ∆h ∼= 5km we obtain: |−→l PQT | ∼=
60km

√
1 + 0.007− 0.0008 = 60.19km so we can as-

sume |−→l PQT | ∼=
√

l2 + ∆h2 with an approximation
in the worst hypothesis of about 0.024km. We can

proceed in an analogous way for |−→l PQTM | consider-

ing that in this case ∆eh (where ∆eh is just the same as
∆h but referred to TM) will be even smaller. What
we have to do now is to reduce infinitesimal areas
dS and dS′ over the reference sphere. This can be
simply done by observing from Fig. 4 that:

dS′

dSe

∼= dS

dSe

∼= cos δψ ∼= 1 (9)

and therefore dS′ ∼= dS ∼= dSe. At last we can write:

δg(P ) = µ

�ZZ
T

dSeQ0√
l2 + ∆h2

−

−
ZZ

TM

dSeQ0p
l2 + ∆eh2

#
.

(10)

At this point, in order to compute integrals in Eq. 10,
we can pass to a conformal projection.

Considering now a generic infinitesimal surface on
the ellipsoid dSe, in the conformal projection this
area will be the product of the square of linear de-
formation index m and the infinitesimal surface dS.

Figure 4: Relation between infinitesimal sur-
faces dSe and dS′.

Considering that the distance l referred to the ellip-
soid becomes DPQ

∼= l
m

on the map, we have:

δg(P ) = µ

24ZZ
T

m2dSq
D2

PQ + ∆h2
−

−
ZZ

TM

m2dSq
D2

PQ + ∆eh2

35 .

(11)

In Eq. 11 , using a conformal projection, m is the
same in all directions, moreover the two integrals are
not significant if the distance is bigger than 2◦ or 3◦,
so for these distances we can suppose, at every point
P , m to be constant (in a Lambert conformal pro-
jection,e. g., we have ∆m ∼= 0.005 if the two points
are 4◦ far away). With this agreement we find that
Eq. 11 can be written with a suitable approximation
as:

δg(P ) = µ
m2

m

2664ZZ
T

dxdyr
D2

PQ +
�

hP
mP

− hQ

mQ

�2
−

−
ZZ

TM

dxdyr
D2

PQ +
�

hP
mP

− ghQ

mQ

�2

3775 .

(12)

If we denote reduced altitudes with h = h
m

and we
compare Eq. 12 with Eq. 2 we can note that the
following relation holds:

δgsphere(P ) = m(P )δgplane(P )|h, (13)

i.e. if we consider an interval around P, δgsphere(P )
can be computed with TcLight formulae in spherical
approximation by applying to the DTM a conformal
projection, dividing heights h by m and then multi-
plying the resulting RTC by m.



Taking into account now the contribution of the
remaining part of the sphere, external to the area
considered, we will prove that integrals in Eq. 10
can be neglected when computing RTC at point P. In
fact, also in this case Eq. 10 must holds. In the first
integral we can split the difference between hP and
hQ as hP − ehQ −∆h. Inserting this last expression
in Eq. 10 we obtain:

δg(P ) = µ

ZZ
out

2(hP − ehQ)q
l2 + (hP − ehQ −∆hQ)2

dSeQ0

(14)
the modulus of which, for the triangular inequal-

ity, must satisfy:

|δg(P )| ≤

µ

vuutZZ
out

2|hP − ehQ|q
l2 + (hP − ehQ −∆hQ)2

dSeQ0vuutZZ
out

2|hQ − ehQ|q
l2 + (hP − ehQ −∆hQ)2

dSeQ0.

(15)

From the geometry of the problem we can note thatq
l2 + (hP − ehQ −∆hQ)2 ∼= 2R sin ψ

2
, while the in-

finitesimal surface is: dSeQ0 = R2 sin ψdα. Substi-
tuting these relations in Eq. 15 and with opportune
algebraic steps we obtain:

|δg(P )| ≤ µ

vuut 1

R

Z 2π

0

Z π

ψ0

cos ψ
2
(hP − ehQ)2dψdα

4
�
sin ψ

2

�2vuut 1

R

Z 2π

0

Z π

ψ0

cos ψ
2
(hQ − ehQ)2dψdα�

4 sin ψ
2

�2
(16)

It is easy to observe that quantities in Eq. 16 can

be neglected, in fact, supposing E
h
(hP − ehQ)2

i
=

∆h2
PQ

∼= 4km2 and E
h
(hQ − ehQ)2

i
= ∆h2

QQ
∼=

0.25km2, with a course valuation we find that:
|δg(P )| ≤ 0.16mGal

2.2 Algorithm Implementation

Usually to compute RTC we have DTM on a regu-
lar grid in geodetic coordinates (φ, λ). Taking into
account the spherical approximation what we should
do is to obtain a DTM on a regular grid in planar
cartesian coordinates (x, y) by applying a conformal
Lambert projection. For this purpose a 4 steps pro-
cedure has been developed:

1. First of all we just consider the extremes of the
DTM boundaries in (φ, λ) and apply to these 4
points the Lambert projection. With this sim-
ple operation we find the limits of the new grid
in cartesian coordinates.

Figure 5: Pratical algorithm for computing RTC
with TcLight in spherical approximation.

2. The next step consists in creating a regular pla-
nar grid in (x, y) inside the 4 points found in
point 1.

3. In step three we apply an inverse Lambert pro-
jection to the regular grid nodes in (x, y) pro-
ducing a set of sparse points in (φ, λ).

4. By interpolating with bilinear spline the original
DTM on the points found in step 3 we get the
height values on the regular grid at x, y. In
order to prepare the DTM for computing RTC
with TcLight we have also to divide heights by
linear deformation m.

5. This point consists in preparing the computa-
tionl points (where RTC will be estimates) sim-
ply using Lambert projection over the regular
grid in (φ, λ)

The result of these operations are two set of points,
the first one containing DTM over a regular grid in
cartesian coordinates, and the second one containing
an amount of sparse points in cartesian coordinates
corresponding to the nodes of a regular grid in (φ, λ).
Finally we can compute RTC over the points in the
second set, using the DTM of the first set. Applying
at the result of this last operation a simple reordering
procedure we finally get RTC over a regular grid in
(φ, λ).
The whole process is summarized in Fig. 5.

3 Numerical Tests
In this section we will present numerical tests per-
formed in order to check the accuracy of the new
method. It is worth remarking that the RTC is sim-
ply the difference between a classical TC computed
on true topography and a TC on the mean topog-
raphy, so in numerical testing we performed only



Figure 6: Geometry of the body used for numer-
ical tests.

classical TC. First of all we performed a test over
a small patch of real DTM (φmin = 45.5; φmax =
46.5; λmin = 8.5; λmax = 9.5; δφ = δλ =
3arcsec). This test gave results quite similar to
that obtained with classical numerical integration
and planar TcLight and proved the correctness of
the software developed (differences are of the order
of 0.2mGal).

For the purpose of algorithm testing the availabil-
ity of the exact potential of bodies is essential; un-
fortunately a closed solution for the Newton integral
in geodetic coordnates doesn’t exist. So we tryed to
compute it over a simple synthetic DTM with differ-
ent methods. We considered a simple body with a
cylindric symmetry around the polar axis, built on
the pole of a sphere (see Fig. 6). In this case the ex-
act potential of the gravity field can be analitically
evaluated using spherical harmonics:

ν(P ) = 2πµ

+∞X
n=0

bn(R, H, ∆)rn
P Pn(cos θP ). (17)

From Eq. 17 we have computed the radial attraction
of the body i. e. the topographic correction. The
problem of this method is that the series converges in
a very slow way (see Fig. 9) and it is quite difficult to
reach the required precision . A new test was devel-
oped using numerical integration by Gauss-Legendre
quadrature. In the quadrature method the gravity
components of the spherical prism can be computed
accurately by summing up at each observation point
the effects of a number of equivalent point poles op-
portunely weighted (M. F. Asgharzadeh et al., 1998
[2]); for details on this method see for example Swarz-
trauber 2002 [9] or Press, Vetterling and Flanners,
1994 [6]. For the purpose to have a TC as accurate
as possible we divided the body in (800× 800× 800)
cells.

Figure 7: Geometry used to model spherical
and planar approximation with numerical inte-
gration.

To try to estimate differences between planar and
spherical approximation, TC was evaluated over 2
different bodies, the first one built over a sphere of
radius 6300km while in the second case we consider
a sphere of 630000km of radius (geometry used in
this test is shown in Fig. 7). Empirically we can
consider the TC computed over the second sphere a
good model for planar approximation. The next step
was just to compute TC with TcLight in planar ap-
proximation and applying the new algorithm. Since
the synthetic DTM in exam has a cylindrical sym-
metry, RTC has been computed along a single pro-
file; in order to have an idea of the results obtained,
RTC evaluated with spherical harmonics and the new
methods over the whole profile are shown in Fig. 8.
In Fig. 9 the results obtained with all the methods,
over an interval of about 10km, are presented. We
can notice that RTC computed with the new algo-
rithm are similar to the one obtained with numerical
integration over the small sphere, while RTC com-
puted with simple TcLight is more similar to results
obtained over the big one, as it was to be expected.
Finally in Fig. 10 is presented the difference between
spherical and planar approximation computed both
with TcLight and numerical integration.

4 Conclusion

In this paper we have presented a new algorithm for
computing TC using FFT also in a spherical domain
and some tests to prove the goodness of the model.
From Fig. 8, Fig. 9, Fig. 10 we can see that, if we con-
sider points distant more than 3km from the large
DTM discontinuity (1000m), the new method ap-
proximates the correct RTC in a good way (less than
0.1mGal for the test developed). From Fig. 10 we
can note that differences between planar and spher-



Figure 8: TC evaluated over the whole profile
with TcLight case a) and spherical harmonics
case b) [distances in m. TC in mGal].

Figure 9: TC evaluated over a 10km inter-
val with spherical harmonics case a), TcLight
and new algorithm case b) , numerical integra-
tion in spherical approximation case c), simple
TcLight case d) and numerical integration in pla-
nar approximation case e) [distances in m. TC in
mGal].

Figure 10: Spherical effect estimated with
TcLight (b − d) and with numerical integration
(c− e)[distances in m. TC in mGal].

ical coordinates are of the order of about 0.2mGal
for this simple synthetic example. Tests with more
realistic data over larger areas (e. g. 2◦ × 2◦ in
the mont Blanc area) perform much more significant
differences (5.7mGal r.m.s.) even if we can’t say di-
rectly that one is better than the other. We should
keep in mind the fact that even if the differences be-
tween planar and spherical model are not so relevant,
this new algorithm permits to treat topographical
masses in a correct way from a teorethical point of
view and in a very fast way. Tests conducted over a
3arcsec× 3arcsec DTM over an area of 1◦ × 1◦ was
performed in less then 10min: 8 minutes and 22 sec-
onds for the effective terrain correction computation
and about 1 minute for preparing the DTM and rear-
ranging the result(SO: Microsoft Windows XP; PC:
Pentium(R) 1.70GHz, 1.50GB RAM. Test performed
over 1442401 points).
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Abstract. In terrestrial and airborne gravity field 
determination the formulae for the gravitational 
potential and its first order derivatives have been 
evaluated, while second order derivatives are 
related to the analysis of upcoming satellite gravity 
gradiometry missions of GOCE type. Especially 
there, the reduction of topographic and isostatic 
effects within the remove-restore concept is 
important to produce a smooth gravity field suitable 
for downward continuation. Another application of 
topographic and isostatic reductions consists in the 
external calibration of the GOCE gravity 
gradiometer. Based on two different isostatic 
models (Airy-Heiskanen, condensation models of 
Helmert) the topographic-isostatic effects of the 
second radial derivative of the potential are 
calculated for a GOCE-like satellite orbit. In the 
space domain tesseroids modelled by Gauß-
Legendre cubature (3D) are used. In this paper, the 
focus is put on the comparison between the 
modelling of masses in the space and frequency 
domain. 
 
Keywords. Satellite gravity gradiometry, 
topographic reduction, isostatic reduction (Airy-
Heiskanen model, Helmert’s condensation models),  
space domain, frequency domain  
 

1 Introduction 

The effects of the topographic and isostatic masses 
are visible in the gravitational signals, e.g. in the 
satellite gravity gradiometry (SGG) observations of 
the GOCE mission. Because of the rough gravity 
field the downward continuation is rather complex 
and challenging. The smoothing of the data using a 
topographic-isostatic reduction would make the 
downward continuation more easy. 
In this paper, the modelling in the space domain 
(see chap. 2) is compared with the modelling in the 
frequency domain (see chap 3). In the space domain 
the gravitational effects of volumetric mass 
elements can be approximated by prisms, point 
masses, mass lines, mass layers and tesseroids. The 
volume integrals are analytically solvable for all 
mentioned mass elements, except the tesseroid. 
Approximate solutions of the elliptic integrals 
related to the tesseroid can be produced by semi-
analytical or purely numerical methods as described 

in chap 2.3. The comparison between the 
computation methods in the space and frequency 
domain is made in chapter 4 by the aid of a 
simulation.  

2 Modelling of the masses in the 
space domain 

2.1 Modelling of the topographic masses 

To describe the effect of the topographic masses 
between the geoid and the Earth’s surface S, the 
geoid is approximated by a sphere �g of radius R. 
The computation point is denoted by Q and has the 
geocentric radius r = R + h; r’ = R + h’ is the radius 
of the running surface point P’. � is the spherical 
distance between the radius vectors of Q and P’ 
(see Fig. 1). 

 
Fig. 1 Geometry of the topography in spherical 
approximation 

The potential of the topographic masses can be 
described by the Newton integral in spherical 
coordinates  

 

where (r, �, �) and (�, �’, �’) denote the spherical 
coordinates of the computation point and the 
variable integration point, respectively, related to a 
terrestrial reference frame. G is the gravitational 
constant, � the local mass density and d� = �²�d��d	 
the volume element (d	: surface element of the unit 
sphere). 

( ) Ωρ⋅= ���
Ω

dGQVt
�

, (1) 

( ),coscoscossinsincos
,cosr2r 22

λ′−λϕ′ϕ+ϕ′ϕ=ψ
ψ⋅ξ−ξ+=�  (2) 



2.2 Modelling of the isostatic masses 

In this paper the focus is on two isostatic models, 
the Airy-Heiskanen model and the generalized 
condensation model of Helmert (see Wild and Heck 
2005).  

2.2.1 Isostatic model of Airy-Heiskanen 

The compensation in the model of G.B. Airy and 
W.A. Heiskanen (Heiskanen and Vening Meinesz 
1958) occurs in local, vertical columns. The 
standard column (h’ = 0) has the constant density �0 
and the thickness T. Continental columns generate 
“roots” (t
 > 0), whereas oceanic columns create 
“anti-roots” (t
 < 0) (see Fig. 2). The density 
difference between the mantle and the crust is �� = 
�m - �0; the crustal thickness is T + h’ + t’.  

 
Fig. 2 Isostatic model of Airy-Heiskanen in 
spherical approximation 

The boundary between the (anti-)roots and the 
mantle is practically equivalent to the Mohorovi�i 
discontinuity (“Moho discontinuity’’). In general, 
the normal thickness T is assumed to be 25 or 30 
km (see e.g. Heiskanen and Moritz 1967; Kuhn 
2000; Tsoulis 2001). 
The formula of the isostatic potential of Airy-
Heiskanen in spherical approximation is  

where 

��w = �0 – �w is the density difference between the 
crust and the water. No distinction between the 
cases h’ � 0 and h’ < 0 has to be made if a “rock-
equivalent” digital terrain model (e.g. JGP95E) is 
applied. 

 

2.2.2 Generalized condensation model of 
Helmert 

In the compensation models of F.R. Helmert (see 
Helmert 1884) the masses are condensed either on a 
spherical layer �c with the radius Rc parallel to the 
geoid �g at a fixed depth d = 21 km (first Helmert 
model) or on the geoid itself (second Helmert 
model). A generalized condensation model is 
achieved by attributing an arbitrary, but constant 
value to d � 0 (see Heck and Wild 2005). The 
compensation in both cases is local in terms of the 
condensation of the topographical column on the 
condensation layer (see Fig. 3). 

 

Fig. 3 Isostatic model of Helmert in spherical 
approximation 

The potential of the condensed masses on a 
spherical layer �c beneath the geoid is  

where �’ denotes the surface density. By means of 
the mass conservation principle the formula for the 
surface density is (see Martinec 1998; Heck 2003) 

2.3 Gravitational effect of massive bodies 

To model the topographic and isostatic masses a 
segmentation into volume elements �i is made 
where the density �i is assumed to be constant: 

The coordinates of the Marussi tensor with respect 
to the local (North/East/Up) triad at the 
computation point Q, composed of the second 
derivatives of the potential, are given by Tscherning 
(1976). The triple integral of each volume element 
is analytically solvable for the prism and its 
approximation by the point mass, the mass line and 
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the mass layer. In case of the tesseroid – bounded 
by geographical grid lines and planes of constant 
height (see Heck and Seitz 2006) – no analytical 
solution exists in general; one variant to solve the 
triple integral is the evaluation by purely numerical 
methods, e.g. the Gauß-Legendre cubature (3D), 
see Wild (2006). A second alternative is provided 
by a Taylor series expansion of the integrand, 
where the term of zero order is equivalent to the 
point mass expression. Another possibility to 
compute the volume integral is the decomposition 
into a one-dimensional integral over the radial 
parameter � for which an analytical solution exists, 
and a two-dimensional spherical integral which is 
solved by quadrature methods, especially the Gauß-
Legendre cubature (2D). In case of the second 
radial derivative, the respective formulae can be 
found in Heck and Wild (2005). The approximation 
of the tesseroids by prisms, postulating mass 
conservation, also provides an option for the 
solution of the triple integral; this procedure 
requires a transformation of the coordinate system 
of the prism into the local coordinate system at the 
computation point. The mass element 
approximation and computation methods as well as 
the comparison between these mass elements and 
computation methods concerning accuracy and 
computation time are described in detail in Wild 
(2006). 

3 Modelling of the masses in the 
frequency domain 

In chapter 2 the gravity field of the topographic and 
isostatic masses has been described in the space 
domain. The transformation in the frequency 
domain provides a better insight in the spectral 
behaviour of each model (see e.g. Rummel et al. 
1988, Sünkel 1985). In the case of satellite gravity 
gradiometry, the computation points are situated 
outside the Brillouin sphere. Therefore there exist 
no problems with respect to the divergence of 
spherical harmonic series expansions. Engels et al. 
(1995) describe the situation for terrestrial 
gravimetry where the effects of masses below and 
above the level of the computation point have to be 
discriminated. 

3.1 Modelling of the topographic masses 

The potential of the topographic masses in the 
frequency domain can be derived from Eq. (1) by 
series expansion of the inverse distance 

 

(Pn Legendre polynomial of degree n). Inserting Eq. 
(8) into Eq. (1) and interchanging integration and 
summation, the topographic potential yields   
 

where 

are the fully normalized surface spherical 
harmonics. Integration over the variable � results in 

Because of the small order of magnitude of |h’/R| � 
1.5�10-3 the binomial series converges very fast. 
Using  

the final expression for the potential of the 
topographic masses is 

Similar expressions have been presented by 
Rummel et al. (1988) and Tsoulis (1999). 

3.2 Modelling of the isostatic masses 

3.2.1 Isostatic Model of Airy-Heiskanen 

Based on the series expansion (Eq. (8)) of the 
reciprocal distance �1  the potential of the isostatic 
masses can be transformed from the space domain, 
Eq. (3), to the frequency domain. The radial 
integration results in 
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Using 

the isostatic potential of Airy-Heiskanen is 

The (anti-)root depth t’ is described in Eq. (4) resp. 
by the series expansion in (h’/R) 

where 

The term of first order equals the approximation of 
Rummel et al (1988) and Tsoulis (1999).  

3.2.2 Helmert’s condensation model 

Helmert’s condensation potential is described in Eq. 
(5). The expansion of the reciprocal distance c� in a 
series of Legendre polynomials (see Heck 2003, Eq. 
(C10)) and the description of the surface density as 
binomial series 

yields 

Using Eq. (10) and Eq. (12) resp. 

the final formula for the condensation potential is 

4 Results 

The modelling in the space and the frequency 
domain is compared for the second radial derivative 
of the potential. In the space domain modelling the 
tesseroid approach using numerical integration has 
been applied, involving 3D Gauß-Legendre 
cubature with 2 x 2 x 2 = 8 nodes per tesseroid for 
the calculation of the topographic and the Airy-
Heiskanen isostatic components. In Wild (2006) it 
is shown that this method is precise and needs low 
computation time. In case of Helmert’s models, the 
surface integral is evaluated by the 2D Gauß-
Legendre product formula with 2 x 2 = 4 nodes per 
element.  
For the simulation the following standard numerical 
values of the respective parameters have been used: 
R = 6378137 m, G = 6.673�10-11 m3kgs-2, hQ = r – R 
= 260 km (satellite height), �0 = 2670 kgm-3, �� = 
600 kgm-3, T = 25 km (Airy-Heiskanen), d = 21 km 
(Helmert I) or d = 0 (Helmert II). Furthermore, the 
digital „rock-equivalent” terrain model JGP95E 
with a resolution of 1° x 1° has been used. For the 
second radial derivative of the potential the 
formulae (13), (16) and (22) have to be expanded 
by the factor (n+1)�(n+2)/r2 in the frequency 
domain. The root depth t’ of Airy-Heiskanen is 
evaluated via Eq. (4). 
Fig. 4 displays the different contributions of k

nmH  
resp. k

nmT  until k = 3 to the second radial derivative 
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of the topographic potential resp. the isostatic 
potential of Airy-Heiskanen at the satellite height 
hQ = 260 km. The coefficients Hnm (see Eq. (12)) 
and Tnm (see Eq. (15)) are multiplied by the factors 
of Eq. (13) in case of the topographic potential and 
the factors of Eq. (16) in case of the isostatic 
potential of Airy-Heiskanen. The dimension of the 
degree variances is therefore (1/s2)2. For the 
topographic potential the maximum value of the 
degree variances of 1

nmH  is about 10-18, the order of 
magnitude of the degree variances of 2

nmH  and 3
nmH  

are less by a factor of 10-5 and 10-10, respectively. 
The maximum value of the coefficients Tnm  is 10-19 
for 1

nmT  resp. 10-23 and 10-26 for 2
nmT  and 3

nmT  in the 
case of the Airy-Heiskanen model. In Fig. 4 a 
convergence is visible which also holds for 
Helmert’s models. In Fig. 5 the power spectra of 
the different isostatic models for the second radial 
potential derivative are compared up to maximum 
degree 180. Here the power spectra result from the 
difference of the respective spherical harmonic 
coefficients. It is obvious that the Airy-Heiskanen 
and the Helmert I models are practically equivalent, 
while the degree variances for the topographic-
isostatic potential related to the Helmert II model 
are smaller by a factor of 10-4. In Tab. 1 the 
statistics of the different contributions to the second 
radial derivative of the topographic potential are 
listed. Comparing the terms of various orders in 
(h’/R)k it becomes clear that third order terms (k = 
3) can be neglected. The rms value is about 10-5 
smaller than the total value. In Tab. 2 the statistics 
of the difference between the modelling in the 
space and frequency domains is displayed. For this 
investigation the second radial derivative of the 
topographic and isostatic potentials has been 
evaluated on an equiangular grid of 1° x 1° 
resolution on a sphere with radius rQ = R + hQ, 
where hQ = 260 km, on the one hand by summing 
up the contributions of the tesseroids in space 
domain, on the other hand by spherical harmonic 
synthesis involving the coefficients Hnm, Tnm and 
Cnm. The rms of each difference is at the level of 
2�10-2 E.U.. 

5 Conclusions 

The numerical results show that the spectral 
behaviour of the Airy-Heiskanen model is 
practically equivalent to the Helmert I model. 
Therefore the Helmert I model – calculated with a 
simpler integral kernel – is an efficient alternative 
to the classical Airy-Heiskanen model (see Wild 
and Heck 2005). The degree variances of the 
topographic-isostatic effect of the Helmert II model 
are 5 orders of magnitude smaller; due to this 

underestimation the residual field is (after removing 
the effect of the topographic-isostatic masses from 
the observed gravity gradients) not as smoothed as 
in the case of the Helmert I model. The 
investigations in the frequency domain confirm the 
results of the space domain evaluations (see Heck 
and Wild 2005). It has also been shown that third 
order contributions of the coefficients 3

nmH  and 3
nmT  

can be neglected. 
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 min [E.U.] max [E.U.] rms [E.U.] 
H1nm   -4.47616 6.67277 2.19989  
H2nm -4.27182e-002 7.36917e-002 8.98439e-003 
H3nm -7.54736e-004 9.97737e-004 7.01472e-005 
Total -4.44416 6.72857 2.19964 

 min [E.U.] max [E.U.] rms [E.U.] 
Topographic potential -1.98811e-001 3.36186e-001 2.52421e-002 

Isostatic potential of Airy-Heiskanen -1.77375e-001 2.75949e-001 2.18956e-002 
Isostatic potential of Helmert I -1.66461e-001 2.87043e-001 2.26816e-002 
Isostatic potential of Helmert II -1.96958e-001 3.34318e-001 2.57458e-002 

Fig. 4 Degree variances of the different contributions k
nmH / k

nmT  of the second radial derivative of the topographic 
potential/isostatic potential of Airy-Heiskanen 

Fig. 5 Degree variances of the second radial derivative of the topographic-isostatic potential at satellite altitude 

Tab. 1 Statistics of the different contributions to the second radial derivative of the topographic potential at 
satellite altitude 

Tab. 2 Statistics of the differences in the second radial derivative between the modelling in the space and 
frequency domain 
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Abstract. The development of a new Earth Gravita-
tional Model (EGM) to degree 2160 is underway 
within the National Geospatial-Intelligence Agency 
(NGA) of the USA and its supporting group at SGT, 
Inc.. Among other things this endeavor requires the 
compilation of a very high-resolution global topog-
raphic database, to be used consistently in the com-
putation of all terrain-related quantities necessary 
for the pre-processing of gravity data and for the 
development and subsequent use of the new EGM. 
Such quantities include Residual Terrain Model 
(RTM) effects, analytical continuation terms (g1), 
Topographic/Isostatic gravitational models, and 
models necessary to convert height anomalies to 
geoid undulations. Given the very high degree of 
the new EGM, all these quantities and models have 
to be computed at a sufficiently high resolution. 
Towards this goal, we have compiled a global 
30″×30″ Digital Topographic Model (DTM2006.0), 
relying heavily on elevation information made 
available from the Shuttle Radar Topography Mis-
sion (SRTM). We have computed, over all land 
areas, RTM effects and g1 analytical continuation 
terms using the DTM2006.0 30″×30″ data. We have 
also used 5′×5′ and 2′×2′ versions of DTM2006.0 to 
compute models of the Topographic/Isostatic gravi-
tational potential complete to degree 2160. In this 
paper we present these results and discuss their pos-
sible use for the development of the new EGM. 
 
Keywords. Digital Terrain Model, Earth Gravita-
tional Model, Residual Terrain Model, Forward 
Modeling, Analytical Continuation 
_________________________________________ 
 
1 Introduction 
 
The pre-processing and analysis of the detailed sur-
face gravity data necessary to support the develop-
ment of an Earth Gravitational Model (EGM) com-
plete to harmonic degree and order 2160, depends 
critically on the availability of accurate topographic 
data, at a resolution sufficiently higher than the 

resolution of the area-mean gravity anomalies, 
which will be used eventually for the development 
of the EGM. In Lemoine et al. (1998, Section 2.1) 
Factor discusses some of the uses of such topog-
raphic data within the context of the development 
and the subsequent use of a high-resolution EGM. 
These include the computation of Residual Terrain 
Model (RTM) effects, the computation of analyti-
cal continuation terms (g1), the computation of 
Topographic/Isostatic gravitational models that 
may be used to “fill-in” areas void of other data, 
and the computation of models necessary to con-
vert height anomalies to geoid undulations. For 
these computations to be made consistently, it is 
necessary to compile first a high-resolution global 
Digital Topographic Model (DTM), whose data 
will support the computation of all these ter-
rain-related quantities. 
 
2 The DTM2006.0 Database 
 
For EGM96 (Lemoine et al., 1998), which was 
complete to degree and order 360, a global digital 
topographic database (JGP95E) at 5′×5′ resolution 
was considered sufficient. JGP95E was formed by 
merging data from 29 individual sources, and, as 
acknowledged by its developers, left a lot to be 
desired in terms of accuracy and global consis-
tency. Since that time, thanks primarily to the Shut-
tle Radar Topography Mission (SRTM) (Werner, 
2001), significant progress has been made on the 
topographic mapping of the Earth from space. Dur-
ing approximately 11 days in 2000 (February 11-
22), the SRTM collected data within latitudes 60°N 
and 56°S, thus covering approximately 80% of the 
total landmass of the Earth with elevation data of 
high, and fairly uniform, accuracy. Rodriguez et al. 
(2005) discuss in detail the accuracy characteristics 
of the SRTM elevations. Comparisons with ground 
control points whose elevations were determined 
independently using kinematic GPS positioning, 
indicate that the 90% absolute error of the SRTM 
elevations ranges from ±6 to ±10 meters, depend-



 

ing on the geographic area (ibid., Table 2.1). Addi-
tional information regarding the SRTM can be ob-
tained from the web site of the United States’ Geo-
logical Survey (USGS) (http://srtm.usgs.gov/), and 
from the web site of NASA’s Jet Propulsion Labo-
ratory (http://www2.jpl.nasa.gov/srtm). Unfortu-
nately no error estimates associated with the SRTM 
data were made available to us. 
We compiled DTM2006.0 by overlying the SRTM 
data over the data of DTM2002 (Saleh and Pavlis, 
2003). In addition to the SRTM data, DTM2006.0 
contains ice elevations derived from ICESat laser 
altimeter data over Greenland (Ekholm, personal 
communication, 2005) and over Antarctica (DiMar-
zio, personal communication, 2005). Over Antarc-
tica, we have also used data from the “BEDMAP” 
project (http://www.antarctica.ac.uk/aedc/bedmap/) 
to define ice and water column thickness. Over the 
ocean, DTM2006.0 contains essentially the same 
information as DTM2002, which originates in the 
estimates of bathymetry from altimetry data and 
ship depth soundings of Smith and Sandwell (1997). 
DTM2006.0 was compiled in 30″×30″ resolution 
(providing height and depth information only), and 
in 2′×2′ and 5′×5′ resolutions, where lake depth and 
ice thickness data are also included. DTM2006.0 is 
identical to DTM2002 in terms of database structure 
and information content. 
 
3 Harmonic Models of Elevation-related 
Quantities 
 
3.1 Topography 
 
We define the spherical harmonic expansion of 
mean values of an elevation-related quantity 
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!
i
 is the co-latitude and 

� 

! j  the longitude associated 
with a cell on the i-th “row” and j-th “column” of a 
global equiangular grid. 

� 

N  is the maximum degree 
and order of the expansion, and 

� 

H 
nm

 are the fully 
normalized spherical harmonic coefficients associ-

ated with the data 

� 

H ij . 
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P 
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 are fully-normalized 
Associated Legendre functions. We define the de-
gree variance 
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n
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Starting from the 2′×2′ DTM2006.0 mean eleva-
tions we computed two separate sets of 

� 

H 
nm

 coef-
ficients, both complete to degree and order 2700. 
For the first expansion, the 

� 

H ij  values represented 
both heights and depths, while for the second, 

� 

H ij  
were set to zero over all oceanic cells. In both ex-
pansions the 

� 

H 
nm

 coefficients were estimated us-
ing a “Type 1” block diagonal least squares ad-
justment (see Pavlis in Lemoine et al., 1998, Sect. 
8.2.2 for details). The use of 2′×2′ area-mean val-
ues implies a sampling Nyquist degree of 5400; 
hence the expansions to degree and order 2700 are 
only marginally affected by aliasing errors (see 
also Colombo, 1981). Furthermore, for the applica-
tions related to the EGM under development (com-
putation of RTM effects, computation of models 
necessary to convert height anomalies to geoid 
undulations), it is sufficient to use these expansions 
up to degree and order 2160, or 2190 at the most. 
Figure 1 shows the degree variances of these two 
expansions. As expected, the expansion represent-
ing heights only, possesses significantly less power 
than the one representing both heights and depths. 
 

 
 
Fig. 1 Elevation-related degree variances from two expan-
sions to N=2700, based on 2′×2′ DTM2006.0 data.  
 
3.2 Topographic/Isostatic Potential 
 
We have used the formulation described by Pavlis 
and Rapp (1990) to determine spherical harmonic 
coefficients of the Topographic/Isostatic (T/I) po-
tential implied by the Airy/Heiskanen isostatic hy-



 

pothesis, with a constant 30 km depth of compensa-
tion. We evaluated these coefficients up to degree 
and order 2160, using the DTM2006.0 data, in two 
ways: (a) using 5′×5′ data, and, (b) using 2′×2′ data. 
Figure 2 shows the gravity anomaly degree vari-
ances implied by these coefficients and by their 
differences. 
 

 
 
Fig. 2 Gravity anomaly degree variances implied by two 
estimates of the Topographic/Isostatic coefficients and by 
their difference (see text for details). 
 
As expected, coefficients estimated from 2′×2′ val-
ues imply higher power than those estimated from 
5′×5′ values, the difference being increasingly more 
significant after degree 720 or so. This suggests that 
in order to obtain a T/I spectrum that possesses full 
power (especially as this pertains to the Topog-
raphic potential), one may have to use a very high-
resolution DTM (e.g., 30″×30″). Figure 3 shows the 
gravity anomaly spectra of the Topography only, its 
Isostatic compensation, and their combination (T/I), 
from the estimation using the 2′×2′ values. 
 

 
 
Fig. 3 Gravity anomaly degree variances of the potential of 
the Topography, its Isostatic compensation, and their combi-
nation (T/I).  

As expected, isostatic compensation, being of re-
gional character, has limited effect on the T/I spec-
trum beyond degree 720 or so. 
As in the case of several global gravitational mod-
els developed previously (e.g., OSU89A/B Rapp 
and Pavlis, 1990; EGM96 Lemoine et al., 1998), 
within the development of the new EGM, the T/I 
model is intended to aid the creation of synthetic 
gravity anomaly values. These will be used to “fill-
in” areas where actual gravity data are unavailable, 
or their spectral content beyond some degree n 
where (360 ! n ! 720) , cannot be used due to pro-
prietary data issues. In the past, some geophysicists 
have criticized this practice, since it forces into the 
geopotential solution the isostatic hypothesis that 
underlies the T/I model’s development. This ren-
ders the geopotential model useless for some geo-
physical applications, at least over the regions 
filled-in with the T/I gravity anomalies, and over 
the wavelengths implied by the degree range of the 
T/I coefficients used. With these considerations in 
mind, and in view of the implications of Figures 2 
and 3, we decided to test also an alternative ap-
proach for the creation of the synthetic “fill-in” 
gravity anomalies that is free of any isostatic hy-
pothesis. This approach is discussed next. 
 
4 Forward Modeling Using RTM Gravity 
Anomaly Spectra 
 
We used the 30″×30″ data of the DTM2006.0 data-
base to compute over all of the Earth’s landmass 
(including a margin extending into the ocean), a 
30″×30″ grid of the gravity anomalies (!g)  im-
plied by a Residual Terrain Model (RTM). This 
RTM was referenced to a topographic surface, cre-
ated from the elevation harmonic coefficients de-
scribed in Section 3.1, to degree and order 360. We 
computed the RTM !g  as described in detail by 
Forsberg (1984). We then formed 2′×2′ area-mean 
values of these RTM !g , and supplemented this 
(primarily) land dataset with zero values for the 
2′×2′ cells that are located over ocean areas (ex-
cluding the margin mentioned above). In this fash-
ion we created a global 2′×2′ RTM !g  dataset. We 
then analyzed harmonically this dataset, and com-
puted the ellipsoidal harmonic coefficients of the 
RTM !g  up to degree and order 2700. For degrees 
(n < 360)  these coefficients are small (and of no 
further use to us) due to the use of a reference to-
pographic surface to degree 360. Figure 4 shows 
the anomaly degree variances of these RTM !g . 
 



 

 
 
Fig. 4 Residual Terrain Model (RTM) gravity anomaly de-
gree variances.  
 
Availability of these ellipsoidal harmonic coeffi-
cients of the RTM !g  allowed us to synthesize 
“fill-in” values as follows: 
(a) A global 5′×5′ !g  file that includes proprietary 

data was created (and kept) within NGA. Over 
areas void of any gravity anomaly data, pro-
prietary or not, (e.g., Antarctica and some areas 
in South America and Africa), the 5′×5′ !g  
were synthesized from GGM02S (Tapley et al., 
2005) (n ! 60) , augmented with EGM96 
(Lemoine et al., 1998) (61 ! n ! 360) , and fur-
ther augmented with the RTM !g  coefficients 
for (361 ! n ! 2160) . 

(b) NGA personnel analyzed harmonically this 
dataset, and computed the ellipsoidal harmonic 
coefficients of these !g  values. NGA provided 
to us only the anomaly degree variances from 
this expansion, to degree 2160. 

(c) Lower degree coefficients of the above expan-
sion (up to some maximum degree commensu-
rate with the minimum cell size that the use of 
the proprietary data is unrestricted) were then 
augmented with higher degree coefficients of 
the RTM !g  expansion. In this fashion, NGA 
created synthetic “cut-and-paste” model(s), all 
extending to degree and order 2160. 

(d) Using such “cut-and-paste” model(s), synthetic 
“fill-in” 5′×5′ !g  values were created for all 
the areas occupied by proprietary data (as well 
as for the areas void of any gravity anomaly 
values). 

(e) The collection of all these “fill-in” 5′×5′ !g  
values, along with the unrestricted 5′×5′ data, 
constitutes the global 5′×5′ !g  file that NGA 
made available to us for further analysis. 

This approach allowed NGA to provide us a global 
5′×5′ !g  database that does not include proprie-
tary information. 
We tested the effectiveness of this approach glob-
ally, by comparing the anomaly degree variances 
obtained from step (b), to the anomaly degree vari-
ances that we obtained from the harmonic analysis 
of the unrestricted 5′×5′ !g  database that we re-
ceived from NGA. Figure 5 shows these spectra. 
 

 
 
Fig. 5 Gravity anomaly degree variances implied by the 
analysis of two global 5′×5′ gravity anomaly databases (one 
including and one excluding proprietary data). 
 
As can be seen from Figure 5, the degree variances 
obtained from the analysis of the unrestricted data 
are in excellent agreement with those obtained 
from the proprietary data. Only after degree ~1650 
does the unrestricted data analysis provide a sys-
tematically underpowered spectrum. Figure 5 indi-
cates that the forward modeling approach using the 
RTM anomaly spectra, which we have devised and 
implemented, circumvents the proprietary data 
issues without degrading the gravitational solution 
significantly (at least in terms of the recovered 
power spectrum). 
We also tested the effectiveness of the approach 
locally, as follows. Over areas with high quality, 
unrestricted 5′×5′ gravity anomalies, (e.g., USA, 
Australia) we compared the actual data to synthetic 
values created from pairs of harmonic coefficient 
sets. Each pair contains: (a) a gravitational expan-
sion truncated to some maximum degree Nmax 
(denoted by G_Nmax), and, (b) a corresponding 
expansion that is augmented beyond degree Nmax 
and up n=2160, with the coefficients implied by 
the RTM !g  (denoted by G+RTM_Nmax). Figure 
6 shows the discrepancies between the actual 5′×5′ 
data and the synthetic values over the USA, for 
Nmax=360 and Nmax=720. 



 

It is clear from Figure 6, that augmenting the lower 
degree gravitational expansion with the higher de-
gree coefficients of the RTM !g expansion, im-
proves significantly the agreement with the actual 
5′×5′ data. As expected, this is especially true over 
mountainous regions like the Rocky Mountains. An 
obvious shortcoming of our RTM-based forward 
modeling approach is that it can only improve the 
modeling of short wavelength gravitational signals, 
if these signals are correlated with the topography. 
Table 1 summarizes the results from comparisons 
over the USA. 
 
Table 1. Statistics of differences between actual 5´ gravity 
anomalies and synthetic values over the USA (mGal). 
 

Model Min. Max. Mean S. Dev. 
G_360 -144 150 0.2 16.3 
G-540 -123 140 0.2 13.4 
G_720 -137 125 0.2 11.5 

G+RTM_360 -57 107 0.3 8.7 
G+RTM_540 -51 84 0.3 6.5 
G+RTM_720 -51 61 0.3 5.4 

 
Table 1 shows that over the USA, augmenting the 
gravitational model with the RTM coefficients, re-
duces the standard deviation of the differences be-
tween actual and synthetic 5′×5′ gravity anomalies 
by about a factor of two. Corresponding compari-
sons over Australia showed considerably less im-
provement obtained by augmenting the gravitational 
expansion with the RTM coefficients, compared to 
Table 1. This is because the terrain in Australia is 
generally less mountainous than over the USA. 
 
5 Computation of g1 Terms 
 
We used the 30″×30″ data of DTM2006.0 to com-
pute analytical continuation terms, according to: 

(g1 )P = !G"R2HP #
H ! HP

l0
3

$
%% d$ , (5)

(see Wang, 1987) over all land areas. These terms 
may be used to analytically continue surface gravity 
anomalies to the ellipsoid. These g1 terms represent 
an approximation to the linear gravity anomaly gra-
dient, assuming linear correlation between free-air 
anomaly and elevation. We are currently investigat-
ing if this approximation is adequate for the expan-
sions to degree 2160, or if a better continuation pro-
cedure can be implemented based on the iterative 
computation of a Taylor series employing consid-
erably higher order gradients, computed from the 
harmonic coefficients themselves. This work is still 
in progress. We have also formed 2′×2′ and 5′×5′ 

averages of the g1 terms, and we have analyzed 
harmonically the 2′×2′ averages to estimate har-
monic coefficients to degree and order 2700. 
 
6 Summary and Future Work 
 
In preparation for a new EGM complete to degree 
2160, we have compiled a new 30″×30″ global 
DTM (DTM2006.0). We have used its data to 
evaluate various terrain-related quantities, includ-
ing RTM-implied !g , Topographic/Isostatic po-
tential coefficients, and g1 analytical continuation 
terms. We have also analyzed harmonically topog-
raphic elevations, RTM-implied gravity anomalies, 
and the g1 terms. We have devised and imple-
mented successfully a forward modeling technique 
using the RTM anomaly spectrum, to circumvent 
proprietary data issues. Improvements to the ana-
lytical continuation procedure are still under study.  
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Abstract. With the realization of the Shuttle Radar 
Topographic Mission (SRTM) and the distribution 
of the 3 arc-seconds (90 m) data over South 
America, a high-resolution digital elevation model 
(DEM) became available for Argentina. DEMs are 
an important source of data for gravimetric geoid 
computation since they provide the high-frequency 
content of the gravity field spectrum. Gravimetric 
geoid undulations are usually calculated using the 
remove-compute-restore technique. This technique 
combines a global geopotential model, local gravity 
anomalies, and the topography, represented by a 
DEM. There are two main objectives in this paper. 
The first objective is to validate and assess the 
accuracy of the SRTM 90 m DEM over Argentina. 
This is performed through comparisons with 
existing global elevation models, like GLOBE, 
GTOPO30 and SRTM30. The second objective is to 
investigate the terrain aliasing effects on geoid 
determination for different gravimetric reductions. 
All available DEMs are used to compute terrain 
effects on both gravity anomalies and geoid heights 
at variable spatial resolutions. The following terrain 
reduction techniques are investigated in this study: 
Helmert’s second condensation method, the Airy-
Heiskanen topographic-isostatic reduction, the 
residual terrain model method and the Rudzki 
inversion method. Numerical tests are carried out in 
the most rugged area of Argentina, one of the most 
mountainous areas in the world. From the results 
acquired, the performance of the SRTM model is 
evaluated and conclusions are drawn on the effect 
of the DEM resolution on the accuracy of the 
gravimetric geoid. 
 
Keywords. SRTM, gravity reductions, Argentina, 
DEMs.  
 

1  Introduction 
 
The gravimetric geoid models for Argentina have 
been computed using the remove-restore technique, 
which uses a high-resolution digital elevation model 
to supply the short wavelengths geoid information 
and also to take care of the mathematical demands 
to solve the boundary-value problem of physical 
geodesy. The global digital elevation model 
GTOPO30 with a resolution of 30" x 30" (LP 
DAAC, 2006) has been used for the determination 
of the current gravimetric geoid due to the lack of a 
national DEM available for Argentina. 

The recently available SRTM3 DEM, with a 
resolution of 3" x 3" (JPL, 2006), and SRTM30 
DEM, with a resolution of 30" x 30” (JPL, 2006), 
must be evaluated and validated in Argentina. 

Another objective in this paper is to investigate 
the use of different DEM grid resolutions for the 
computation of various gravimetric terrain 
reductions within the context of gravimetric geoid 
determination. 

The terrain aliasing is investigated for the Rudzki 
inversion method, the Airy-Heiskanen topographic-
isostatic reduction, the residual terrain model 
reduction (RTM), and also for the classical terrain 
corrections. 
 
2  Area and Digital Terrain Models 
 
The numerical tests presented in this paper are 
carried out in an area near the Andes bounded by 
latitude 29º S and 32º S and longitude between 70º 
W and 67º W.  

Four DEMs were investigated in the area under 
study: SRTM3, GTOPO30, GLOBE and SRTM30. 

The SRTM data was acquired during the 11 day 
mission of the Space Shuttle Endeavour, launched 
in February 11, 2000. The data covers landmasses 



between 56º south to 60º north latitude, which 
comprises almost exactly 80% of Earth's total 
landmass. All elevations are in metres and 
referenced to the WGS84/EGM96 geoid. The 
absolute horizontal accuracy is 20 m and the 
absolute vertical accuracy is specified as 16 m 
(Bamler, 1999; JPL, 2006; and Farr and Kobrick, 
2000). 

In the area under study, SRTM3 consisted of a 
total of 12949757 elevations and contained a total 
of 17444 voids caused by shadowing, phase, 
unwrapping anomalies or other radar-specific 
causes so a first step consisted of making a regular 
grid to fill in the existing voids. The nearest 
neighbour gridding method, which assigns the value 
of the nearest point to each grid node, was used. 
This method is useful when data are already evenly 
spaced, or in cases where the data are nearly on a 
grid with only a few missing values for filling in the 
holes in the data. From here on, we will refer to the 
SRTM3 after the gridding as SRTM3ARG06 
(SRTM3 Argentina 2006). Figure 1 shows the 
original SRTM3, where black dots represent 
undefined elevations, and Figure 2 depicts the 
corrected SRTM3ARG06. Table 1 presents the 
statistics for both models. 

GTOPO30 is a global DEM developed by the 
U.S. Geological Survey's EROS Data Center and it 
was completed in 1996. Elevations in GTOPO30 
are regularly spaced at 30 arc-seconds 
(approximately 1 kilometer). GTOPO30 is a global 
data set covering the full extent of latitude from 90 
degrees south to 90 degrees north, and the full 
extent of longitude from 180 degrees west to 180 
degrees east. The horizontal grid spacing is 30 arc-
seconds. The horizontal coordinate system is 
decimal degrees of latitude and longitude 
referenced to the WGS84. The vertical units 
represent elevation in meters above mean sea level 
A subgrid was extracted over the study area and the 
elevation values can also be seen in Table 1. 

SRTM30 is a near-global digital elevation model 
comprising a combination of data from the Shuttle 
Radar Topography Mission and the GTOPO30 data 
set. It can be considered to be either an SRTM data 
set enhanced with GTOPO30 or as an upgrade to 
GTOPO30 (JPL, 2006). 

The Global Land One-Kilometer Base Elevation 
(GLOBE) DEM was released by NOAA‘s National 
Geophysical Data Center (NGDC). GLOBE is a 
global data set covering 180 degrees west to 180 

degrees east longitude and 90 degrees north to 90 
degrees south latitude. The horizontal grid spacing 
is 30 arc-seconds in latitude and longitude. The 

horizontal coordinates are referenced to WGS84. 
The vertical units represent elevation in metres 
above mean sea level. The statistics of SRTM30 
and GLOBE are also listed in Table 1. 
 

 
Figure 1: The original SRTM3 in the area under study 

 
 

 
Figure 2: The corrected SRTM3ARG06 

 (SRTM3 Argentina 2006) 
 
 
3  Numerical Tests 
 
3.1 Evaluation of Digital Elevation Models 
 
Digital elevation models play an important role in 
the accuracy of the precise gravimetric geoid; they 
are used to compute terrain corrections, direct 
topographical effects on gravity and indirect effects 
on geoid, and also to generate mean gravity 
anomalies (Featherstone and Kirby, 2000). 

The four models available in the area under study 
are first evaluated making comparisons between 
them.



Even though SRTM30 can be considered as an 
upgrade to GTOPO30 the differences between both 
models are over 1000 m. The main differences are 
correlated with the rough topography in the west 
part of the area under study, between longitudes 69° 
W and 70° W as shown in Figure 3. The statistics of 
the differences are presented in Table 1. The 
differences between SRTM30 and GLOBE are of 
the same order of magnitude and again the largest 
values are located west the meridian 69° W. It is 
difficult to say that the differences are only a 
problem of longitude shifting as it was reported by 
Denker (2004) for Germany.  

SRTM3ARG06 was evaluated by comparisons 
with GTOPO30, SRTM30 and GLOBE DEMs. 
Table 1 presents the statistics of the differences 
between SRTM3ARG06 and SRTM30, which have 
a mean value of 0.6 m and a standard deviation 
(STD) of 26 metres with maximum differences up 
to about 240 metres. The differences between 
SRTM3ARG06 and GTOPO30 and GLOBE are 
over the 1000 m and the largest differences are 
located again west the meridian of 69° W over the 
Andes mountain range 
 

Figure 3: Differences between SRTM30 and GTOPO30 
data. Unit: [m] 
 
Table 1: Statistical of DEMs and their differences. Unit: [m] 
DEM min max mean STD 
SRTM3 370 6253 1927.1 1255.7 
SRTM3ARG06 370 6263 1927.8 1255.6 
GTOPO30 391 6253 1918.5 1240.4 
SRTM30 393 6123 1927.0 1254.2 
GLOBE 390 6253 1923.8 1240.6 
SRTM30 - GTOPO30 -1168 1062 8.6 138.6 
SRTM3ARG06-SRTM30 -234 238 0.6 26.7 
SRTM3ARG06-GTOPO30 -1165 1157 9.1 143.1 
SRTM3ARG06-GLOBE -1165 1157 3.8 154.6 
 

3.2 Terrain aliasing effects on geoid 
determination 
 

The term aliasing means, in this contribution, the 
loss of detail information as terrain reductions are 
evaluated from a high resolution DEM to a coarse 
one (Bajracharya, 2003). The original grid 
resolution available in the area under study is 3 arc-
seconds (SRTM3ARG06). Grids of 6", 15", 30", 1' 
and 2' were generated by simply picking point 
elevation values from the 3" grid.  

The direct topographic effects on gravity 
calculated were: full topographic effects of all 
masses above sea level, assuming constant density, 
topographic-isostatic effects according to Airy-
Heiskanen model, gravimetric terrain corrections, 
RTM effects (effect of the topographic irregularities 
with respect to a mean surface) and the direct 
topographical effect on gravity using Rudzki 
inversion gravimetric reduction scheme (constant 
density). These effects were computed using the TC 
program (Forsberg, 1984; Forsberg, 1997) and with 
a modified version made by Bajracharya (2003) to 
compute the direct topographical effect on gravity 
using Rudzki's inversion method.  

The results from the densest DEM were taken as 
control values and the differences between these 
results and the results obtained from the lower 
resolution DEMs were considered as aliasing 
effects. 

Table 2 summarizes the statistics of the 
differences between terrain corrections (TC) using 
different DEMs resolutions with the 3" original grid 
and different DEMs.  
 
Table 2: Statistics of the differences of the classical terrain 
corrections between the 3" grid and different grid resolutions 
and different DEMs. Unit: [mGal] 
Grid resolution min max mean STD 
3" - 6" -2.37 3.36 0.01 0.13 
3" - 15" -3.50 6.88 0.11 0.46 
3" - 30" -4.72 12.94 0.33 1.02 
3" - 1' -7.65 18.50 0.68 1.77 
3" - 2' -68.98 29.05 -0.82 6.98 
3" - GTOPO30 -75.07 23.38 -2.00 8.22 
3" - SRTM30 -23.06 23.86 1.24 2.42 
3" – GLOBE -75.07 23.38 -2.17 8.27 
 

The differences in TC using different DEMs 
resolutions are correlated with the topography as we 
can see in Figure 4. TC varies from ±6.6 mGal to 
±9.7 mGal in terms of standard deviation and from 
55 mGal to 101 mGal in maximum, using a grid of 
resolution of 3" and 2', respectively. The differences 
between the TC effects on gravity are almost four 



times bigger in magnitude when comparing them 
computed from GTOPO30 and GLOBE with those 

Figure 4: Differences in TC us

computed from SRTM30. 

ing 3" and 2' grid resolution 

 
ables 3 and Table 4 show the maximum value 

an

able 3: The differences in maximum value. Unit: [mGal] 
i 

[mGal] 

T
d the standard deviation, respectively of the 

differences between the estimated full topographic 
effect, isostatic effects using an Airy model, RTM, 
and Rudzki on gravity between the 3" grid and 
different DEMs.  
 
T

Grid resolution FTE AH RTM Rudzk
3   " - GTOPO30 82.63 82.39 97.97 75.89 
3" - SRTM30 37.32 37.39 53.93 41.62 
3" - GLOBE 82.63 82.39 97.97 75.89 
 
Table 4: The differences in standard deviation Unit: [mGal] 

Grid resolution FTE AH RTM Rudzki 
3   " - GTOPO30 12.18 12.15 14.14 12.19 
3" - SRTM30 3.09 3.09 3.79 3.46 
3" - GLOBE 1 1 1 12.64 2.60 4.60 2.59 
 

The differences between the full topographic 
ef

ing the different topographic effects from 
th

fect and the isostatic effects on gravity computed 
from SRTM30 and SRTM3ARG06 are at ±3.1 
mGal in terms of STD and for the RTM and the 
Rudzki direct topographical effect on gravity ±3.8 
and ±3.5 mGal, respectively. The differences are 
approximately four times larger when they are 
computed with GTOPO30 and GLOBE, the STD 
reach ±14 mGal, and the range of the differences 
increase from near 80 to 200 mGal. The results 
obtained from GTOPO30 an4d GLOBE seems 
disappointed compared to the SRTM30 and 
SRTM3.  

Compar
e generated resolutions grids (6", 15", 30", 1', and 

2') to the original grid resolution of 3" of the 

SRTM3ARG06 some aliasing effects are clear. The 
maximum and STD values increase for all the 
terrain effects computed. Figures 5 and 6 show the 
differences in maximum value and standard 
deviation, respectively, between control values (3") 
and coarser grid resolutions (6", 15", 30", 1', and 
2'): 

Figure 5: The differences in maximum value between 
control terrain effects on gravity and terrain effects on 
gravity obtained using different DEM resolutions 
 

 
Figure 6: The differences in standard deviation between

From Figures 5 and 6, we can see that the 
ma

omputed 
wi

e computed for 
ge

 
control terrain effects on gravity and terrain effects on 
gravity obtained using different DEM resolutions 
 

ximum value and the standard deviation increase 
as moving from the dense DEM to the coarser DEM 
resolutions for all terrain effects computed 

The gravimetric geoids are usually c
th the remove-compute-restore technique. The 

indirect effect on the geoid, which depends on the 
mass reduction scheme used in the remove step, 
must be restored in the restore step. 

The same topographic effects wer
oid heights. Table 5 shows the standard deviation 

of the differences between TC, full topographic, AH 



isostatic,, and RTM effects on geoid heights 
computed from the 3" grid and different DEMs. 
There is no indirect effect on geoid using the 
Rudzki inversion scheme. 

 
Table 5: The differences in standard deviation between 

olution TC FTE AH RTM 

effects on geoid heights from 3" grid and different DEMs. 
Unit: [m] 

Grid res
3    " - GTOPO30 0.10 0.08 0.07 0.07 
3" - SRTM30 0.04 0.07 0.01 0.01 
3" - GLOBE 0.11 0.08 0.07 0.07 

 
The differences between SRTM3ARG06 and 

SRTM30 are the smallest for all terrain effects on 
geoid. The differences between SRTM3ARG063 
and GTOPO30 or GLOBE are larger in magnitude 
and similar between them. For RTM effects (see 
Figures 7 to 9), the big differences are present in the 
west part. 
 

 
Figure 7: RTM effects on geoid computed with 

SRTM3ARG06 
 

 

 
Figure 9: Differences of RTM effects on geoid between 

SRTM3ARG06 and GTOPO30 
 
Figures 10 and 11 show the differences in 

maximum value and standard deviation, 
respectively, between control values (3") and terrain 
effects on geoid obtained using different DEM 
resolutions. 

 

 
Figure 10: The differences in maximum value between 
control terrain effects on geoid and terrain effects on geoid 
obtained using different DEM resolutions 
 

 
Figure 11: The differences in standard deviation between 
control terrain effects on geoid and terrain effects on geoid 
obtained using different DEM resolutions 

Figure 8: RTM effects on geoid computed with GTOPO30 



From Figures 10 and 11, we conclude that 
aliasing effects are present when we use a coarse 
grid. The largest error will be introduced using a 
grid of 2'. 
 

 
4  Conclusions 
 
Various DEMs were evaluated in a rough area of 
Argentina, near the Andes. SRTM3, GTOPO30, 
SRTM30 and GLOBE global digital elevation 
models. GTOPO30 has been used until now to 
compute the gravimetric geoid models for 
Argentina. 

SRTM3ARG06 is the result of the original 
SRTM3 DEM after the grid was converted into a 
regular grid by interpolation with elevations from 
the neighbouring data. 

The differences between SRTM30 and 
GTOPO30 have a mean value of 9 m and a standard 
deviation of ±139 m. Even though, SRTM30 can be 
considered as an upgrade to GTOPO30, there is no 
doubt that the combination of the GTOPO30 data 
set and the data from the Shuttle Radar Topography 
Mission has modified the GTOPO30 original DEM. 

This paper investigated the terrain aliasing 
effects introduced on both gravity anomalies and 
geoid heights by using various DEM resolutions. 
The differences from the results computed from the 
densest grid (3") and the results from the sparser 
grids were considered as aliasing effects. First, the 
terrain effects were computed for terrain 
corrections, full topographic effects, RTM, Rudzki 
and AH isostatic effects on gravity at the generated 
grid resolutions and then, the same effects were 
computed for geoid heights. The results show that a 
high resolution DEM of 15" or finer should be used 
in mountainous areas like the Andes. If a 15" or 
finer DEM is used, the error introduced in the geoid 
heights does not exceed ±1 cm but if a lower 
resolution DEM is used the error in geoid heights 
will exceed ±11 cm. So a DEM not coarser than 15" 
is recommended for high-accuracy geoid 
determination. 

As future work, a comparison of the SRTM data 
with the heights of gravity station from the gravity 
database and with the heights of GPS/levelling 
points must be evaluated. The height of gravity 
stations must be carefully revised. Also the geoid of 
Argentina should be recomputed by using the 
SRTM3ARG06 DEM for the topographic 
reductions. This DEM may also produce better 

gridded gravity anomalies, especially in the Andes 
area. 
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Abstract: The task is to precisely determine the global
geoid, which attracts a lot of geodesists’ attention. With-
out precise knowledge of the density distribution in the
domain between the geoid ∂G and the Earth’s surface
∂Ω, it is almost impossible to complete the task. Un-
der the assumption that the density distribution of the
shallow mass layer bounded by ∂Ω and a closed refer-
ence surface ∂Γ that lies under the geoid ∂G is precisely
given, an approach for completing the task is proposed.
After the launch of the GOCE satellite system, it might
be determined a precise global potential field V defined
in the domain outside the Earth, and V is a regular har-
monic field. The potential field V1 generated by the shal-
low mass layer above ∂Γ and defined in the domain out-
side ∂Γ could be also determined, once the mass density
distribution of the Earth’s shallow mass layer is given.
Then, with a technical procedure, it is theoretically de-
termined the potential field (consequently the geopoten-
tial field W ) generated by the Earth and defined in the
domain outside ∂Γ. Finally, the geoid ∂G is determined
based on the basic equation W = W0, where the con-
stant W0 is the value of the geopotential on the geoid,
given by e.g. GRS 80 system.

Key words: geopotential field; geoid; 1◦ × 1◦ global

geoid determination with centimeter level

1 Introduction

The determination of the global geoid with centime-
ter level is one main task in physical geodesy in this
century. The gravity field model EGM96 (Lemoine
et al, 1998) provided a global 30′× 30′ gravity refer-
ence frame with the accuracy level of several tens of
centimeters. Will-be launched GOCE satellite sys-
tem might provide a global 1◦ × 1◦ gravity refer-
ence frame with the accuracy level of one centime-
ter (Visser et al, 2001; Bouman et al, 2004) . This
will establish a good foundation for realizing the
global 1◦ × 1◦ geoid with centimeter level.

By general definitions (Listing, 1872; Moritz,
1980; Grafarend, 1994), the geoid is the equi-
geopotential surface that is nearest to the non-tide

mean sea level. To determine the geoid as well as
external gravity field, an average ellipsoid (or ref-
erence ellipsoid) is introduced, e.g., GRS 80 refer-
ence ellipsoid (GRS80, 2005). If the geoidal height
or geoid undulation N (the distance between the
geoid and the ellipsoidal surface) is determined, then
the geoid is determined. The datum of the geoid
could be chosen arbitrarily under international con-
vention, as well as under the requirement that the
determined geoid should be as near as possible to
the non-tide mean sea level. Taking the geoid as
the boundary, using gravity anomalies on the geoid,
based on Stokes approach (Heiskanen and Moritz,
1967) one could determine the disturbing potential
T , and by Bruns formula the geoid undulation N
could be determined as follows

N =
T

γ
(1)

where γ is the normal gravity.
In Stokes approach, to calculate disturbing po-

tential T , it is required the global gravity anomaly
∆g covered the whole geoid. Hence, the gravity ob-
servations on the Earth’s surface should be reduced
on the geoid, which requires two conditions: (i) the
orthometric height H (the height above the mean
sea level or the distance between the Earth’s surface
and the geoid) should be known; (ii) the mass dis-
tribution between the Earth’s surface and the geoid
should be known. The condition (i) could be realized
by gravimetry and leveling. Condition (ii) is com-
pleted by using an average density value 2.67 gcm−3.
In practice, there are many areas, where there are no
gravity observations. In these areas, the estimated
gravity data are applied, based on terrain data and
possible geophysical data, and consequently the de-
termined geoid has poor accuracy in these areas,
around tens of centimeters or several meters.

The errors in geoid determination caused by (ii)
depend on the accuracy of the given density dis-
tribution. If given the accurate enough density dis-
tribution outside the geoid, the influences stemmed



from the density errors might be reduced to cen-
timeter level. However, the errors in geoid determi-
nation caused by (i) depend largely on the height
errors. In the mountain areas or at the positions
where a series of long distance leveling transporta-
tion is needed, there exist obvious additive errors.
This is a great obstacle, and consequently it is dif-
ficult to achieve the accuracy with centimeter level.
This is also the reason why it is difficult to determine
the centimeter-level geoid by using Stokes approach.

Taking the Earth’s surface as the boundary, using
gravity anomaly ∆g on the Earth’s surface, based on
Molodensky approach (Molodensky et al, 1962) the
disturbing potential T could be determined, and us-
ing Bruns formula one could determine the height
anomaly

ζ =
T

γ
(2)

which is the distance between the Earth’s surface
and the telluroid.

With Molodensky approach, the mass adjustment
problem (or gravity reduction problem) is avoidable,
and consequently the mass density distribution be-
tween the Earth’s surface and the geoid is not re-
quired (Moritz, 1980). In applying Molodenky ap-
proach, generally a spherical approximation is used,
which causes errors about several tens of centime-
ters. In addition, to transfer height anomaly ζ to
geoid undulation N , the following equation can be
used (Heiskanen and Moritz, 1967)

N = ζ + (H∗ −H) (3)

where H∗ is the normal height, the distance between
the Earth’s surface and the quasi-geoid (or the dis-
tance between the surface of the reference ellipsoid
and the telluroid), which could be determined by
the following formula (Heiskanen and Moritz, 1967):

H∗ =
C

γ̄
(4)

where C is the geopotential number, γ̄ is the average
normal gravity along the plumb line between the
Earth’s surface and the quasi-geoid.

To determine N based on (3), it is still needed
to determine the orthometric height H, the errors
contained in which are generally much larger than
centimeters in mountain areas. The purpose of de-
termining the geoid undulation is to determine the
position of the geoid, which is an equi-geopotential
surface and has important applications. The quasi-
geoid defined based on the height anomaly ζ is not

an equi-geopotential surface, and consequently it
could not be properly and effectively used in prac-
tice. The quasi-geoid is such a kind of surface so that
the distance between it and the surface of the refer-
ence ellipsoid is just the height anomaly ζ. Taking
into account of the following equation (Heiskanen
and Moritz, 1967)

H =
C

ḡ
(5)

where ḡ is the average gravity along the plumb
line between the Earth’s surface and the geoid, and
combing equations (3)–(5), one gets (Heiskanen and
Moritz, 1967)

N = ζ +
ḡ − γ̄

γ̄
h ≈ ζ + 10−3∆gBH (6)

where ∆gB is the Bouguer anomaly, with the unit
Gal, and the unit of the orthometric height H as
well as the geoid undulation N is meter.

Based on the above reasoning, due to the limita-
tion of the leveling itself, no matter which approach,
Stoles approach or Molodensky approach, is used, it
is almost impossible to achieve the centimeter-level
accuracy in determining the global geoid.

2 The challenging problem in
determining the global geoid

The developments of space technique (especially the
GPS and gravimetric satellite technique) make it
possible to precisely determine the Earth’s external
gravity field. Based on the designment of the will-
be launched GOCE satellite system, a gravity field
model with degree and order about 180/180 could
be provided, which can achieve the accuracy of 1
centimeter or better. Hence, in the present paper it
is assumed that a global 1◦ × 1◦ external gravity
field with the accuracy 1 centimeter has been deter-
mined. In another aspect, GPS and satellite altime-
try technique can provide the position of the Earth’s
surface, with accuracy of one-centimeter in the land
areas, and several centimeters in the ocean areas.

Now the problem is stated as follows: given the
Earth’s surface with the accuracy of centimeter
level, and given a global 1◦ × 1◦ gravity field model
with degree and order 180/180 with the accuracy of
1 centimeter, how to determine the global 1◦ × 1◦

geoid with the accuracy of centimeter level? The dif-
ficulty of solving this problem comes from the fact
that the geoid lies in many cases inside the Earth
and it could not be directly observed.



Concerning about the determination of the geoid,
if Stokes approach is applied, then, in the procedure
of gravity reduction, the orthometric height of mea-
surement point on the Earth’s surface is required,
which is realized by leveling and gravimetry. Gener-
ally, in the ocean areas, the gravity reduction pro-
cedure is neglected. This problem will be discussed
in a separated paper. However, if the orthometric
height of measurement point on the Earth’s surface
is known, one need not to solve the Stoles problem
any more, because the geodetic height h could be
determined by GPS or satellite altimetry technique.

Suppose there does not exist problem in deter-
mining the geoid in ocean areas. Concerning only
the geoid determination problem in land areas, the
geodetic height h could be determined by GPS tech-
nique with high accuracy (at least in the level of
one centimeter), and the orthometric height H can
be determined by leveling and gravimetry, the accu-
racy of which depends on the areas and the length of
the measurement line. Hence, the geoid undulation
is determined as

N = h−H (7)

The accuracy of which depends mainly on that of
the geoid undulation. As discussed above, concern-
ing the determination of the global geoid, based on
conventional approach (Stokes approach or Molo-
densky approach), it is almost impossible to achieve
the centimeter-level accuracy.

3 An approach for determining the
global 1◦ × 1◦ geoid with centimeter
level

3.1 Basic assumptions

It is assumed that a global 1◦ × 1◦ external gravity
field model with the accuracy of 1 centimeter is given
(e.g., provided by GOCE satellite system), which is
defined in the external domain Ω̄, the domain out-
side the Earth. Ω denotes the domain occupied by
the Earth.

The geopotential is expressed as

W (P ) = V (P ) + Q(P ), P ∈ Ω̄ (8)

where Q(P ) is the centrifugal force potential, V (P )
is the gravitational potential, P the field point. Since
Q(P ) is known, given the geopotential field W (P ),
the gravitational potential field V (P ) is determined,
and vise versa.

It is further assumed that the Earth’s surface is
determined with the accuracy of centimeter level.
Hence, once the geoid is determined with the accu-
racy of the centimeter level, then, the orthometric
height of the Earth’s surface could be determined
with the accuracy of the centimeter-level.

Now, it is assumed that the density distribution ρ1

of the shallow layer of the Earth is known very well.
The shallow layer is defined as follows: it is the mass
layer between the Earth’s surface ∂Ω and a closed
surface ∂Γ that lies inside the geoid, where ∂Γ is
relatively near or very near to the geoid, referred to
Fig.1. Since the variation range of the geoid undula-
tion N is around magnitude of 100 meters, generally
the depth D of the shallow layer does not exceed 10
km: in ocean areas D is around the magnitude of
1 to 10 meters; in land D is generally around 10 to
100 meters; and in mountain areas D is around 1000
meters (e.g., near Everest in Himalaya Mountains D
is around 8000 meters).

Figure 1: The bold line denotes the Earth’s surface ∂Ω, the
imagine line denotes the geoid ∂G, the closed thin line denotes
a closed surface ∂Γ that lies inside the geoid and near to geoid.
The mass layer bounded by ∂Ω and ∂Γ is referred to as the
shallow layer

Geology investigations (including drilling holes)
and seismic detection technique can provide more
and more precise information about the shallow
layer. In 1980s, PREM (Dziewonski and Anderson,
1981) provided a spherical symmetric density distri-
bution of the Earth, with poor accuracy and without
the transverse variation. Recently, there appeared
successively more precise density distribution mod-
els, CRUST5.1 with resolution 5◦ × 5◦ (Mooney
et al, 1998) and CRUST2.0 with resolution 2◦ × 2◦



(Bassin et al, 2000; Tsoulis, 2004). Hence, it is ex-
pected that in the near future, there will be ap-
peared a precise enough density distribution ρ1 of
the shallow layer.

3.2 Theoretical model

The gravitational potential generated by the shallow
mass layer is denoted as V1(P ), which could deter-
mined based on the Newtonian potential formula

V1(P ) = G

∫

Γ̄−Ω̄

ρ1

l
dτ, P ∈ Γ̄ (9)

where ρ1 is the density distribution of the shallow
layer, G the gravitational constant; Γ̄ denotes the
domain outside ∂Γ, which includes the Earth’s ex-
ternal domain Ω̄ as well as the domain Γ̄− Ω̄, and it
is noted that Γ̄− Ω̄ denotes the domain occupied by
the shallow mass layer (i.e., the domain bounded by
∂Γ and ∂Ω, Cf. Fig.1); l is the distance between the
field point P and the volume integration element dτ .
Consequently, the external gravitational field V0(P )
in the domain Ω̄ generated by the mass enclosed by
∂Γ can be determined

V0(P ) = V (P )− V1(P ), P ∈ Ω̄ (10)

It is noted that the above equation is defined only in
the Earth’s external domain Ω̄, because it is not pre-
viously given the gravitational potential field V (P )
in the domain Γ̄ − Ω̄ (the given potential field is
defined only in the domain Ω̄).

Since the potential field V0(P ) generated by the
mass enclosed by ∂Γ is regular and harmonic in
the domain Γ̄, and since V0(P ) is known in the
domain Ω̄, based on the fictitious compress recov-
ery approach (Shen, 2004) or spherical harmonic ap-
proach (Heiskanen and Moritz, 1967) one could de-
termine the gravitational potential field in the do-
main Γ̄ generated by the mass enclosed by ∂Γ

V0(P ) = V ∗
0 (P ), P ∈ Γ̄ (11)

where V ∗
0 (P ) denotes the fictitious solution, which

is in fact the natural downward continuation of
the field V0(P ) (P ∈ Ω̄) toward the boundary ∂Γ:
the boundary could be chosen as a spherical sur-
face ∂K which includes the Earth (e.g., Brillourin
sphere, Cf. Arnold 1989), the boundary value V0|∂K

is given by equation (10), and the theoretical foun-
dation is guaranteed by (Shen and Ning, 2004; Shen,
2005a,b). Concerning the spherical harmonic ap-
proach, the harmonic coefficients could be deter-
mined based on the boundary value V0|∂K given on

the spherical surface ∂K, and consequently it is de-
termined the potential field in the domain K̄ gen-
erated by the mass enclosed by ∂Γ. This solution
is also the real solution in the domain Γ̄ − Ω̄ gen-
erated by the mass enclosed by ∂Γ (Shen, 2005b).
If the fictitious compress recovery approach (Shen,
2004) is applied, based on the boundary value V0|∂K ,
with a series of procedure of (downward identity)
“compress” and (upward Poisson integration) “re-
covery” between the surface ∂K and the surface
∂Ki of an inner sphere Ki which lies inside Γ, the
domain bounded by ∂Γ, one obtains a fictitious
field V ∗

0 (P ) (P ∈ K̄i), where K̄i denotes the do-
main outside the inner sphere. After the solution
V ∗

0 (P ) (P ∈ K̄i) is constrained in the domain Γ̄, it
coincides with the real field V0(P ) (P ∈ Γ̄) (Shen,
2004, 2005b).

Hence, the real field generated by the Earth de-
fined in the domain Γ̄ could be determined

V (P ) = V ∗
0 (P ) + V1(P ), P ∈ Γ̄ (12)

where V0(P ) is determined by equation (11), V1(P )
is given by the Newtonian potential formula (9). It
is noted that now both V ∗

0 (P ) and V1(P ) are defined
in the domain Γ̄. In Γ̄, the geopotential is expressed
as

W (P ) = V (P ) + Q(P ), P ∈ Γ̄ (13)

The difference between equation (8) and equation
(13) rests with that the former is defined in the do-
main Ω̄ and the latter in the domain Γ̄. That is to
say, equation (8), which is known, holds only in the
domain outside the Earth, while equation (13) holds
in the domain Γ̄ which includes the geoid ∂G, and
it is also known now.

Now, the problem of precisely determining the po-
sition of the geoid is the problem of solving the fol-
lowing equation

V (P ) + Q(P ) = W0 (14)

where W0 is the geopotential on the geoid, which
might be chosen as W0 = 62636860.850 m2s−2, pro-
vided by GRS80 system. In practical applications,
W0 should be chosen in such a way that the deter-
mined geoid is nearest to the (non-tide) mean sea
level. In determination of the geoid based on equa-
tion (14), “test approach” and iterative technique
might be used. Exactly saying, the following proce-
dures could be applied.

1) It is referred to Fig.2. Introducing a ray l along
an arbitrary direction (θ, λ) from the coordinate ori-
gin o which coincides with the mass center of the



Earth, it intersects a point P0 on the surface ∂Γ.
Starting from P0, along the ray l moving slowly to-
ward a distant, there must exists one and only one
point PG so that equation (14) holds, because differ-
ent equi-geopotential surfaces never intersect with
each other. In fact, defining

f(P ) = V (P ) + Q(P ) (15)

and fixing P on the ray l, since the direction (θ, λ) is
fixed, f(P ) is a monotonous descending function of
P (the discussions are constrained in the near-Earth
space).

2) First, it might be chosen P0 and let it enter
equation (14). If P0 is just located on the geoid (i.e.,
P0 = PG), equation (14) holds; otherwise, it must
hold

f(P ) > W0 (16)

That means the point PG should be searched at a
further distance from the origin. In fact, one can use
Bruns formula to speed up the procedure. Defining
the step length

li =
f(Pi−1)−W0

γ
, i = 1, 2, · · · , (17)

then, along the ray l, starting from point Pi−1 a
further point Pi could be detected according to the
step length li.

3) As the N -th step is tested, if

|f(PN )−W0

γ
| < δ (18)

holds, then stop; otherwise, continue the above pro-
cedure. In equation (18), δ is the accuracy standard.
Choosing δ = 5 cm, the global geoid ∂G with the
accuracy of centimeter level could be determined.

In non-mountain areas, one can also determine
the geoid directly based on the Bruns formula:

N = −T (P )|P∈∂E

g(P )|P∈∂E
(19)

where both T (P )|P∈∂E and g(P )|P∈∂E are known,
∂E is the surface of the reference ellipsoid, T (P ) =
W (P )−U(P ) is the disturbing potential field, U(P )
is the normal potential field generated by the refer-
ence ellipsoid. Equation (19) could be directly de-
rived out from equation (14), based on Taylor ex-
pansion, and noting that U(P )|P∈∂E ≡ W0.

Figure 2: The notations of the surfaces have the same meaning
as stated in Fig.1. The ray l intersects at points P0 and PG

on the surfaces ∂Γ and ∂G, respectively

4 Conclusion

Even if the density distribution outside the geoid is
known very well, it is hardly to precisely determine
the global geoid (in the centimeter level) by using
the conventional approaches (e.g.,Stokes approach
or Molodensky approach), due to the fact that the
orthometric height (height above sea level) of the
Earth’s surface is always needed. The orthometric
height of the Earth’s surface is determined by lev-
eling and gravimetry. Since the measurement errors
increase with the length of the surveying line, it can
not be guaranteed that the orthometric height could
achieve the centimeter-level accuracy globally, espe-
cially in the mountain areas.

Theoretically, using the approach proposed
in this paper it could be determined the global
1◦ × 1◦ geoid with the centimeter-level accuracy.
The advantage of this approach lies in that the
leveling is not needed (the orthometric height is
not required previously). However, the following
conditions (pre-requirements) should be satisfied:
a) given the Earth’s surface with centimeter-level
accuracy; b) given the density distribution of the
shallow layer with good enough accuracy; c) given
the Earth’s external 1◦ × 1◦ gravitational potential
field model with the accuracy of one centimeter
level.
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Abstract. The structure of the lithosphere of the 
ALPACA (Alpine-Pannonian-Carpathian) region is 
described by a model containing about 200000 
rectangular volume elements (prisms) of variable 
dimensions defined in the mapping system of 
Hungary. Forward computations show that the 
contribution of the structural units (topography and 
upper mantle) of the lithosphere to the disturbing 
potential T of the Earth may reach several tenth of 
E unit at 400 km elevation. The contribution from 
the sediments is less by a factor of ten but even its 
magnitude exceeds the planned sensitivity of the 
satellite on board measurements. It is expected that 
some regional information about the horizontal 
density variation of the crust can be deduced from 
the GOCE data, especially for the density contrast 
between the lower crust and upper mantle. Since the 
density distribution of either the topographical 
masses or the sedimentary complex is much better 
known than the density jump on the Moho, 
therefore their effect on the second derivatives of T 
can be removed from the measurements. The 
residuals can be interpreted by inversion using the 
closed analytical formulae available for rectangular 
volume elements. The modelling approach based on 
the local planar coordinate frame was compared to 
the polyhedron representation of the same crustal 
model defined in a global rectangular coordinate 
system. In this comparison no significant effect of 
the Earth’s curvature could be indicated. 
 
Keywords. Gravity modelling, prism, polyhedron 
inversion, GOCE, ALPACA 
 
 
1 Introduction 

 
The ALPACA (Alps – Pannonian basin – 
Carpathians) region is located in Central Europe, in 
the collision zone between the African and the  

 
Eurasian plates. It is characterised by variable 
crustal thickness. On the perimeter of the area the 
depth of the Moho discontinuity may reach the 
value of 60 - 67 km beneath the arcs of the Alps and 
the Carpathians (Fig. 1). Its central part (the 
Pannonian basin) is a so called back-arc basin 
having a thin crust (Royden and Horváth, 1988). 
Here the upper mantle is elevated up to 22 km - 24 
km depth producing high heat flow values (Lenkey 
et al, 2002). The basin is covered by thick Neogene-
Quaternary sediments and fragmented into smaller 
sub basins (Fig. 2). The depth of the basement in 
the sub basins may reach 7-8 km and its average is 
about 2 km. 
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Fig. 1. Color coded map of the Mohorovičić discontinuity in 
the ALPACA region. The white dashed line shows the state 
border of Hungary 
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Fig. 2. Color coded map of the pre-Tertiary basement in the 
Pannonian basin. The white dashed line shows the state 
border of Hungary 



This “rugged” crustal structure represents 
significant horizontal density variation which 
certainly dominates the regional picture of the 
gravity field near to the surface of the Earth. Its 
significant contribution to the disturbing potential at 
the altitude of the GOCE gradiometer satellite is 
also demonstrated. 

Gravity modelling studies in the ALPACA  
region indicate that the mass balance/density 
distribution of the main structural units of the crust 
is not known with a satisfactory accuracy. The 
application of the generally assumed/accepted 
density contrasts both on the Moho discontinuity 
(e.g. ∆ρ=+500 kg/m3) and in the sediments 
(M{∆ρ(depth)}≅-350 kg/m3 related to the 
crystalline basement rocks) provides high residual 
values of gravity field parameters (e.g. Bouguer 
gravity anomalies). After removing the gravitational 
effect of these “known” structural units from the 
observations the amplitude of the residuals is often 
larger then that of the observations themselves 
(Bielik et al, 2004). The residuals can be diminished 
significantly if the applied density contrasts are also 
decreased (Papp, 2001). In this context one should 
remember that the density distribution can only be 
derived indirectly from seismic tomography for the 
depth range of the Moho discontinuity. For the 
sediments the big number of borehole samples 
available in the basin (~10000) gives a relatively 
good control on the density distribution (Bielik, 
2004, Szabó and Páncsics, 1999), however there are 
only a few data from the bottom regions (depth > 3 
km). Therefore it is hoped that the GOCE on board 
measurements will give a possibility to clear up the 
regional mass distribution of the area.  
 
2. Discrete models of the crust in the 
ALPACA region 
 
Two versions of the crustal model of the ALPACA 
region exist. These can be derived from each other 
using the map projection system of Hungary. One 
of the models is built up from rectangular 
parallelepipeds (prisms) representing a local 
rectangular/planar mapping system (Fig. 3), 
whereas the elementary building blocks of the other 
are polyhedrons. These are defined in a global 
Cartesian coordinate system connected to the 
IUGG67 ellipsoid through the relative Hungarian 
Datum (HD72). There is a one-to-one geometrical 
correspondence between the corner points of prisms 
and polyhedrons, because each prism was split up 
into two polyhedrons (Fig. 4). Obviously, the model 
in global Cartesian coordinates gives a possibility to 

“follow” the curvature of the ellipsoid therefore it 
can also be used to investigate the effect of the 
Earth’s curvature neglected in the planar 
approximation. Both models contain three sub 
models: the surface topography, the Neogene-
Quaternary sediments and the upper mantle. 

 

 
 

 
Fig. 3. Rectangular volume element models of a) the upper 
mantle bounded by the Moho discontinuity and b) the 
Neogene-Quaternary sediments viewed from above and 
below, respectively. The horizontal extensions of the models 
can be obtained from Fig. 1 and Fig. 2 
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Fig. 4. The relation between the geometry of a prism and a 
corresponding polyhedron volume element defined in local 
{x,y,z}and global {X,Y,Z} rectangular coordinate systems, 
respectively. e’1, e’2, e’3 are the unit vectors of the local 
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The total numbers of prisms and polyhedrons are 
198946 and 397892, respectively. The spatial 
resolution of the models depends on the local 
variability of the surfaces representing the dominant 
interfaces (topographical surface, pre-Tertiary 
basement and the Moho discontinuity) of the 
lithosphere. An adaptive algorithm (Kalmár et al. 
1995) is used to obtain a minimum number of 
prisms according to some generalization 
parameters. 

3. Forward computation of the second 
derivatives of the disturbing potential 

All the structural units of the Earth’s crust have a 
certain contribution to the disturbing potential T of 
the Earth’s gravity field. The models introduced in 
Sec. 3 give a local contribution to it what can be 
determined by forward gravitational computations. 
For both type of discretization the closed analytical 
formulae are available also for the 2nd order 
derivatives of the gravitational potential 
(Uij=G⋅ρ⋅uij) generated by the prism (Nagy et al, 
2000): 

e.g. 
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where P(0,0,0) is the computation points, ρ is the 
constant volume density of the prism or polyhedron, 
G is the gravitational constant, r is the distance and 
<x1,x2>,<y1,y2>,<z1,z2> define the boundaries of the 
prism relative to P(0,0,0); or by the polyhedron: 
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where K is the number of the bounding planes 
(faces) of the polyhedron and Lk is the number of 
the corners of the kth  face of the polyhedron, 
sign(zk) is -1 when nk points to the half-space 
(bordered by the Lk plane) containing the point P, 
and +1 when it points to the other half-space. 
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The detailed explanation of (2) and its parameters is 
given by e.g. Benedek (2004). 

Applying a suitable reference model 
generating Uref potential the local contribution of 
the density model to Tij, containing n 
prisms/polyhedrons, can be defined (Papp, 1996): 
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Fig. 5. The geometrical explanation of some variables of 
Eq.2 

4. Simulation of the local contributions to 
Txx, Tyy and Tzz from the crustal models at 
400 km altitude 

The analytical formulae (1) and (2) give an evident 
way to compute the gravitational effects of the 
models at satellite altitude. The results of this 
computation provide information about the 
expectable magnitude of the local contributions to 
the second derivatives of T in both coordinate 
systems. The effect of the Earth’s curvature can also 
be investigated numerically if the parameters (e.g. 

local
zz

local
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local
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X
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and the global {X,Y,Z} frames are compared. The 
2nd derivatives computed from the polyhedron 
model (uij

{X,Y,Z}) contain the effect of the curvature. 
These quantities are transformed into the local 
system represented by a local tangential frame fixed 
to the actual computation point (Fig. 4):  
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defines the local tangential frame (Fig. 4). Then the 
results are compared with the corresponding 
quantities (uij

{x,y,z}) in the local/planar system 
computed directly from the prism model. 

In the case of the upper mantle a constant 
density contrast value (∆ρ=+250 kg/m3) was used to 
obtain some 2nd derivatives of T (Fig. 6 and Fig. 7), 
whereas a depth dependent density contrast function 
(Szabó and Páncsics, 1999) was applied for the 
sediments (Fig. 8). For the central part of the 
surface topography model a variable density 
distribution was introduced which is based on 
geological information (Fig. 9). The outer zone of 
the ALPACA region was characterized by the usual 
constant 2670 kg/m3 density value. The results of 
the forward simulations can be seen in Fig. 10. 

The differences between the Tzz parameters 
calculated in the local and the global frames can be 
seen in Fig. 11 whereas the statistics are listed in 
Table 1. The extensions of the computation grids in 
the local/planar system were [-640 km, 630 km] ×  
[-640 km, 630 km] and [-1280 km, 1270 km] ×  [-
1280 km, 1270 km] for the surface topography and 
the upper mantle/e sediments, respectively. The grid 
spacing was 10 km × 10 km. 
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Fig. 6. Local contribution to a) Txx, b) Tyy and c) Tzz 
simulated from the prismatic model of the upper mantle at 
H=400 km with ∆ρ=+250 kg/m3. The contour interval is 0.05 
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Fig. 7. Local contribution to Tzz simulated from the 
polyhedron model of the upper mantle at H=400 km. The 
contour interval is 0.05 Eötvös unit 
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Fig. 9. Density model for the inner zone of the topography of 
the ALPACA region 
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Table 1. Statistical parameters of the differences of some 
second derivatives of Tlocal determined from the prism (local) 
and polyhedron (global) models of the upper mantle at two 
altitudes and the Neogene-Quaternary sediments 

parameters 
∆Tii = (Tii)prism model – 
        (Tii)polyhedron model  

min 
[E] 

max 
[E] 

mean 
[E] 

σ 
[E] 

∆Txx -0.034 0.032 0.0000 ±0.0088 
∆Tyy -0.015 0.023 0.0002 ±0.0047 

U
pp

er
 

m
an

tle
 

∆Tzz 0.051 0.041 -0.0001 ±0.0096 
∆Txx -0.006 0.005 0.0001 ±0.0012 
∆Tyy -0.006 0.005 0.0000 ±0.0012 

H=400km 

N
eo

ge
ne

-
Q

ua
te

rn
ar

y 
se

di
m

en
ts

 

∆Tzz -0.004 0.011 -0.0001 ±0.0016 
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Fig. 11. The difference of Tzz values simulated from the 
prismatic/local and polyhedron/global volume element 
models of a) the upper mantle (contour interval: 0.01) b) the 
sediments (contour interval: 0.002 E) and c) the topography 
(contour interval: 0.01 E) 

5. Spectral analysis of the second 
derivatives 

The forward computation of the 2nd derivatives of T 
indicates very smooth variation of the parameters at 
satellite altitude. In order to get a quantitative 
estimation about the attenuation of the spectral 
components the so called radial power spectra are 
determined and compared at different altitudes. In 
the FFT based computation of the spectra a cosine 
tapering window was used to diminish the spectral 
leakage. The attenuation of some individual spectral 
components generated by the model of the upper 
mantle can be seen in Fig. 12. It clearly shows that 
probably there will be no chance to resolve the part 
of the spectrum below 300 km wavelength. Around 
this point (λ≈300 km) the amplitude of spectral 
components hardly reaches the value of one µE.   

b) 
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Fig. 12. The altitude dependence of the power of some 
spectral components generated by the model of upper mantle 

6. The analysis of the computation 
results in the local and the global 
coordinate systems 

Fig. 9 and Fig. 10 clearly show some systematic 
difference between the simulated 2nd derivatives of 
Tlocal. Although the ranges of deviations may reach 
a few hundredths of E unit, their standard deviations 
remains below ±0.01 E (Table 1). It is a bit more 
then the expected accuracy (a few µE) of the GOCE 
measurements. A part of the differences certainly 
caused by the Earth’s curvature neglected in the 
local frame. However, it is not obvious from the 
maps because no “edge effects” (increasing 
deviations near/on the borders of the area) are 
indicated. The differences are correlated well with 
the signals generated by the models, so probably 
those are partly due to local mass differences 
between the two types of mass discretization. The 
polyhedron model always gives a bit larger absolute 
contribution (max. ∼10 %) than the prism model. 

7. Conclusions 

The contribution of the lower crust – upper mantle 
density interface (Moho discontinuity) to T can 
reach several tenth of the Eötvös unit at the satellite 
altitude even if the density contrast on the Moho is 
only half of what is generally assumed. The GOCE 
gradiometers, however, will sense the integrated 
effect of all the structural units of the crustal 
anomalies, so a source separation (isostatic 
decompensation, basin effects) will be necessary to 
prepare the on board data for inversion.   

The pure effect of the Earth’s curvature 
cannot be bigger then a few hundredths of E unit on 
the area of investigation. Therefore, as a first 
approximation, the planar frame is feasible for the 

inversion of satellite gradiometer data in the 
ALPACA region. If more accurate density 
estimation is needed then the inversion must be 
performed in the global {X,Y,Z} frame, using the 
polyhedron volume elements. 

The gravitational contribution of the 
crustal density anomalies to the 2nd derivatives of T 
having a wavelength less then 300 km probably 
cannot be indicated by the gradient measurements 
carried out in the altitude range of the GOCE 
satellite. 
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Abstract. Within the framework of the GOCE-
GRAND II project and in cooperation with the 
Bundesamt für Kartographie und Geodäsie (BKG), 
it is planned to validate the GOCE gravity field 
models by independent terrestrial data sets. Besides 
GPS and levelling data, gravity and terrain data 
shall be combined with a global spherical harmonic 
model to provide an independent gravimetric 
(quasi)geoid model, and, in addition, deflections of 
the vertical shall be observed with the Hannover 
digital zenith camera TZK2-D in a 500 km long 
profile to provide another completely independent 
data set for the GOCE validation. 
For this purpose, it is necessary to study the high 
frequency gravity field components related to the 
terrain, as all effects not included in the GOCE 
models have to be filtered out before the actual 
validation step. In this contribution, a digital terrain 
model for Germany with a grid spacing of 1" x 1" 
(approx. 30 m) is used to study the high frequency 
effects of the terrain on gravity anomalies, 
deflections of the vertical and geoid heights. 
Besides an investigation of different DTM 
resolutions, a covariance and spectral analysis is 
performed. The aim of the study is to find the 
optimal resolution of the terrain data for given 
accuracy levels. 
 
Keywords. Terrain effects, digital terrain models, 
covariance and spectral analysis, gravity field 
 

1 Introduction 

Digital Terrain models (DTM) play an important 
role in gravity field modelling, as local gravity field 
effects are strongly correlated with the topography. 
For gravimetric geoid determinations, high-
resolution DTMs are usually employed to model 
short- wavelength effects.  
The aim of this study is to find adequate DTM 
resolutions for given accuracy requirements, which 
is also important to optimize the costly terrain effect 
computations without any significant accuracy loss. 

In this contribution, a very high resolution DTM 
with a grid spacing of 1" x 1" (approx. 30 m) is 
employed to determine the high frequency terrain 
effects for different gravity field parameters. 
Several similar studies were published (see, for 
example, Forsberg 1984a; Vassiliou and Schwarz 
1987; Kotsakis and Sideris 1999), but all of them 
are based on much coarser data grids. 
In this study, terrain effects for various gravity field 
functionals are analyzed up to spherical harmonic 
degree nmax = 648000, which corresponds to a 
spatial resolution of 1". Both space domain and 
frequency domain methods are employed in three 
test areas in Germany. 
This investigation is carried out in the context of a 
regional validation and combination experiment in 
Germany within the framework of the GOCE 
GRAND II project. In this project, GPS and 
levelling data, gravity and terrain data as well as 
deflections of the vertical, observed in profiles with 
the Hannover digital zenith camera TZK2-D, shall 
be used as independent data sets for the validation 
of the GOCE products. For this purpose, it is 
important to study the high frequency gravity field 
components related to the terrain, as all effects not 
included in the GOCE models have to be filtered 
out before the actual validation step. Besides the 
validation aspect, the second major issue within the 
project is the combination of the terrestrial data 
with the global models from the GOCE mission in 
order to provide the complete geoid spectrum over 
all wavelengths with accuracy at the centimetre 
level. 
Within this context, a remove-restore procedure and 
residual terrain model (RTM) reductions, suitable 
for modelling only short-wavelength terrain effects, 
are applied. In the first part of this contribution, 
RTM effects on gravity, vertical deflections and 
geoid are computed in the space domain using 
different DTM resolutions. Besides the statistics of 
the computed gravity field parameters, the 
differences between the values from the 1" x 1" 
DTM and coarser grids are analysed. Secondly, 
DTM resolution requirements are investigated 
through covariance and spectral analyses of the 



RTM gravity effects in 1" x 1" grids. Basic 
covariance parameters are estimated along with the 
geoid RMS power in various spectral bands. The 
aim of both parts of the study is to find appropriate 
DTM resolutions for given accuracy levels. Finally, 
all results are inter-compared and discussed.  

2 Data Sets  

Three test areas with hilly to alpine terrain type 
were chosen in different parts of Germany. Three  
1° x 1° bins were extracted from the Digital Terrain 
Model DGM50 M745 by the Bundesamt für 
Kartographie und Geodäsie (BKG) with a grid 
spacing of 1" x 1" (approx. 30 m) and an accuracy 
of about ±1 – 8 m. Graphical displays and the 
statistics of the topographic heights are provided in 
Fig. 1 and Table 1 for the three selected test areas, 
respectively. 

Table 1. Statistics of the topographic heights in the three 
selected 1° x 1° test bins [m] 

Test area Number Mean Std.dev. RMS Min Max

German Alps 3600 x 3600 1236 629 1387 475 3479
Harz 3600 x 3600 315 135 343 97 1140
Franconia 3600 x 3600 370 83 379 170 688

3 Methodology 

3.1 RTM effects in the space domain 

For the practical evaluation of gravitational effects 
of a topographic mass model, integrals of the type  

∫∫∫=
V

dVrLGTL )/1()( ρ                                   (1) 

have to be computed under the assumption of a 
constant topographic density ρ, where  L(T) are the 
gravity field functionals, G is the Newton’s 
gravitational constant, L(1/r) are functionals of the 
reciprocal distance between the volume element dV 
and the computation point, which is used as the 
origin of the coordinate system. The integrals were 
evaluated in the space domain by numerical 
integration using rectangular prisms. Effects for 
gravity anomalies, vertical deflections und geoid 
undulations were computed by exact prism 
formulas when the computation point was near the 
prism, while at larger distances, the MacMillan 
series expansions and finally point mass approxima-
tions were chosen for all three functionals. 

Fig. 1: Topographic heights [m] in the German Alps (left), Harz (middle) and Franconia (right) 

For the innermost topography surrounding the 
computation point, a bicubic spline interpolation of 
the DTM elevations was carried out in order to 
densify the data grid and to reduce discontinuity 
effects between adjacent prisms. Furthermore, the 
curvature of the earth was taken into account to the 
second order. All computations were done with the 
program tc; for further details and formulas see 
Forsberg (1984a). 
For the computation of RTM effects in the space 
domain, the 1° x 1° test areas were extended to  
3° x 3° in order to avoid edge effects. The RTM 
computations were based on a fixed area reduction 
with 3° x 3°, constant density value of 2.67 g/cm³, 
15' x 21' reference topography, and DTM grid 
spacings of 1" x 1", 3" x 3", 6" x 6", 12" x 12" and 
30" x 30", where the coarser grids are derived from 
the 1" x 1" grid by moving averages. 
In order to save computation time, the calculations 
were only carried out for stations in a 1' x 1' grid 
within the 1° x 1° bins, yielding 3600 stations in 
total for each of the test areas. 
 



3.2 Covariance and spectral analysis 

In this section, covariance and spectral analyses of 
gridded RTM gravity effects are performed. The 
RTM gravity effects were computed by the classical 
terrain correction and a Bouguer reduction to the 
level of the reference topography href: 

( )2 ref .g G h h tcπ ρ∆ = − −                               (2) 

Here h is the topography level in the computation 
point, G is again the Newton’s gravitational 
constant, ρ is the constant topographic density and 
tc the terrain correction term.  
The terrain correction was expanded into a Taylor 
series using a linear approximation: 

( )2

3
0

1 ... .
2

P

F

h h
tc G dF

r
ρ

−
= ∫∫ +                   (3) 

In the above equation, r0 is the planar distance 
between the surface element dF and the 
computation point P and hP is the (constant) 
elevation of the computation point. This integral 
can be treated as a convolution of h and h2 with 
1/r0³, and it can thus be computed in the frequency 
domain by Fast Fourier Transform (FFT). For 
further details and formulas see Forsberg (1984a, 
1985). 
The RTM reduction parameters are identical to ones 
used in the previous section; the terrain correction 
radius was 50 km. The RTM gravity effects were 
again computed for 1° x 1° bins; in order to reduce 
edge effects, the data areas were extended to 
2° x 2°. 
Covariance and spectral analyses of the RTM 
gravity effects were performed in 1" x 1" data grids 
for each of the three test areas described above. The 
2D power spectral densities (PSD) were estimated 
directly using FFT algorithms. The 2D planar 
covariance functions (CV) were computed 
indirectly by taking the inverse Fourier transform of 
the PSD. For formulas see, for example, Vassiliou 
and Schwarz (1999).  
No windowing was carried out as tests with and 
without windowing gave only insignificant differen-
ces. In accordance with the isotropy assumptions, 
the 2D CVs and PSDs were radially averaged into 
1D isotropic functions. Furthermore, the gravity and 
geoid degree variances were estimated from the 1D 
isotropic PSDs, where the extent and grid spacing 
of the test areas define the recoverable spectral 
band, in this case the degree range is 360 ≤ n ≤ 
648000. The gravity degree variances at the 
harmonic degrees n were estimated by 

 

( )ω
π

σ PSD
R

n
ng ⋅

+
=∆ 2

2
, 2

5.0  ,                                (4) 

where PSD(ω) is the 1D isotropic planar PSD at the 
radial wave number ω and R is the mean radius of 
the Earth. 
The geoid degree variances were computed using 

( )
2

,22

2
2
, 1 ngn n

R
∆⋅

−
= σ
γ

σς  ,                                   (5) 

where γ is the normal gravity. For details see 
Heiskanen and Moritz (1967), Forsberg (1984b) and 
Kotsakis and Sideris (1999). 

4 Analysis of the results 

4.1 RTM effects in the space domain 

In Tables 1 and 2, the RTM gravity and geoid 
effects based on the DTM with a grid spacing of  
1" x 1" are displayed for each of the three test areas.  
The RTM reductions alone create a geoid signal 
between 2 cm (Franconia) and 12 cm RMS 
(German Alps), which confirms the well-known 
fact that topographic effects should always be taken 
into account to obtain a geoid with an accuracy of 
one centimetre. 

Table  2: Statistics of RTM gravity effects [mGal] based on 
the DTM1" x 1"

Test Area RMS  Min Max 

Bayern 40.9 -173.7 90.3 
Harz   8.7   -20.0 61.1 
Franken   4.1   -13.3 19.1 

Table  3: Statistics of RTM geoid effects [cm] based on the 
DTM1" x 1"

Test Area RMS  Min Max 

Bayern 12.3 -35.6 34.5 
Harz   4.3   -5.7 19.9 
Franken   1.8   -4.8   4.8 

 
Moreover, RTM effects on gravity, deflections of 
the vertical and geoid were computed for different 
DTM resolutions. In Table 4, the statistics of the 
differences with regard to the DTM with a grid 
spacing of 1" x 1" are displayed.  



Table 4: Statistics of the RTM reduction differences with regard to the DTM1" x 1"

 German Alps Harz Franconia 

DGM 1" x 1" - RMS Min Max RMS Min Max RMS Min Max 

Gravity anomalies [mGal] 

DGM 3" x 3" 0.45   -5.58   3.56 0.15   -1.86 1.01 0.10   -0.80 0.62 
DGM 6" x 6" 1.08   -7.70   7.16 0.41   -4.44 2.38 0.28   -3.33 1.43 
DGM 12" x 12" 2.45 -16.58 10.48 0.93   -6.82 5.38 0.63   -5.67 3.28 
DGM 30" x 30" 6.94 -52.81 26.35 2.03 -15.68 8.56 1.27 -10.37 7.76 

Deflections of the vertical ["] 

Components in north-south direction ξ 
DGM 3" x 3" 0.04 -0.28 0.26 0.02 -0.09 0.09 0.01 -0.07 0.06 
DGM 6" x 6" 0.11 -0.61 0.48 0.04 -0.23 0.21 0.03 -0.20 0.15 
DGM 12" x 12" 0.24 -1.65 0.94 0.10 -0.66 0.56 0.07 -0.51 0.38 
DGM 30" x 30" 0.66 -2.53 2.61 0.23 -1.40 1.20 0.16 -0.89 0.89 

Components in east-west direction η 

DGM 3" x 3" 0.03 -0.20 0.25 0.01 -0.08 0.08 0.01 -0.04 0.04 
DGM 6" x 6" 0.09 -0.71 0.58 0.04 -0.24 0.24 0.02 -0.16 0.18 
DGM 12" x 12" 0.21 -1.36 1.24 0.10 -0.73 0.65 0.06 -0.33 0.45 
DGM 30" x 30" 0.61 -2.68 2.46 0.23 -1.21 1.27 0.13 -0.78 0.85 

Geoid [cm] 

DGM 3" x 3" 0.0 -0.3 0.4 0.0 -0.1 0.1 0.0 -0.1 0.1 
DGM 6" x 6" 0.1 -0.4 0.4 0.0 -0.1 0.0 0.0 -0.1 0.0 
DGM 12" x 12" 0.1 -0.8 1.1 0.0 -0.1 0.1 0.0 -0.1 0.1 
DGM 30" x 30" 0.2 -1.4 1.8 0.1 -0.3 0.2 0.0 -0.2 0.2 

 
 
 
In the German Alps, the use of 3" x 3" and 6" x 6" 
grids already causes maximum differences in the 
RTM geoid effects of 4 mm. Coarser grids cause 
differences of more than 1 cm. In the Harz and 
Franconia regions, however, the terrain effects are 
much smaller. The differences of RTM geoid 
effects are less than or equal to 3 mm with grid 
spacings up to 30" x 30". 
Although the RTM reductions for gravity anomalies 
vary by several mGal when using denser grids, the 
effects on geoid signals barely reach a maximum of 
1 mm and are thus negligible. 
With regard to the analysis of high-precision 
vertical deflections observed with digital zenith 
cameras with an accuracy level of approx. 0.1" (see 
Hirt 2004), a DTM with a resolution of 1" x 1" 
should be used in alpine regions and 3" x 3" in other 
areas. 

4.2 Covariance and spectral analysis 

The results for the basic parameters that describe 
the behaviour of the covariance functions for the 

RTM gravity effects are displayed in Table 5 for 
each of the three test areas. Large differences 
appear in the variance of the RTM gravity effect C0. 
The correlation lengths χ1/2 and the anisotropy 
indices are very similar in spite of the different 
relief types of the test areas. The correlation lengths 
are much smaller than in other previous studies 
(see, for example, Forsberg 1984a; Kotsakis and 
Sideris 1999). The results for the anisotropy index 
show that the isotropy assumptions can be justified.  
 

Table 5: Local covariance function parameters for RTM 
reductions 

Test area C0 0C   1/2χ  Anisotropy 

  [mGal²] [mGal] [arcmin] index 

German Alps 1558.88 39.5 1.3 1.3 
Harz     74.20   8.6 1.8 1.5 
Franconia     15.85   4.0 1.2 1.4 
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Fig. 2: Empirical covariance functions (top left) and power spectra (top right) for RTM reductions; geoid degree variances from 
RTM reductions for the entire recoverable spectral band (bottom left) and for the spectral band with a degree range of 
360 ≤ n ≤ 21600 (bottom right) 

In Fig. 2, the 1D covariance functions and power 
spectral densities are displayed as well as the geoid 
degree variances for the entire recoverable spectral 
band of 360 ≤ n ≤ 648000 (bottom left) and for the 
spectral band with a degree range of 360 ≤ n ≤ 
21600 (bottom right). In addition, the geoid RMS 
power was computed from the estimated geoid 
degree variances in different spectral bands (see 
Table 6). 
It can be seen that the RTM gravity effects alone 
create a geoid signal between 2 cm (Franconia) and 
17 cm RMS (German Alps). In each of the three test 
areas, the spectral band with the degree range of 
360 ≤ n ≤ 10800 contains approx. 99.90 % of the 
geoid variance. In the spectral band with a degree 
range of 10800 < n ≤ 21600, merely 0.09 % and for 
n > 21600 only 0.01 % of the geoid variance can be 
found. Based on these results, degrees up to 
n=21600 should be taken into account for alpine 

corresponds to spatial resolutions of  30" x 30" and 
1' x 1', respectively. However, it has to be noted that 
these results are based on RMS values and thus 
represent the average situation. This also means that 
significantly higher maximum effects may exist in 
some points or even areas. 
 

regions and up to n=10800 for other regions, which 

Table 6: Geoid RMS power [cm] in various recoverable 

German Alps Harz Franconia 

spectral bands 

Spectral band 

360 ≤ n ≤ 648000 16.9 3.3 1.6 
360 ≤ n ≤ 10800 16.9 3.3 1.6 
10800 < n ≤ 21600   0.5 0.1 0.1 
21600 < n ≤ 648000   0.1 0.0 0.0 



5 Summary and conclusions 

In the present paper, high frequency terrain effects 
(RTM) are analysed in various parts of Germany. 
Both space domain and frequency domain methods 
are applied based on a DTM with a grid spacing of 
1" x 1" (approx. 30 m).  
In the space domain, differences between RTM 
effects on gravity, deflections of the vertical and 
geoid were analysed with respect to different DTM 
resolutions. The major aim was to find the 
appropriate DTM resolution for different relief 
types and accuracy requirements. From covariance 
and spectral analyses in the frequency domain, 
basic parameters of the covariance functions were 
estimated, and gravity and geoid degree variances 
for RTM gravity effects were computed, allowing 
an investigation of the geoid power at different 
spectral bands. 
Both methods gave similar RMS values of the RTM 
effects, creating a geoid signal between 2 cm 
(Franconia) and approx. 15 cm (German Alps). 
Regarding the different DTM resolutions and 
considering also the maximum values, a DTM 
resolution of at least 6" x 6" is recommended in the 
German Alps, while in the Harz and Franconia 
regions a resolution of 30" x 30" may be sufficient 
for a one centimetre geoid. 
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in regional applications of forward gravity field
modelling
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Abstract. The release of model CRUST 2.0
offers an advanced and efficient means of mod-
elling crust-induced potential contributions both
globally and regionally. Providing rigorous geo-
metric as well as physical information concern-
ing the structure and consistency of distinct
crustal layers from the Earth’s topography down
to the crust-mantle boundary, the information
contained in model CRUST 2.0 is of special in-
terest to studies related to gravity field modelling
and interpretation. The present paper investi-
gates the possibilities of utilizing the CRUST 2.0
data in the frame of local and regional forward
gravity field modelling applications. For this rea-
son a thorough numerical analysis of the model
has been carried out for the area surrounding
Greece. In terms of geoid modelling and local
gravity field investigations the CRUST 2.0 infor-
mation can be used mainly in the frame of iso-
static anomalies. Thus, isostatic effects on grav-
ity have been computed for this region and are
compared with the corresponding computations
resulting from two other independent sources of
determining the Moho interface, namely the Airy
isostatic mechanism and the application of de-
convolution methods to surface gravity data.

Keywords. global digital databases, forward
modelling, CRUST 2.0, Moho interface

1 Introduction

The publication of CRUST 2.0, a global digital
crustal database at a 2◦ × 2◦ resolution (Bassin
et al. 2000), produced a significant impulse over
the last years to research activities related with
the Earth’s structure and gravity field. Among
the topics that profited substantially from the
release of the new crustal data were for example
regional lithosphere investigations (Danesi and
Morelli 2001, Schmid et al 2004, Koulakov and

Sobolev 2006), seismic studies (Obayashi et al
2004) or the derivation and analysis of isostatic
Earth gravity models (Kaban et al 2004, Tsoulis
2004).

CRUST 2.0, which has been compiled and is
now administered by the U.S. Geological Survey
and the Institute for Geophysics and Planetary
Physics at the University of California, is the de-
scendent of CRUST 5.1, a global crustal model
at 5◦×5◦ (Mooney et al 1998). Both models are
based on seismic refraction data published up to
1995 and a detailed compilation of ice and sedi-
ment thickness. CRUST 2.0 offers density, geom-
etry and seismic information for a total of seven
crustal layers, from ice and water to lower crust,
the boundary surface between crust and mantle,
otherwise known as the Mohorovicic discontinu-
ity. The data consist of density values (the de-
tailed density structure includes the additional
layer of the uppermost mantle), layer boundary
values in terms of depths with respect to mean
sea level and values for compressional and shear
wave velocities, all of which are given globally
and explicitly for each of the 16200 grid elements
that define each layer at the 2◦ × 2◦ resolution.
Thus, the model consists ultimately of a total of
29 matrices, each of dimensions 180 × 90, where
global bathymetry and surface topography data
were adopted from the 5 arc minute resolution
data set ETOPO-5 (NGDC, 1988).

The availability of recent Digital Terrain Mod-
els on the other hand, especially over continental
areas, offers a new prospective of unprecedented
resolution in calculations of local and regional
gravity field modelling (Vergos et al 2005). In
the frame of these new terrain data one could also
incorporate the crustal information of databases,
such as CRUST 2.0, and devise computational
strategies where both of these data sources could
be combined, for example for the computation
of isostatic anomalies. The present paper inves-
tigates the possibilities of utilizing the CRUST



2.0 data to local or regional gravity field related
computations. It turns out, that two are the key
issues connected with the CRUST 2.0 database,
that can be exploited for regional investigations.
The geometry of the final crustal layer, which
represents the Moho boundary over the specific
region and will occupy the calculations presented
in this paper and the detailed stratification of
the database that could be employed in studies
of gravity field interpretation.

2 Local assets of CRUST 2.0
database

The window selected for the local assessment
of the CRUST 2.0 database was defined be-
tween 14◦ < λ < 34◦ and 28◦ < ϕ < 48◦, an
area stretching over the southeast Mediterranean
with Greece at its center. The area is character-
ized by the absence of hard sediments, thus a
total of only four layers exist in the database
for this region, namely soft sediments, upper,
middle and lower crust. Table 1 presents the
statistics regarding the layer depth information
for the area under consideration. Examining the
soft sediments layer we observe a direct correla-
tion of the variations of the lower bound of this
layer with the variations of the surface topogra-
phy. The largest numerical values for the depths
(3 − 5 km) occur, as one would expect, un-
der the Mediterranean part of the region, while
the smallest values are observed at the conti-
nental parts. The largest depth values of the
next crustal layer (upper crust) are obtained over
East Turkey (20 km), with large values of the
order of 17 km occurring at the marine region
south of Greece. The continental part of Greece
exhibits smaller values for this layer of the or-
der of 12 km with respect to marine areas. In
overall larger numerical values for the depths of
the upper crust layer occur at continental rather
than marine regions. Moving towards the deeper
crustal layers one begins to verify numerically
the connection of the surface topography varia-
tions with the underlying crustal thickness ac-
cording to the Airy/Heiskanen isostatic theory.
Thus, in overall greater crustal depths are ob-
served at continental regions compared to ma-
rine regions. The middle crust layer in particu-
lar shows a maximum depth value of 40 km at
the eastern part of Turkey, with the minima ap-
pearing at the marine area stretching over the
Ionian trench. The continental part of Greece

Table 1: Layer thickness information obtained from

CRUST 2.0 for the test area. Unit is km.

Layer Min Max Mean SD
Soft Sediments 0.50 1.50 1.13 0.35
Upper Crust 1.70 20.00 9.70 4.01
Middle Crust 2.30 20.00 9.79 3.56
Lower Crust 2.50 13.50 8.74 2.50

has an almost constant depth value around 23
km. The overall variation of the boundary sur-
face between middle and lower crust assimilates
roughly with the basic scheme of mass compen-
sation after Airy. Finally, the lower crust layer,
which expresses also the Mohorovicic disconti-
nuity, appears to have a mean value of 32.89 km
for the whole test area. Especially over Greece,
for which another independent dataset of Moho
depths is available, the largest values are of the
order of 40 km and occur underneath the con-
tinental part of the state, whereas the smallest
Moho depths according to CRUST 2.0 appear
again at the marine area of the Ionian trench.

The layer thickness information provides an
additional source of information, which is mainly
of interest to potential field determination stud-
ies. The information of Table 1 indicates the
position of the density contrast between two sub-
sequent layer. Table 2 on the other hand offers
a measure of the quantity of the crustal masses
defined by the respective layer. From the overall
assessment of this information it follows that the
values of the soft sediments thickness (0.5 − 1.5
km) are distributed uniformly over the test re-
gion, with small values appearing at continental
regions and larger values at lower elevation areas
or at sea. The thickness data for the rest of the
crustal layers (upper, middle and lower crust) ap-
pear with similar characteristics. Thus, all layers
show a variation in their vertical size that com-
plies in general with the Airy/Heiskanen hypoth-
esis. Smaller layer thickness values appear for
all three crustal layers at marine regions, while
larger values occur below continental parts. Fur-
thermore, all three layers obtain mean thickness
values of the order of 12 km over continental re-
gions, while they all reveal the same mean of
almost 7 km at marine areas.

Figure 1 presents the Moho data obtained
from CRUST 2.0 for the area under consideration
and their comparison with Airy-derived crustal



Fig. 1 Moho depth values with respect to mean sea level obtained from CRUST 2.0 database (left panel) and

differences with respect to Airy-derived Moho depths for the same region (right panel). Unit is km.

thickness T , according to the standard scheme
Tland = D + t and Tsea = D − t′ defined re-
spectively below continental and marine regions.
In the frame of the Airy hypothesis the root
and anti-root quantities are calculated according
to the expressions t = (ρcrust/(ρm − ρcrust)) h
and t′ = ((ρcrust − ρw)/(ρm − ρcrust)) h′ respec-
tively (Lambeck 1988). These quantities express
some crude estimates of the mean crustal, man-
tle and water density, for which the numeri-
cal values ρcrust = 2.67 g cm−3, ρm = 3.27 g
cm−3 and ρw = 1.03 g cm−3 where used here, h
and h′ denote the height of the topography and
the depth of the bathymetry in absolute values
with respect to mean sea level and D describes
the depth where the actual compensation takes
place, taken here equal to 30 km. The discrep-
ancies between the CRUST 2.0 provided Moho
information with the theoretically derived Moho
structure after Airy are significant for the test
area, having a mean value of about 4 km and a
standard deviation of roughly 3 km, these values
expressing the discrepancies between the two sets
in absolute sense. The larger differences (max-
imum: 16.02 km) are located at the areas with
the large Moho depths according to the CRUST
2.0 values. The right panel of Figure 1 indi-
cates in more detail the relative relation between
the two databases, as negative values express re-
gions where the CRUST 2.0 data represent larger
Moho estimations than the theoretical Airy val-
ues and vice-versa for the regions where posi-
tive differences are reported. The overall perfor-
mance is fairly poor and indicates a large dis-
crepancy between the two datasets, which could

only be properly assessed if a further indepen-
dent Moho information for the same area was
utilized.

3 Assessment of Moho information

Among the different interface estimation meth-
ods that exist in the literature, deconvolution
methods appear to be of special interest when
local surface gravity data are available. Tsokas
and Hansen (1997) applied such an analytical sig-
nal analysis technique (Multiple Source Werner
Deconvolution, MSWD) for the estimation of the
Moho interface for the area surrounding Greece
(19◦ < λ < 27◦, 34.5◦ < ϕ < 42◦), based on
gravity measurements that were available over
this area. Their computations provide a means
of independent assessment for the Moho infor-
mation given by CRUST 2.0 and the aforemen-
tioned Airy-based calculations. The original res-
olution of the available Moho depths based on
the MSWD method for the area surrounding
Greece stretching over the above geographical
limitations was approximately 5’ × 5’. In or-
der to enable the comparisons between the dif-
ferent Moho databases for this region (CRUST
2.0, Airy and MSWD) we selected the resolution
of the MSWD Moho dataset as our reference and
densified the other two databases to this analysis.
In this stage special care has been taken, so that
no undesired numerical artifacts would enter into
the data due to this upgrade. Thus, the resolu-
tion of the original database has been stepwise
increased, by artificially assigning the original
Moho values to a gradually increasing number



Fig. 2 Differences between estimated Moho depth values according to the MSWD-method and (a) computed

Moho depths applying Airy hypothesis (left panel), (b) CRUST 2.0 Moho data (right panel). Unit is km.

Table 2: Available Moho data for the area surrounding Greece (19◦ < λ < 27◦ and 34.5◦ < ϕ < 42◦) and

their comparisons. Unit is km.

Data Min Max Mean SD
MSWD -48.97 -18.16 -31.56 5.56
Airy -34.32 -20.06 -28.33 3.33

CRUST 2.0 -42.31 -22.74 -31.74 4.15
MSWD - Airy -11.35 19.15 3.23 5.17

MSWD - CRUST 2.0 -11.11 12.75 -0.19 3.69

of geographical sub-cells and by ultimately ap-
plying a biharmonic spline interpolation method
in order to reach the desired resolution. This fi-
nal step of the grid densification has been imple-
mented through Matlab’s griddata command,
using as option the method described in Sanwell
(1987). Table 4 provides an overview of the avail-
able Moho data and Figure 2 presents the dis-
tribution of the obtained differences when com-
paring MSWD with Airy and CRUST 2.0 Moho
depths. The Airy and CRUST 2.0 Moho values
show in overall a poor agreement with the lo-
cally computed MSWD Moho depths. The com-
puted differences between the two surfaces with
respect to the MSWD estimated Moho interface
obtain maximum values (in absolute sense) of
19.15 km and 12.75 km respectively. In overall,
CRUST 2.0 database appears to perform better
compared with the Airy-computed depths, al-
though the numerical discrepancy with respect

to the MSWD values remains here significant as
well. In order to quantify the effect of this geo-
metrical variation (of the order of several kilome-
ters) in the Moho interface between the different
available procedures we proceed to the computa-
tion of the corresponding isostatic effects.

4 Isostatic effects on gravity

The utilization of the crustal layer geometry
given by CRUST 2.0 for geodetic applications of
local or regional scale involves an efficient means
of modelling the respective disturbing masses.
Common motivation for the analysis is the eval-
uation in terms of forward modelling techniques
of the gravitational signal of the crustal mass dis-
tributions for selected computation points situ-
ated on or above the surface topography. The
areas of application could include the computa-
tion of isostatic effects on gravity or the evalua-



Fig. 3 Differences in isostatic effects on gravity between the MSWD estimated Moho surface and (a) the

effects that are induced by a Moho interface according to Airy hypothesis (left panel), (b) isostatic effects

obtained when using CRUST 2.0 Moho data (right panel). Values express differences in mGal.

Table 3: Isostatic effects on gravity induced from the different available Moho data for the area surrounding

Greece (19◦ < λ < 27◦ and 34.5◦ < ϕ < 42◦) and their comparisons. Unit is mGal.

Data Min Max Mean SD
MSWD (A) -191.873 197.076 -17.55 74.011

Airy (B) -145.119 194.219 -13.283 65.889
CRUST 2.0 (C) -176.83 197.608 -17.056 73.308

(B) - (C) -5.044 40.689 3.772 8.946
(B) - (A) -8.102 51.801 4.266 10.38
(C) - (A) -25.038 16.747 0.494 3.329

tion of second order derivatives. The former in-
corporates the information provided only by the
last CRUST 2.0 layer while the computation of
second order derivatives due to the mass distri-
butions described by the database can refer to
all the individual crustal layers and defines an
application with special interest to assessment
studies of GOCE gradiometry data. The ques-
tion of modelling the given crustal distributions
is similar to the problem of terrain modelling for
surface gravity studies. An efficient way of per-
forming this step could be by invoking the flex-
ible general polyhedral modelling. If the topol-
ogy information of the three dimensional mass
distributions defined in a layer-wise manner by
CRUST 2.0 is available, then the closed analyti-
cal expressions for the gravity field of a generally
shaped polyhedron of constant density could be

applied to compute directly the distinct CRUST
2.0 layers induced gravity field signal (potential
and derivatives up to second order). An inter-
mediate computation step that is necessary for
the correct application of the respective work-
ing formulae is the one transforming the original
(φ, λ, h) CRUST 2.0 data to (x, y, z) values at
an appropriately defined local coordinate system.
Although all the aforementioned computations
are straightforward the have proven to be tedious
and time consuming in the implementation pro-
cess. An alternative (and for the purposes of the
present investigation equally efficient) modelling
method would be by means of the rectangular
prism. If the crustal masses defined through
the two boundary surfaces, i.e. the surface to-
pography and the Moho interface, are modelled
through a finite decomposition into regular rect-



angular prisms, then the gravitational attraction
of these masses at any given surface point can be
computed by simply adding the individual con-
tribution of each of these columns to the point
in question, a quantity which will represent the
vertical gradient of the gravitational potential of
the specific prismatic body. Choosing a regular
grid of computation points situated at the nodes
of the respective surface terrain model we obtain
these potential contributions for all points of the
grid, forming thus a regular grid of isostatic ef-
fects on gravity, as the resulting potential quan-
tities express exactly the attraction of the crustal
masses to gravity measurements obtained at the
surface.

Table 5 presents the results of the aforemen-
tioned computations carried out for the same
area and for all available Moho data. Figure
3 displays the differences between the isostatic
effects induced by the MSWD Moho surface
and the Moho interfaces according to Airy and
CRUST 2.0. As the upper boundary surface of
the visible topography and bathymetry remained
unchanged, the question was to what extend the
observed discrepancies between the different es-
timated Moho structures would affect the iso-
static contributions obtained at surface points.
The presented calculations demonstrate that the
respective differences are significant. In overall
they fluctuate between several mGal, however
they obtain differences of up to 50 mGal at the
marine region across the Ionian trench.

5 Concluding remarks

The availability of global crustal databases en-
hances typical gravity field modelling studies
in local and regional scales significantly. The
present study demonstrated how one can com-
bine the inherent information of CRUST 2.0
database with standard forward modelling tools
and obtain a completely new source of informa-
tion, that can be used both as an assessment tool
for other available databases as well as an inde-
pendent source for gravity field modelling and in-
terpretation. The numerical handling of the dif-
ferent resolutions of the heterogeneous databases
is one of the matters that has to be addressed fur-
ther, as it represents the basic handicap of uti-
lizing and merging present and future databases
for the purposes of gravity field modelling.
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Abstract. The release of model CRUST 2.0
offers an advanced and efficient means of mod-
elling crust-induced potential contributions both
globally and regionally. Providing rigorous geo-
metric as well as physical information concern-
ing the structure and consistency of distinct
crustal layers from the Earth’s topography down
to the crust-mantle boundary, the information
contained in model CRUST 2.0 is of special in-
terest to studies related to gravity field modelling
and interpretation. The present paper investi-
gates the possibilities of utilizing the CRUST 2.0
data in the frame of local and regional forward
gravity field modelling applications. For this rea-
son a thorough numerical analysis of the model
has been carried out for the area surrounding
Greece. In terms of geoid modelling and local
gravity field investigations the CRUST 2.0 infor-
mation can be used mainly in the frame of iso-
static anomalies. Thus, isostatic effects on grav-
ity have been computed for this region and are
compared with the corresponding computations
resulting from two other independent sources of
determining the Moho interface, namely the Airy
isostatic mechanism and the application of de-
convolution methods to surface gravity data.

Keywords. global digital databases, forward
modelling, CRUST 2.0, Moho interface

1 Introduction

The publication of CRUST 2.0, a global digital
crustal database at a 2◦ × 2◦ resolution (Bassin
et al. 2000), produced a significant impulse over
the last years to research activities related with
the Earth’s structure and gravity field. Among
the topics that profited substantially from the
release of the new crustal data were for example
regional lithosphere investigations (Danesi and
Morelli 2001, Schmid et al 2004, Koulakov and

Sobolev 2006), seismic studies (Obayashi et al
2004) or the derivation and analysis of isostatic
Earth gravity models (Kaban et al 2004, Tsoulis
2004).

CRUST 2.0, which has been compiled and is
now administered by the U.S. Geological Survey
and the Institute for Geophysics and Planetary
Physics at the University of California, is the de-
scendent of CRUST 5.1, a global crustal model
at 5◦×5◦ (Mooney et al 1998). Both models are
based on seismic refraction data published up to
1995 and a detailed compilation of ice and sedi-
ment thickness. CRUST 2.0 offers density, geom-
etry and seismic information for a total of seven
crustal layers, from ice and water to lower crust,
the boundary surface between crust and mantle,
otherwise known as the Mohorovicic discontinu-
ity. The data consist of density values (the de-
tailed density structure includes the additional
layer of the uppermost mantle), layer boundary
values in terms of depths with respect to mean
sea level and values for compressional and shear
wave velocities, all of which are given globally
and explicitly for each of the 16200 grid elements
that define each layer at the 2◦ × 2◦ resolution.
Thus, the model consists ultimately of a total of
29 matrices, each of dimensions 180 × 90, where
global bathymetry and surface topography data
were adopted from the 5 arc minute resolution
data set ETOPO-5 (NGDC, 1988).

The availability of recent Digital Terrain Mod-
els on the other hand, especially over continental
areas, offers a new prospective of unprecedented
resolution in calculations of local and regional
gravity field modelling (Vergos et al 2005). In
the frame of these new terrain data one could also
incorporate the crustal information of databases,
such as CRUST 2.0, and devise computational
strategies where both of these data sources could
be combined, for example for the computation
of isostatic anomalies. The present paper inves-
tigates the possibilities of utilizing the CRUST



2.0 data to local or regional gravity field related
computations. It turns out, that two are the key
issues connected with the CRUST 2.0 database,
that can be exploited for regional investigations.
The geometry of the final crustal layer, which
represents the Moho boundary over the specific
region and will occupy the calculations presented
in this paper and the detailed stratification of
the database that could be employed in studies
of gravity field interpretation.

2 Local assets of CRUST 2.0
database

The window selected for the local assessment
of the CRUST 2.0 database was defined be-
tween 14◦ < λ < 34◦ and 28◦ < ϕ < 48◦, an
area stretching over the southeast Mediterranean
with Greece at its center. The area is character-
ized by the absence of hard sediments, thus a
total of only four layers exist in the database
for this region, namely soft sediments, upper,
middle and lower crust. Table 1 presents the
statistics regarding the layer depth information
for the area under consideration. Examining the
soft sediments layer we observe a direct correla-
tion of the variations of the lower bound of this
layer with the variations of the surface topogra-
phy. The largest numerical values for the depths
(3 − 5 km) occur, as one would expect, un-
der the Mediterranean part of the region, while
the smallest values are observed at the conti-
nental parts. The largest depth values of the
next crustal layer (upper crust) are obtained over
East Turkey (20 km), with large values of the
order of 17 km occurring at the marine region
south of Greece. The continental part of Greece
exhibits smaller values for this layer of the or-
der of 12 km with respect to marine areas. In
overall larger numerical values for the depths of
the upper crust layer occur at continental rather
than marine regions. Moving towards the deeper
crustal layers one begins to verify numerically
the connection of the surface topography varia-
tions with the underlying crustal thickness ac-
cording to the Airy/Heiskanen isostatic theory.
Thus, in overall greater crustal depths are ob-
served at continental regions compared to ma-
rine regions. The middle crust layer in particu-
lar shows a maximum depth value of 40 km at
the eastern part of Turkey, with the minima ap-
pearing at the marine area stretching over the
Ionian trench. The continental part of Greece

Table 1: Layer thickness information obtained from

CRUST 2.0 for the test area. Unit is km.

Layer Min Max Mean SD
Soft Sediments 0.50 1.50 1.13 0.35
Upper Crust 1.70 20.00 9.70 4.01
Middle Crust 2.30 20.00 9.79 3.56
Lower Crust 2.50 13.50 8.74 2.50

has an almost constant depth value around 23
km. The overall variation of the boundary sur-
face between middle and lower crust assimilates
roughly with the basic scheme of mass compen-
sation after Airy. Finally, the lower crust layer,
which expresses also the Mohorovicic disconti-
nuity, appears to have a mean value of 32.89 km
for the whole test area. Especially over Greece,
for which another independent dataset of Moho
depths is available, the largest values are of the
order of 40 km and occur underneath the con-
tinental part of the state, whereas the smallest
Moho depths according to CRUST 2.0 appear
again at the marine area of the Ionian trench.

The layer thickness information provides an
additional source of information, which is mainly
of interest to potential field determination stud-
ies. The information of Table 1 indicates the
position of the density contrast between two sub-
sequent layer. Table 2 on the other hand offers
a measure of the quantity of the crustal masses
defined by the respective layer. From the overall
assessment of this information it follows that the
values of the soft sediments thickness (0.5 − 1.5
km) are distributed uniformly over the test re-
gion, with small values appearing at continental
regions and larger values at lower elevation areas
or at sea. The thickness data for the rest of the
crustal layers (upper, middle and lower crust) ap-
pear with similar characteristics. Thus, all layers
show a variation in their vertical size that com-
plies in general with the Airy/Heiskanen hypoth-
esis. Smaller layer thickness values appear for
all three crustal layers at marine regions, while
larger values occur below continental parts. Fur-
thermore, all three layers obtain mean thickness
values of the order of 12 km over continental re-
gions, while they all reveal the same mean of
almost 7 km at marine areas.

Figure 1 presents the Moho data obtained
from CRUST 2.0 for the area under consideration
and their comparison with Airy-derived crustal



Fig. 1 Moho depth values with respect to mean sea level obtained from CRUST 2.0 database (left panel) and

differences with respect to Airy-derived Moho depths for the same region (right panel). Unit is km.

thickness T , according to the standard scheme
Tland = D + t and Tsea = D − t′ defined re-
spectively below continental and marine regions.
In the frame of the Airy hypothesis the root
and anti-root quantities are calculated according
to the expressions t = (ρcrust/(ρm − ρcrust)) h
and t′ = ((ρcrust − ρw)/(ρm − ρcrust)) h′ respec-
tively (Lambeck 1988). These quantities express
some crude estimates of the mean crustal, man-
tle and water density, for which the numeri-
cal values ρcrust = 2.67 g cm−3, ρm = 3.27 g
cm−3 and ρw = 1.03 g cm−3 where used here, h
and h′ denote the height of the topography and
the depth of the bathymetry in absolute values
with respect to mean sea level and D describes
the depth where the actual compensation takes
place, taken here equal to 30 km. The discrep-
ancies between the CRUST 2.0 provided Moho
information with the theoretically derived Moho
structure after Airy are significant for the test
area, having a mean value of about 4 km and a
standard deviation of roughly 3 km, these values
expressing the discrepancies between the two sets
in absolute sense. The larger differences (max-
imum: 16.02 km) are located at the areas with
the large Moho depths according to the CRUST
2.0 values. The right panel of Figure 1 indi-
cates in more detail the relative relation between
the two databases, as negative values express re-
gions where the CRUST 2.0 data represent larger
Moho estimations than the theoretical Airy val-
ues and vice-versa for the regions where posi-
tive differences are reported. The overall perfor-
mance is fairly poor and indicates a large dis-
crepancy between the two datasets, which could

only be properly assessed if a further indepen-
dent Moho information for the same area was
utilized.

3 Assessment of Moho information

Among the different interface estimation meth-
ods that exist in the literature, deconvolution
methods appear to be of special interest when
local surface gravity data are available. Tsokas
and Hansen (1997) applied such an analytical sig-
nal analysis technique (Multiple Source Werner
Deconvolution, MSWD) for the estimation of the
Moho interface for the area surrounding Greece
(19◦ < λ < 27◦, 34.5◦ < ϕ < 42◦), based on
gravity measurements that were available over
this area. Their computations provide a means
of independent assessment for the Moho infor-
mation given by CRUST 2.0 and the aforemen-
tioned Airy-based calculations. The original res-
olution of the available Moho depths based on
the MSWD method for the area surrounding
Greece stretching over the above geographical
limitations was approximately 5’ × 5’. In or-
der to enable the comparisons between the dif-
ferent Moho databases for this region (CRUST
2.0, Airy and MSWD) we selected the resolution
of the MSWD Moho dataset as our reference and
densified the other two databases to this analysis.
In this stage special care has been taken, so that
no undesired numerical artifacts would enter into
the data due to this upgrade. Thus, the resolu-
tion of the original database has been stepwise
increased, by artificially assigning the original
Moho values to a gradually increasing number



Fig. 2 Differences between estimated Moho depth values according to the MSWD-method and (a) computed

Moho depths applying Airy hypothesis (left panel), (b) CRUST 2.0 Moho data (right panel). Unit is km.

Table 2: Available Moho data for the area surrounding Greece (19◦ < λ < 27◦ and 34.5◦ < ϕ < 42◦) and

their comparisons. Unit is km.

Data Min Max Mean SD
MSWD -48.97 -18.16 -31.56 5.56
Airy -34.32 -20.06 -28.33 3.33

CRUST 2.0 -42.31 -22.74 -31.74 4.15
MSWD - Airy -11.35 19.15 3.23 5.17

MSWD - CRUST 2.0 -11.11 12.75 -0.19 3.69

of geographical sub-cells and by ultimately ap-
plying a biharmonic spline interpolation method
in order to reach the desired resolution. This fi-
nal step of the grid densification has been imple-
mented through Matlab’s griddata command,
using as option the method described in Sanwell
(1987). Table 4 provides an overview of the avail-
able Moho data and Figure 2 presents the dis-
tribution of the obtained differences when com-
paring MSWD with Airy and CRUST 2.0 Moho
depths. The Airy and CRUST 2.0 Moho values
show in overall a poor agreement with the lo-
cally computed MSWD Moho depths. The com-
puted differences between the two surfaces with
respect to the MSWD estimated Moho interface
obtain maximum values (in absolute sense) of
19.15 km and 12.75 km respectively. In overall,
CRUST 2.0 database appears to perform better
compared with the Airy-computed depths, al-
though the numerical discrepancy with respect

to the MSWD values remains here significant as
well. In order to quantify the effect of this geo-
metrical variation (of the order of several kilome-
ters) in the Moho interface between the different
available procedures we proceed to the computa-
tion of the corresponding isostatic effects.

4 Isostatic effects on gravity

The utilization of the crustal layer geometry
given by CRUST 2.0 for geodetic applications of
local or regional scale involves an efficient means
of modelling the respective disturbing masses.
Common motivation for the analysis is the eval-
uation in terms of forward modelling techniques
of the gravitational signal of the crustal mass dis-
tributions for selected computation points situ-
ated on or above the surface topography. The
areas of application could include the computa-
tion of isostatic effects on gravity or the evalua-



Fig. 3 Differences in isostatic effects on gravity between the MSWD estimated Moho surface and (a) the

effects that are induced by a Moho interface according to Airy hypothesis (left panel), (b) isostatic effects

obtained when using CRUST 2.0 Moho data (right panel). Values express differences in mGal.

Table 3: Isostatic effects on gravity induced from the different available Moho data for the area surrounding

Greece (19◦ < λ < 27◦ and 34.5◦ < ϕ < 42◦) and their comparisons. Unit is mGal.

Data Min Max Mean SD
MSWD (A) -191.873 197.076 -17.55 74.011

Airy (B) -145.119 194.219 -13.283 65.889
CRUST 2.0 (C) -176.83 197.608 -17.056 73.308

(B) - (C) -5.044 40.689 3.772 8.946
(B) - (A) -8.102 51.801 4.266 10.38
(C) - (A) -25.038 16.747 0.494 3.329

tion of second order derivatives. The former in-
corporates the information provided only by the
last CRUST 2.0 layer while the computation of
second order derivatives due to the mass distri-
butions described by the database can refer to
all the individual crustal layers and defines an
application with special interest to assessment
studies of GOCE gradiometry data. The ques-
tion of modelling the given crustal distributions
is similar to the problem of terrain modelling for
surface gravity studies. An efficient way of per-
forming this step could be by invoking the flex-
ible general polyhedral modelling. If the topol-
ogy information of the three dimensional mass
distributions defined in a layer-wise manner by
CRUST 2.0 is available, then the closed analyti-
cal expressions for the gravity field of a generally
shaped polyhedron of constant density could be

applied to compute directly the distinct CRUST
2.0 layers induced gravity field signal (potential
and derivatives up to second order). An inter-
mediate computation step that is necessary for
the correct application of the respective work-
ing formulae is the one transforming the original
(φ, λ, h) CRUST 2.0 data to (x, y, z) values at
an appropriately defined local coordinate system.
Although all the aforementioned computations
are straightforward the have proven to be tedious
and time consuming in the implementation pro-
cess. An alternative (and for the purposes of the
present investigation equally efficient) modelling
method would be by means of the rectangular
prism. If the crustal masses defined through
the two boundary surfaces, i.e. the surface to-
pography and the Moho interface, are modelled
through a finite decomposition into regular rect-



angular prisms, then the gravitational attraction
of these masses at any given surface point can be
computed by simply adding the individual con-
tribution of each of these columns to the point
in question, a quantity which will represent the
vertical gradient of the gravitational potential of
the specific prismatic body. Choosing a regular
grid of computation points situated at the nodes
of the respective surface terrain model we obtain
these potential contributions for all points of the
grid, forming thus a regular grid of isostatic ef-
fects on gravity, as the resulting potential quan-
tities express exactly the attraction of the crustal
masses to gravity measurements obtained at the
surface.

Table 5 presents the results of the aforemen-
tioned computations carried out for the same
area and for all available Moho data. Figure
3 displays the differences between the isostatic
effects induced by the MSWD Moho surface
and the Moho interfaces according to Airy and
CRUST 2.0. As the upper boundary surface of
the visible topography and bathymetry remained
unchanged, the question was to what extend the
observed discrepancies between the different es-
timated Moho structures would affect the iso-
static contributions obtained at surface points.
The presented calculations demonstrate that the
respective differences are significant. In overall
they fluctuate between several mGal, however
they obtain differences of up to 50 mGal at the
marine region across the Ionian trench.

5 Concluding remarks

The availability of global crustal databases en-
hances typical gravity field modelling studies
in local and regional scales significantly. The
present study demonstrated how one can com-
bine the inherent information of CRUST 2.0
database with standard forward modelling tools
and obtain a completely new source of informa-
tion, that can be used both as an assessment tool
for other available databases as well as an inde-
pendent source for gravity field modelling and in-
terpretation. The numerical handling of the dif-
ferent resolutions of the heterogeneous databases
is one of the matters that has to be addressed fur-
ther, as it represents the basic handicap of uti-
lizing and merging present and future databases
for the purposes of gravity field modelling.
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Recent developments in synthetic Earth gravity
models in view of the availability of digital terrain
and crustal databases of global coverage and in-
creased resolution
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Abstract. The basic idea of a synthetic or sim-
ulated Earth gravity model (SEGM) is to vali-
date theories and algorithms used in gravity field
modelling. However, if a SEGM represents the
Earth’s gravity field reasonably well it can also
be used to identify and interpret local, regional
and global interactions between the Earth’s inte-
rior and its gravity filed. This paper presents an
overview of the most recent developments in the
construction of SEGMs and their possible use in
gravity field recovery including the use of forward
gravity field modelling techniques and the ap-
plication of topographic/isostatic compensation
models. Characteristic results of recent global as
well as regional computations over Australia are
included.

Keywords. Synthetic earth gravity models, for-
ward modelling, global digital databases, topo-
graphic/isostatic models

1 Introduction

The construction of SEGMs is gaining more and
more interest in the geodetic research commu-
nity. This is partly due to the availability of new
satellite only gravity models (e.g. from CHAMP,
GRACE and in future GOCE). While most cur-
rent studies on the Earth’s gravity filed and its
temporal variation focus on the results of the new
geodetic satellite missions CHAMP, GRACE and
in future GOCE, the full potential of these mis-
sions can only be obtained through a combina-
tion with information on the Earth’s geophysical
properties and their change with time. The lat-
ter can be obtained from different databases with
ever increasing resolution, such as the current re-
lease of SRTM-derived terrain models. This per-
mits the construction of synthetic models that

can record, identify and interpret interactions be-
tween the Earth’s geophysical properties and the
gravity field observed in the high-frequency spec-
trum.

To some extend the availability of an increas-
ing number of databases has also provoked recent
research activities in this area. For example new
high-resolution databases available allow the in-
clusion of higher frequency information obtained
by the application of different forward modelling
techniques. More recent contributions on this
field of research include the so-called source and
effect modeling technique (Kuhn and Feather-
stone 2003, 2005; Baran et al. 2006), the so-
called direct integration and spherical harmonic
approaches (Kuhn and Featherstone 2005), or
the analytical approaches in geopotential model-
ing (Petrovskaya et al. 2001). The analysis of the
structure and the variable density information of
a distinct number of crustal layers, which is pro-
vided by global crustal models such as CRUST
2.0 (Bassin et al. 2000; Mooney et al. 1998),
leads on the other hand to the computation of so-
called topographic/isostatic Earth gravity mod-
els, utilizing forward gravity field modelling tech-
niques as well (see e.g. Tsoulis 2004).

2 Topographic/isostatic Earth grav-
ity models

A significant contribution in the construction of
synthetic Earth gravity models is expressed by
the analysis and interpretation of available global
topographic/isostatic gravity models, which can
be obtained from the straightforward analysis of
a global terrain database, applying some theory
of isostatic compensation of the crustal masses
over the denser underlying mantle. This analy-
sis leads to the computation of gravity models
which reflect the gravity signal information con-



tent present in the topographic masses (i.e. the
high frequency part of the geopotential). The ap-
plication of denser topographic data in a global
sense, has lead recently to the derivation of such
topographic/isostatic models (t/i in the sequel)
of very high maximum degree and order (see e.g.
Tsoulis 2005). This permits the correlation of
such a model with the local high frequency grav-
ity field characteristics, which may be primarily
modelled using the detailed terrain and crustal
information provided for a restricted study area
by the aforementioned databases.

The fundamental parameter that underlines
the evaluation of a topographic/isostatic model
is the spatial resolution of the respective ter-
rain or crustal database. The denser a global
digital terrain or crustal database is, the higher
the maximum degree and order of the computed
t/i gravity model will be. Thus, the analysis of
global crustal database CRUST 2.0, which is de-
fined on a 2◦ × 2◦ global resolution produces a
t/i gravity model that is restricted only up to de-
gree and order 90 (Tsoulis 2004), whereas the uti-
lization of denser global terrain models, such as
ETOPO5, and the application of standard Airy
and Pratt isostatic theories leads to the com-
putation of respective t/i models up to degree
1082 (Tsoulis, 2005). The most recent t/i grav-
ity model is available up to degree 2160 (Pavlis
et al. 2005) and is based on the analysis of the
global digital terrain model DTM2002, a global
DTM provided in a 2’ and a 5’ global resolution.

Neglecting here the theoretical background of
t/i model computation, which can be found in
Claessens (2003), we focus on the spectral as-
sessment of the available t/i models with respect
to the combined reference gravity model EGM96
(Lemoine et al. 1998). From the different means
of numerical evaluation of some available sets of
potential coefficients, we compute here four dis-
tinct quantities, namely (a) the RMS geoid un-
dulation difference by degree and (b) the RMS
gravity anomaly difference by degree, which pro-
vide a measure of a direct comparison between
two different models expressed in geoid height
(length) and gravity anomalies (mGal) respec-
tively and (c) the correlation by degree and (d)
smoothing by degree, which offer a means of di-
rect spectral comparison between two arbitrary
models.

Figures 1 to 4 depict the RMS geoid height
and gravity anomaly difference curves of three
different t/i models, the uncompensated topog-
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raphy and EGM96. Models ’Airy’ and ’Pratt’
are obtained from the analysis of ETOPO5 data
and are available up to degree 1082, while model
’T/I’ expresses the t/i model obtained by Pavlis
et al. (2005) up to degree and order 2160. Fig-
ures 1 and 3 are of course truncated up to degree
360 in order to provide a direct comparison to
EGM96, while Figures 2 and 4 present the whole
common range of the available coefficients, i.e.
up to degree 1082. The figures’ axes also indicate
the respective spatial resolution, which is helpful
for the interpretation of the presented informa-
tion. An interesting remark from these compu-
tations can be made regarding the Pratt-based
t/i model. Thus, while all t/i models, includ-
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ing EGM96, tend to converge to the power of
the uncompensated topography, after a signifi-
cant ’compensation’ in the power spectrum over
the lower to medium degree range is performed,
the Pratt model, begins to contribute isostati-
cally to the observed gravity signal only for the
high and very high frequencies, performing at the
same time badly for the low and medium wave-
lengths. A similar observation concerning the
high frequencies can be made for the Airy model
as well (this almost coincides with the T/I model
over the available common degree range where
also Airy is applied, the small discrepancies ex-
pressing merely the different DTM data), which
exhibits a notable reduction to the uncompen-

sated topography spectrum at least up to degree
360.
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Figures 5 and 6 present the correlation and
smoothing coefficients per degree of truncated
model T/I with respect to EGM96. Although
a detailed analysis of all individual t/i models
has been carried out, these representative results
manifest the overall spectral content of the com-
puted t/i coefficients. It becomes evident that
the two coefficient sets are characterized by a rel-
ative high degree of correlation (of the order of
70%), which by itself cannot imply an agreement
or disagreement of the two sets, as they may also
differ by a scale factor. The computation of the
degree of smoothing, which we obtain if we sub-
tract one model from the other, is a more inter-
esting assessment measure of the t/i model. As



Figure 6 indicates there exists a rough agreement
between the two models. The non-linear trend of
the smoothing coefficient per degree, leaves how-
ever no space for the formulation of an apparent
coincidence of the two models. On the contrary,
the apparent discrepancies between them indi-
cate the differences in the respective spectral in-
formation.

3 Synthetic Earth gravity models

In this section the construction and results of
two different SEGMs, which have been proposed
recently, are outlined. A global forward gravity
model (e.g. Kuhn and Featherstone 2005) and a
regional model over Australia (e.g. Baran et al.
2006). Both models are good examples on what
can be achieved in the construction of SEGMs
with currently available databases.

3.1 A Global Forward Gravity Model
A global gravity model based solely on forward
gravity modelling has been constructed at the
Western Australian Centre for Geodesy (WACG)
at Curtin University of Technology (Kuhn and
Featherstone 2005). The gravity field of Curtin
Synthetic Earth Gravity Model (CurtinSEGM)
is based on mass-density information of topogra-
phy, bathymetry, crust and mantle. Both topog-
raphy and bathymetry are taken from the global
5′ × 5′ Digital Elevation Model (DEM) JGP95E
(Lemoine et al. 1998) expressed here in terms
of equivalent rock heights. The use of equiva-
lent rock heights allows for simple modelling of
different terrain types but changes the geometry
of the mass distribution if the mass-density is
largely different from the adopted constant den-
sity value (here % = 2, 670 kg/m3). Information
on the Earth’s crust are taken from the global
2◦ × 2◦ CRUST2.0 model describing the crust
by five different layers with bottom of the lowest
layer representing the Moho-discontinuity. Den-
sity heterogeneities throughout the whole mantle
(between 25 km and 2891 km depth) have been
derived from the 3-D seismic shear-wave velocity
heterogeneity model S12WM13 (Su et al. 1994),
which is expanded to spherical harmonic degree
and order 12 and to order 13 in Chebyshev poly-
nomials to describe the horizontal and vertical
variations, respectively. The outer and inner core
are assumed to be composed of homogeneous
spherical mass layers with a total mass chosen
in the way that CurtinSEGM conserves the total

mass of the Earth (here M = 5.97371024 kg).
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Based on the given mass distributions only
mass-anomalies taken with respect to a reference
density model have been considered here, which
compose the anomalous gravity field. The ref-
erence density model assumes a constant mass-
density of 2, 670 kg/m3 and 2, 861 kg/m3 for the
topography (masses above the geoid) and crust
(masses between Moho and geoid) respectively.
Below the Moho-Discontinuity the density distri-
bution given by the preliminary reference Earth
model (PREM, Dziewonski and Anderson 1981)
has been adopted.

All mass-density anomalies have been con-
verted into potential anomalies using Newton’s
integral expressed in spherical harmonics, where
the regarded mass-density anomalies have been
expressed by the spherical harmonic coefficients
of surface density functions (Kuhn and Feath-
erstone 2004). In this approach a set of Love-
numbers (constant with a specific mass layer)
has been introduced so that CurtinSEGM has



similar amplitudes than EGM96 (see Kuhn and
Featherstone 2005 for more details).

The spatial pattern of the CurtinSEGM geoid
height is displayed in Figure 7. Comparison with
the geoid height obtained by EGM96 (Figure
8) shows that it reproduces the general features
of the observed gravity field. All major geoid
highs and lows are clearly identified. Therefore,
CurtinSEGM is suited for studies of the global
Earth gravity models. Most of the considerable
large differences (in some places about the same
order of magnitude than the signal itself) can be
associated with geophysical active zones where
modelling becomes difficult. Furthermore, re-
maining differences can be (loosely) associated
to a spectral range of degree 7 to 100, presum-
ably caused by mantle mass anomalies situated
in the depth range 1, 000 km to 60 km.

3.2 A Regional SEGM over Australia
Also at the WACG a high-resolution 1′× 1′ re-

gional source/effects SEGM over the Australian
continent has been constructed (Australian Syn-
thetic Earth Gravity Model, AusSEGM) for val-
idating regional gravimetric geoid determina-
tion theories, techniques and computer software
(Baran et al. 2006). AusSEGM provides syn-
thetic [simulated] gravity field functionals (grav-
ity, gravity anomaly and geoid height) on a reg-
ular 1′× 1′ as well as arbitrary points with sim-
ilar distribution as observed gravity points (e.g.
in valleys rather than on mountain tops).

The long-wavelength effect part (up to and
including spherical harmonic degree and order
360) is taken from an assumed errorless EGM96
global geopotential model. The latter is a rea-
sonable assumption in the context of the con-
struction of a SEGM and ensures it replicates
reasonably well the actual Earth’s gravity field.
Here EGM96 has been evaluated to obtain grav-
ity values on the (synthetic) Earth’s surface and
geoid heights. A high-resolution (3′′ × 3′′) syn-
thetic digital elevation model (SEDM), which is
essentially a fractal surface based on the GLOBE
v1 DEM (Hastings and Dunbar 1998) has been
constructed over Australia in order to model the
short-wavelength source part of AusSEGM. Fur-
thermore, the global topography outside Aus-
tralia has been taken from JGP95E. Numerical
(discretised) Newton integration based on spher-
ical volume elements (tesseroids) approximated
by mass-equal prisms (e.g. Kuhn 2003) has been
used to evaluate the effect on gravity and geoid

height (gravitational potential divided by grav-
ity) from the high-resolution topography. These
effects have been developed in spherical harmon-
ics so to remove any long-wavelength constituent
present but already included by that obtained
from EGM96, thus has to be removed from the
source part to include solely spectral constituents
beyond degree and order 360.

Both long- and short wavelength parts form
the final gravity and geoid height values of
AusSEGM. Therefore, their spatial structure
is similar to EGM96 with additional high-
frequency constituents. This can be seen in the
final geoid height illustrated in Figure 9 demon-
strating the general trend from south-west to
north-east with high frequency information e.g.
in the region of the highest elevation (south-
east). Amazingly a comparison of AusSEGM
gravity values with about 300, 000 measured
gravity values over Australia shows a very good
agreement with most (99.3 % of all values) of
differences below 20 mGal and no evident sys-
tematic effect visible (see Figure 10 in Baran
et al. 2006). Furthermore, the behavior of the
spectral power of the geoid heights (degree vari-
ances) does not show any major discontinuity (it
is rather seamless) between the long- and short-
wavelength contribution at spherical harmonic
degree 360 (see Figure 10). Therefore, despite
being a synthetic model AusSEGM reproduces
the Earth’s gravity field rather realistically. This
leads to the conclusion that AusSEGM can also
be used for the interpretation of the gravity field
over Australia e.g. providing evidence of distor-
tions present in the Australian Height Datum.
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4 Concluding remarks

The increased resolution of currently available
digital terrain and crustal databases, enables the
investigation of the high and very high frequency
part of the observed geopotential spectrum. Al-
though at the time being the crustal structure is
given globally at a fairly rough analysis, the very
dense resolution of satellite-based terrain models
over continental parts of the globe is expected to
play a very crucial role in the development of fu-
ture Synthetic Earth Gravity Models and assist
the interpretation of the gravity field in local and
regional scales.
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Gábor Papp 
Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, H-9401 Sopron, POB 5, 
Hungary 
 
Abstract Nettleton’s method is based on the 
elevation dependence of the surface free-air gravity 
anomalies and widely used to obtain an optimal 
average density value by applying e.g. L2 norm 
model inversion. Its accuracy, however, strongly 
depends on how efficiently the regional trends and 
very local (terrain) effects are removed from the 
gravity anomalies processed. If the geometry of the 
topography is fixed then the terrain correction term 
at the evaluation point P is a linear function of the 
unknown average topographical density. Therefore 
it can also be included in the equation system to be 
solved by inversion and an estimation of the density 
can be obtained in one step, without iteration. The 
results of this simple refinement of Nettleton’s 
method as well as the distorting effect of the 
regional trend are demonstrated by a local example.  
It reviews the gravity survey of a loess bluff and its 
surrounding on the bank of the river Danube. The 
derived density values increase from ρt=1163±543 
kg/m3 to ρt=1764±113 kg/m3 as the gravity 
anomalies are gradually reduced by regional and 
local (terrain) effects during data processing. The 
lab determination of surface loess samples from the 
area having only 3.5% water content gives 
1610±100 kg/m3.  
 
Keywords Nettleton’s method, average density, 
terrain correction, L2 norm solution 
 
 
1. Introduction 

 
Neglecting the atmospheric mass distribution, the 
free-air gravity anomalies defined at the surface 
point P (Fig. 1) reflects all the gravitational effects 
of the density inhomogeneities of the Earth’s body: 

∆gfree-air = gP - γP’,        (1) 
where gP  is the gravity acceleration value at P and 
γP’ is the normal value of the gravity acceleration of 
the reference ellipsoid at P’. 

Usually the most dominant local mass 
density anomaly relative to a reference ellipsoid is 
the topography itself in the close vicinity of the 
gravimetric surveying points. This is the reason  
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Fig. 1. Simplified interpretation of the surface free-air 
gravity anomaly assuming parallelism of the real W and 
reference E(a,e2) potential surfaces. HP is the elevation of 
point P, P″ is its projection on E(a, e2) and N is the geoid 
undulation 
 
why ∆gfree-air correlates well with the station 
elevation of gravimetric points. The correlation is 
simply approximated by a linear form the height 
dependent term of which is the gravitational effect 
of a Bouguer slab: 

∆gfree-air ≅ 2πGρtHP + a,  (2) 
where G is the universal gravitational constant, ρt is 
the local average density of topographical masses, 
HP is the elevation of P above the height datum and 
a is the area mean of the Bouguer gravity 
anomalies. 
 
2. The conditions of the application of 
Nettleton’s method 
 
Nettleton’s method (Nettleton, 1939) is based on an 
iterative parameter determination of (2) and 
frequently used to obtain a suitable value of ρt for 
the Bouguer correction. Originally it was invented 
to eliminate/remove the “disturbing” gravitational 
effect of topographical masses from the gravity 
observations (e.g. Camacho et al., 2001). In this 
context the primary disturbing source (Fig. 2) is the 
topographical surface itself representing a 
significant density interface between the 
atmospheric masses and the Earth’s body. The 
density jump on this interface varies between ~1000 



kg/m3 and ~2800 kg/m3 from point to point on the 
physical surface of the Earth. The secondary 
disturbing source (Fig. 2) is the density variation 
inside the Earth. The range of variation is usually 
much smaller (< 1000 kg/m3) in the subsurface 
region than at the boundary surface. However, the 
total volume of these density anomalies can be 
much bigger than that of the topography. Therefore 
many times the gravitational effect of the primary 
and secondary disturbing sources has the same 
magnitude. 

topography

basement/Moho etc.

geoid

∆ρ ≤2800 kg/m3
∆ρ ≈1000 kg/m3

∆ρ<1000 kg/m3

 
Fig. 2. Sketch of common density anomalies located near to 
the surface of the Earth. ∆ρ means the absolute value of the 
density variation 
 
In this context the validity of (2) is strongly 
influenced by two factors: 1) the variability of the 
topographical surface and 2) the variability of 
subsurface density distribution (Rao and Murty, 
1973). 

The variability of the topographical 
surface is taken into account as the terrain 
correction (TC). It represents the gravitational effect 
of mass surplus and deficiency above and below the 
point level HP, respectively, relative to a Bouguer 
slab of thickness HP. If TC is included in the 
computations then (2) gets the following form: 

∆gfree-air ≅ a + 2πGρtHP + TC(ρt).      (3) 
Obviously, once the geometry of the topography is 
fixed, then TC is only a function of ρt. Although in 
the original solution of Nettleton’s problem an 
iterative process may lead to the final value of both 
ρt and TC, a one step least squares solution is also 
possible using the observation equation 
∆gfree-air = a + (2πGHP + TCρ=1)ρt + δgCB= 

           =∆gCB + (2πGHP + TCρ=1)ρt, (4) 
where ∆gCB = a + δgCB is the so called complete 
Bouguer anomaly for which 

(M{δgCB}=0) 
holds, and TCρ=1 is the value of TC computed with 
unit density. In the terminology of the adjustment 
theory δgCB is a correction of observation ∆gfree-air 

and it represents the misfit between the linear model 
(4) and the measurement. 
The variability of the subsurface density 
distribution may influence significantly the 
correctness of Nettleton’s method. If the density 
variation on a given area shows dominant 
systematic (trend like) features, then it biases the 
estimated surface density ρt. The constant term a in 
(2) - that is the mean Bouguer anomaly of the area 
under investigation - can represent only stationary 
features of the density distribution. It indicates the 
local state of average mass balance between the real 
Earth and its ellipsoidal model generating γ in (1). 
The two terms in (2) assumes that the sub-
topographical (crustal) density variation has only 
“random” or short wavelength characteristics and 
also a stationary part. Obviously the terms 
“random” and “short wavelength” are subject to the 
horizontal extension of the area because what is a 
systematic feature on a small area, can be just an 
insignificant local detail on a larger scale. 
 Nevertheless, ∆gfree-air superimposes all the 
characteristics of the crustal density distribution. 
Consequently before the application of the 
Nettleton’s method the trend-like, non-stationary 
components independent from the topography must 
be removed from the observation. 
 
3. The description of the topography 
of the test area 
 
The test area ~(1.5 km × 1.2 km) is situated in a 
small town called Dunaföldvár, Hungary on the 
bank of the Danube (Fig. 3). The loess wall parallel 
to the river divides the area into a plateau with an 
average elevation of 107 m and the embankment 
with an average elevation of 97 m. The height of the 
wall may reach the maximum of 30 m. The 
sediments composing the ground are layered 
horizontally and contain mainly loess, sand and 
clay. 
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Fig. 3. Topographical map of the test area. White triangles 
show the location of gravimetric points. Blue color indicate 
the surface of the water  
 

 
27 gravimetric points were measured by the LCR 
G949 instrument (Papp et al, 2004). The 
distribution of the points was adjusted to the local 
variation of topography therefore the points were 
densified near the edge of the loess wall (Fig. 3). 
The accuracy of the g values at the gravimetric 
points is estimated below ±20 µGal (1  µGal = 10-8 
m/s2). 
 The free-air gravity anomalies 

 ∆gfree-air = gP - γP″ + 0.3086HP (5) 
were derived by the application of the normal 
gravity formula of GRS80 and the normal value (-
0.3086 mGal/m) of the vertical gradient of gravity. 
Fig. 4 shows some correlation with the topography, 
as it is expected. A local maximum of +13.2 mGal 
having elongated shape in NW-SE direction is 
located near the edge of the bank. A smooth general 
trend dipping toward NW (~ -2 mGal/km) can also 
be recognised but it is not related to the topography 
which is rather flat except in the close vicinity of 
the loess wall. This feature is certainly neither 
stationary nor random, so it has to be removed prior 
to the estimation of the average topographical 
density of the area. The physical reason of the trend 
of ∆gfree-air can be the geometry of the pre-tertiary 
basement dipping also in NW direction (Fig. 5). It 
starts from 1000 m and  reaches a depth of 2000 m 
in about 5 km distance. The gravitational effect of 
the sediments representing a significant mass 
deficiency can be approximated by a simple first 
order polynomial surface (actually a plane)  

ji1

0i

1

0j
ij

trend
airfree yxag ∑ ∑=∆

= =
− ,  

     (2) 
where aij are the coefficients of the polynomial and 
x and y are the horizontal coordinates of the gravity 
points. It was fitted to the data by applying L2 norm 
(Fig. 6). The trend plane obtained tilts toward West 
and North, at a rate of ∂(∆g)/∂x=1.07 mGal/km and 
∂(∆g)/∂y=-1.27 mGal/km, respectively. The 
dominant non-stationary component (Fig. 6) of the 
anomalous gravity field obtained from (2) was 
subtracted from all the free-air gravity data 
available on the test area: 

trend
airfreeairfree

res
airfree ggg −−− ∆−∆=∆ ,     (4) 

where res
airfreeg −∆  is the residual free-air gravity 

anomaly (Fig. 6). 
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Fig. 4. Free-air gravity anomalies on the test area. The red 
triangles show the location of gravimetric points. The 
contour interval is 0.1 mGal 

1000

1000

1100
1100

1200
1200

1300

1300

14001400

1500

1600

1700

1800

161000

162000

163000

164000

165000

166000

Y
 [

m
]

635000 636000 637000 638000 639000 640000 641000 642000

X [m]

 
Fig. 5. Contour map of the pre-tertiary basement depth 
obtained from borehole and seismic measurements. The red 
triangles show the location of gravimetric points. The 
contour interval is 100 m 
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Fig. 6. The first order trend surface of the free-air gravity 
anomalies on the test area. The red triangles show the 
location of gravimetric points. The contour interval is 0.1 
mGal 

  4. Gravity data and gravity reductions 
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Fig. 7. Residual free-air gravity anomalies on the test area 
obtained by (7). The red triangles show the location of 
gravimetric points. The contour interval is 0.1 mGal 
 
For the computation of the terrain correction in a 
planar approximation a 20 m × 20 m digital 
elevation model (DEM) of the surrounding area was 
used (Fig. 8). This detailed model was merged with 
the 3D rectangular prism model of the topography 
representing the distant terrain effects up to the 
usual distance of 167 km. The regional model is a 
generalisation of the initial 500 m × 500 m DEM of 
Hungary in the sense of the volume of topographic 
masses (Kalmár et al., 1995). 

 
Fig. 8. The volume element representation of the 
topographical masses on the test area. The horizontal 
extension of the model is 6 km × 4.5 km. The elevation of 
the mass columns varies between 90 m and 152 m 
 

 

average topographic density 
 

Three variants of the observation equation were 
used to estimate ρt and TCρ in L2 norm: 

∆gfree-air = a + (2πGHP + TCρ=1)ρt + δgCB, (8) 
    ,gGH2ag CBtP

res
airfree δ+ρπ+=∆ −  (9) 

,g)TCGH2(ag CBt1P
res

airfree δ+ρ+π+=∆ =ρ−    (10) 

In (8) free-air anomalies were used as observations 
and TC was included, in (9) residual anomalies 
obtained by (7) were applied without TC correction 
and in (10) also residual anomalies were evaluated 
and the terrain correction term was included. 

The elevation dependence of the three 
types of observables can be seen in Fig. 9.  The 
details of the least squares adjustment of the 
parameters of an elevation dependent, linear model 
are listed in Table 1. 

topographical elevation [m]

gravity anomaly [mGal] residual gravity anomaly [mGal]

95 100 105 110 115 120 125 130
10

11

12

13

14

0

1

2

0

-1

-2

free-air

residual free-air

 
Fig. 9. Elevation dependence of free-air and residual free-air  
gravity anomalies. The thick magenta line, black dashed line 
and the black solid line represents solutions (8), (9) and (10), 
respectively  
 
Table. 1. The statistics of the least squares density 
estimation. µ0 and µρ are the standard deviations of the 
observation having unit weight and of the estimated density 
ρt, respectively 
 
parameters 

observables 
µ0 

[mGal] 
ρt±µρ 

[kg/m3] 
a 

[mGal] 
number 
of 
equations 

Eq. 8  ±0.72 1163±543 6.71 27 

Eq. 9 ±0.14 1517±92 -6.72 27 

Eq. 10 ±0.15 1764±113 -7.72 27 

 
6. 6. Computation of simple and complete 

Bouguer anomalies 
 
The two types of Bouguer anomalies were 
calculated using two different average topographic 
densities ρt. Figure 10. shows, that the computations 
with the most frequently used density value of the 
topographic masses (ρt = 2670 kg/m3) results in so 
called “ghost” gravity anomalies even if the terrain 
correction is applied. The anomalies obtained are 
still strongly correlated with the topography. The 
contour lines virtually indicate a disturbing 
body/structure located exactly below the loess bluff. 

      5. Least squares estimation of the 



Undoubtedly, the normal density value is too high 
for this area since the topography is formed by thick 
loess layers/deposits.  

Decreasing the density to its most probable 
value (ρt = 1764 kg/m3) it became clear that no 
small-scale (local) geological/tectonic structures 
representing horizontal density variation are 
covered by the topographical masses, because the 
local “anomaly” disappeared (Fig. 11.). This 
computation, however, also demonstrates that the 
proper terrain correction must be taken into account 
and only the complete Bouguer anomalies can be 
used for the correct interpretation. 
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b) 
Fig. 10. Simple (a) and complete (b) Bouguer gravity 
anomalies computed with ρt = 2670 kg/m3 density value. 
Note the “ghost” anomaly indicated near the edge of the 
loess wall (points: 4,11,500,600). The red triangles show the 
location of gravimetric points. The contour interval is 0.1 
mGal 
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b) 
Fig. 11. Simple (a) and complete (b) Bouguer gravity 
anomalies computed with ρt = 1764 kg/m3 density value. The 
red triangles show the location of gravimetric points. The 
contour interval is 0.1 mGal 
 
 

7. 7. Comparision of density values 
obtained from gravity data and  sample 
analysis 
 
Four undisturbed surface samples of loess were 
collected from the test area and analyzed in order to 
determine their volume density values in laboratory. 
The lab measurements resulted in an average value 
of 1610±100 kg/m3 density at 3.7% actual water 
content. The porosity of the samples varied between 
32% and 47% which is in a good agreement with 
other estimations (Borsy, 1993). It indicates that the 
groundwater or the soil moisture may influence 
significantly the in situ volume density of the 
topographical masses of the test area. According to 
the parameters measured the mass of one m3 of 
waterlogged loess may reach more than 2000 kg. 
The results of density estimations are summarized 
in Fig. 12.  
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Fig. 12. Comparison of density estimations obtained from 
Nettleton’s method (Table 1) and lab samples. The horizontal 
bars show ±66% (one-sigma) probability intervals 
 
It seems that the most probable value of the average 
density is somewhat higher (∆ρ≅+150 kg/m3) than 
the mean density value of lab samples. The 
significant difference between the water contents of 
the actual (in situ) topographical masses and of the 
lab samples can be a possible reason of that. The 
area itself is in the close vicinity of the river 
Danube, which certainly increases the soil moisture 
and the water table level in the surrounding. Based 
on the hydrological map of the area (Boczán, 1965) 
it is supposed that the volume density below the 
depth of the average water table surface (~10 m) is 
higher than on the surface, where the samples were 
collected from. 
 
6. Conclusions 
 
Nettleton’s method implemented in a usual L2 norm 
inversion scheme and combined with the 
simultaneous determination of terrain corrections 
may lead to realistic density estimations of the 
topographical masses. The condition of its 
successful application is rigorous. The non-
stationary components (regional/local trends) not 
connected to the topography have to be removed 
from the gravity data before processing them by any 
methods related to Nettleton’s original idea. 
Otherwise the result is strongly biased. In this 
context some gravity independent (e.g. seismic) 
information about the subsurface geology is very 
useful. 
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Abstract. Acceleration of gravity, g value is widely 
used for research purposes in many areas such as 
geology and geography. Absolute determination of 
g plays an important role in metrology in 
calibrations of mechanical force standards, pressure 
transducers and load cells. An also current trend in 
mass metrology demonstrates that new mass 
standards based on electrical references for re-
definition of kilogram are under development. This 
device would balance the force of a current (as 
determined by the quantum Hall effect and the 
Josephson junction effect) against the weight of a 
test mass. This application requires knowledge of 
the absolute value of g at parts in l09. The gravity 
datum and the gravity scale in a given geographical 
area play the role of a metrological standard for 
geodetic and geophysical applications. For those 
reasons an absolute gravimeter system was bought 
at UME from Micro-g Lacoste/USA. It is a portable 
device so that it can also be used outdoor 
measurements. Uncertainty in g measurements is at 
the level 10 µGal. Acceleration of gravity g, value 
was measured in force, pressure, torque, mass and 
vibration laboratories in order to have more 
accurate measurements at UME. The 
reproducibility and repeatability measurements 
have been carried out at Vibration Laboratory. A 
brief summary about absolute gravimeter and 
performed gravimetry measurements are presented 
in this paper. 
 
Keywords. Acceleration of gravity, g, absolute 
gravimeter, metrology  
 
 
1 Introduction 
 
Absolute gravity measurements have been carried 
out by using an absolute gravimeter (called as A-

10) which is a high accurate and transportable 
instrument. It operates on a 12V DC power supply, 
and is optimized to facilitate fast field operation. A 
retroreflector corner cube is dropped vertically by 
7cm with a mechanical device inside a vacuum 
chamber. The A-10 uses a He-Ne laser, Michelson 
interferometer, long period inertial isolation device, 
and a rubidium atomic clock to determine 
accurately the position of the free-falling test mass. 
The acceleration of the test body is calculated 
directly from the measured trajectory. Stabilized 
laser and atomic clock are used to provide 
traceability to standard of length and time unit 
correspondingly. Both of these units have been 
specified to very high precision in UME 
laboratories. This direct link to metrological 
standards ensures the necessary condition for 
measuring absolute gravity.  
 
2 Theory of Operation 
 
The most common way to determine g is to directly 
measure the free-fall acceleration of a test body. 
The laser interferometer generates optical 
interference fringes as the test mass falls as shown 
in Figure 1. The fringes are counted and timed with 
an atomic clock to obtain time and displacement 
pairs. These data are fit to a parabolic trajectory to 
give a measured value of g. Expression for 
determination of g value is given in equation 1. 
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where γ is the vertical gravity gradient (~3 
µGal/cm), c the speed of light, x0 the initial 
position, v0 the initial velocity, g0 the initial 
acceleration. 
 

 
 
Fig. 1 Absolute g measurement  
 
Figure 2 shows the general scheme of A-10 
absolute gravity measurement device. It consists of 
upper unit, lower unit and electronics console.   
 
The Dropping Chamber (in Figure 3) is a vacuumed 
volume at 10-6 mbar (10-4 Pa) in two processes as 
turbo pump first and second ion pump. The 
dropping test mass contains a retro-reflective 
corner-cube surrounded by a support structure 
which is balanced at the optical center of the corner-
cube. At the beginning of a drop, the carrier 
carrying the test mass accelerates downwards with 
an acceleration greater than g. Then carrier and test 
mass drops together down. Finally, at the bottom of 
the drop, the carrier gently catches the test mass. 
Laser light passes through a window in the bottom 
of the Dropping Chamber to the corner cube (inside 
the test mass), and is then reflected back down 
through the window to the interferometer. 
 
When in contact with the carrier, the corner-cube is 
supported by three spherical or balls that fit and 

orient it to “vees” in the carrier. The carrier 
mechanism is a DC servo motor transfers the 
motion with shaft via ferrofluidic feedthrough and  
located outside the chamber. 

 

 
 

Fig. 2 A-10 Absolute gravimeter  
 
 

 
Fig. 3 Dropping chamber  
 
Reference mirror of interferometer that is 
retroreflectror corner cube was placed on the 
superspring system in order to have stable reference 
mirror. Details of system can be seen in schematic 
in Figure 4. An inner support assembly hangs from 
the superspring base structure on three short 
springs. This mainspring is approximately 10 cm in 
length and has a natural frequency of about 2 Hz. 
The inner support assembly is actively servo-
controlled to track the vertical location of the 
superspring mass. By keeping the length of the 



mainspring as constant as possible, the resulting 
system has a period of approximately 30 seconds.  

 
 

 
 
Fig. 4 Reference mirror (retroreflector corner cube) 
placed on superspring system  
 
3 Description of Measurement Station 
at UME Vibration Laboratory 
 
Absolute gravity measurements have been carried 
out at UME Vibration Laboratory. The Laboratory 
building is located in Gebze where is 40 km’s away 
from İstanbul as seen in figure 5 and 6.  
 

 
 
Fig. 5 Location of UME 
 

The Laboratory has been located at the basement 
floor where is 12 meters (or 3 floor) below the 
ground level. There are three sismic masses in the 
laboratory. Sismic masses are isolated from the 
main building with micron level silisium sand. 
Sismic mass floor is covered with a hard plastic. 
The laboratory is temperature and humidity 
controlled at 23°C±1°C and %45±10 RH.  
 

 
 
Fig. 6 UME (National Metrology Institute of 
Turkey) Building 
 
Detailed description of measurement station is 
given in Table 1. 
 
Table 1. Description of absolute gravity 
measurement station 
 

State Kocaeli 
City Gebze 
Country Turkey 
Location UME Vibration Laboratory 
Situation Isolated sismic mass 
Latitude, +N 40,7986111 degrees 
Longitude, +E 29,6405556 degrees 
Elevation 129 m 
Gradient -2,06 µGal/cm 

 
 
4 Absolute Gravity Measurements 
performed at UME Vibration Laboratory 
 
Absolute gravity measurements were carried out by 
using an A-10 (Serial No.: 005) Portable Absolute 
gravimeter as seen in figure 7. Preliminary 
adjustments were performed before g measurement. 
Dropping chamber, interferometer and laser 
temperature must be switched on and reach to 
declared temperatures for half a day. Lower part 
that includes laser, reference mirror, interferometer 
and inclinometers was placed on measurement 
surface. Laser light verticality must be aligned in 

UME 



two steps. First is automatic alignment with 
inclonometers. Second alignment is with an external 
interferometer which is called as beam checker 
located on top of laser beam exit manually.  
 

 
 
 
Fig 7. A-10 Absolute gravimeter during 
measurement. 
 
 
The travel lock disengaged and placed the dropper 
part on top of the lower part allowing the feet to fit 
neatly into the three wells on the top of lower part. 
At this point the two parts are in mechanical contact 
with each another. The legs of dropper units were 
lowered to ground manually by taking care to be as 
vertical as possible and tightened. Mechanical 
contact was disengaged by lowering the legs of 
lower part.  
 
After mechanical arrangements were completed, 
software was prepared. Input parameters, site 
specification, latitude, longitude, elevation, gradient 
and polar motion were set. Data acquisition 
parameters, number of drops/set, number of sets, 
interval between drops and start time of data 
acquisition were adjusted. Earth tides, ocean 
loading, barometer, polar motion, gradient and 
speed of light corrections were applied.  

Absolute gravity measurements have been carried 
out for three years in order to observe fluctuations 
of g value.  Measurements results can be seen from 
figures 8 and 9. 
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Fig. 8. Absolute gravity measurement results for 
three years. 
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Fig. 9. Frequency of absolute gravity measurement 
values for three years. 
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Abstract
As a tradition following the first International
Comparison of Absolute Gravimeters in 1981
(Becker and Groten, 1983), during the 7th

International Comparison of Absolute Gravimeters
(ICAG-2005) at the BIPM (Bureau International
des Poids et Mesures), high precision relative
gravity ties and vertical gradients were measured
over the BIPM ICAG-network which includes sites
with a gravity difference up to 9 mGal*. 12
institutes of 10 countries with 15 gravimeters of 6
different types were employed.

We report in this paper the organisation of the
relative campaign, the raw data analysis, the
relative-only measurement adjustment and the
combined adjustment of the relative and absolute
data. Related problems issued during the
measurements and data processing are introduced.

When preparing the final version of this paper, the
absolute g-values of the ICAG 2005 are not yet
available (Vitushkin et al., IGFS2006). In
consequence, results presented here are preliminary.
The detailed analysis of adjusted g-values and
gravimeter calibration etc. will be discussed in a
forthcoming paper.

The relative gravimetry raw data analysis, the
comparison between the relative-only adjustment

and the absolute-only adjustment shows that the
uncertainty of an adjusted gravity difference given
by the relative campaign is of the order of 1~2
µGal, probably ±1.3 µGal, and that of the gradient
is of the order of 1~2 µGal/m.

Keywords. Gravity values, gravimetry, absolute
gravimeter, relative gravimeter
__________________________________
* 1 Gal = 1 cm s-2

1 Introduction

Since 1981, the comparisons of absolute
gravimeters have been carried out every four years
at the BIPM, Sèvres France. The 7th ICAG was held
in 2005 at the BIPM, organised by the IAG Study
Group 2.1.1 “Comparisons of Absolute
Gravimeters” (SGCAG 2.1.1), the Working Group
on Gravimetry of Consultative Committee on Mass
(CCM WGG) and the BIPM. The steering
committee of the ICAG-2005 consisted of L.
Vitushkin (BIPM), M. Becker (IPGD, Germany), O.
Francis (ECGS Luxemburg), A. Germak (INRIM
Italy), Z. Jiang (BIPM), Wangxi Ji (NIM China).
Totally 19 absolute gravimeters from 14 countries
took part in the comparison. There were 7 types of
absolute gravimeters made by different
manufactures. As it is well known, different



absolute gravimeters have different reference
heights where the g-values are determined and at
present the vertical gradient can not be derived from
their observations with sufficient accuracy. In the
recent comparisons absolute measurements are
performed on multiple points to allow the
determination of instrumental biases. The
comparison is possible only when the gravity
differences are well known. In consequence, the
relative campaign is organised to measure the
vertical gradients over every point and the gravity
differences between the points. Traditionally,
people take this change to make some special
studies in relative gravimetry. This is changed since
the 7th ICAG. During the 1st Joint Meeting of the
CCM WGG and SGCAG 2.1.1 of the IAG on 25-26
May 2004, it was decided that the role of the
relative campaign is as a service, in the sense of
metrology, to the absolute gravimeter comparison.
For this purpose, one of the investigations made
during the ICAG2005 was the reachable uncertainty
of relative measurements under the ‘laboratory’
conditions at BIPM (see below). 12 institutes of 10
countries with 15 gravimeters of 6 different types
were participating in the campaign.

The organisation and the data analysis of the
absolute measurements are reported by a parallel
paper (Vitushkin et al., IGFS2006). We report in
this paper only the relative campaign activities and
the strategy of the data processing of the relative-
only adjustment, the absolute-only adjustment and
the combined absolute-relative adjustment.
However, when preparing this paper, the absolute g-
values of the ICAG 2005 have not been officially
released. All results here are therefore preliminary.
In consequence, a detailed analysis of the adjusted
g-values and the gravimeter calibration etc. will be
discussed in a forthcoming paper.

2 Optimal design of the BIPM network

The purpose of the optimal design is to look for the
best reachable uncertainty of the gravity difference
determination. Experiences based on the error
sources’ analysis (Jiang et al. 2005) shows that the
main disturbances of the relative measurement
accuracy are due to calibration and the apparent
zero-drift caused by: temperature change, transport
vibration as well as operating errors and blunder or
typing errors in gravimeter readings or instrument
height measurements. The latter happens often and
can be evaded by following a fixed and traceable
schedule using the BIPM level-fixed tripods (Fig.
1). The first two error sources, calibration and zero-
drift, can be greatly reduced with the so called

quasi-zero technique, that is, small gravity
difference, small distance, short, symmetric and
equal time intervals with triangle-closing sequence
of observations.

The BIPM ICAG-network is comprised of 12 points
over 4 sites of A, B, C1 and C2 (Fig. 2). All points
are precision levelling measured, absolute gravity
determined and air-conditioned with maximal
temperature variation of 0.5 °C. Having the gravity
difference of 8.7 mGal, the new outdoor sites C1
and C2 were built in spring 2005 mainly for the
relative meter calibration. The 10 indoor points, 3
over site A and 7 over site B, are used for the
absolute meter comparison. Obviously, most of the
comparisons are made separately within the site A
or B but few between A and B. The gravity
difference ties within a site (between A, A1, A2 and
between B, B1 to B6) are the most favourable
quantities in view of the optimal design. Most of the
gravity differences are less than 10 µGal with a
maximum of 23 µGal. The inter-point distances are
3 m at maximum. The average occupation takes
about 3~4 minutes. All relative observations
following the same scheme, over A site: A, A1, A2,
A, A1, A2, A, A1, A2, and A; over B site: B, B1,
B2, B, B2, B6, B, B6, B3 B, B3, B4, B, B4, B5, B,
B5, B1, B, B2, B1, B, B3, B6, B, B5, B4, ended at
B. Each point has at least three occupations. The
meters were always set up to be oriented to north.
One of the advantages of the triangle-closed scheme
is to better monitor the zero-drift behaviour of
meter. A special program is developed to determine
and reduce it. A normal drift is approximated by a
polynomial while an abnormal drift (jumps for
example) will be cut off into several drift periods.
The outdoor ties are designed for mainly the
relative meter calibration following the schedule:
C1, C2, C1, B, A, B, C2, A, C1, C2 and C1.

Fig. 1 The BIPM level-fixed tripods and its setting up for
the gradient measurement by Scintrex CG gravimeter



Fig.2 The BIPM ICAG horizontal network with 12 points
over 4 sites: A and B indoor site, C1 and C2 outdoor

Fig. 3 The gradient measuring positions and the schedule
with 11 occupations

The BIPM ICAG-network is consisting of the
horizontal part and the vertical part. The
comparison network is horizontally defined at 90
cm above the ground, about the average reference
height of the different existing absolute gravimeter
models. The vertical part serves for the gradient
determination. Fig. 3 shows the gradient measuring
schedule and the positions at 30, 90 and 130 cm
above ground, knowing that the reference heights of
all absolute gravimeters are between 30 and 130
cm. The gradient between 90 and 130 cm is
strengthened due to the fact that the reference
height of the most frequent absolute meter (FG5) is
close to 130 cm. The BIPM level fixed tripod is
designed (Fig. 1) to allow the instrument sensors of
the LCR and Scintrex relative meters to be located
within 1~2 cm w.r.t. the 30, 90 and 130 cm height
levels above ground by different combination of the
tripod towers. Slight eccentricities of the instrument
sensor to the defined point (up to a few cm) are
corrected by using the vertical and horizontal
gradients obtained in an iteration procedure (cf. Fig.
9 and 10). The horizontal and vertical parts of the

network are adjusted as a whole hence their
accuracy is globally homogeneous. Over C1 and
C2, only the gradient between 90 and 130 cm is
measured. The gradient is approximated by a
polynomial.

3 The relative gravity campaign and
    precision levelling measurements

The relative campaign was carried out during the 4th

~ 8th, the 24th ~ 28th July and on the 12th Sept. 2005.
Totally 14 relative gravimeters from 12 institutes of
10 countries took part in it. Among them, there are
8 Scintrex (model CG-3 and CG-5) and 6 LaCoste-
Romberg (model G, D and EG) as well as a ZLS
model B, of which 11 meters performed the
complete (or almost) measurement schedules that
take about 15 to 18 hours for an experienced
operator.

Tab. 1 Participants of ICAG relative campaign

Main Observers Institute Gravimeters
J. MRLINA GI LCR D188

M.RUYMBEKE, S.NASLIN ORB LCR G336
O. FRANCIS, M.FERRY ECGS CG-5 008

C.W. LEE, C.L. TSAI ITRI LCR EG184
P. JOUSSET
F. DUPONT BRGM

CG-3 245
CG-5 028

M. BECKER IPGD LCR D038
B. MEURERS IMG LCR D009
F. PEREIRA SYRTE CG-3 105

S. DEROUSSI
L. METIVIER

G. PAJOT
IPGP

CG-3 193
CG-3 323
CG-3 424

V. PALINKAS
J. KOSTELECKY GOP ZLS B020

H. WILMES, R. FALK BKG CG-3 202
D. RUESS, M.C. ULLRICH DMG LCR D051

Fig. 4 The IGN69 precision levelling point served as the
starting point of the height measurement

The height of the benchmarks of all the points are
monitored by the repeated precision levelling
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carried out by BRGM of France. The reference
point is the French IGN 69 levelling station located
at the BIPM Observatory building (Fig. 4). The
ICAG levelling measurement was performed the
6~7 July, 2005. For C1 and C2, it was the first time
they were levelled. No detectable height change has
been observed over the points on the sites A and B
since ICAG 2001.

4 Strategy of data processing

The goal of the relative campaign is:
- Determination of gradients and reachable

uncertainty: dg/dh ± Ud: (14 relative meters)
- Determination of gravity values and reachable

uncertainty g ± Ug: (12 points with totally 34
positions at 30, 90 and 130 cm)

- Estimation of the offsets of absolute meters and
their uncertainties: dk ± Ud: (N=19 absolute
meters)

- Investigation of the detailed structures of the
BIPM local gravity and gradient fields

Principally three different adjustments are made
depending on the data introduced: the absolute-
only, the relative-only and absolute-relative
combined adjustment. The first two methods give
the independent analysis of each data type and
comparisons of them. The last gives the best
estimations of the gravity values, gradient values at
each point, relative meter calibration and absolute
meters’ offsets and their uncertainties.

The observation equations of the adjustments are
described in brief as follows:

4.1 Absolute-only observation equation for meter k
over point i :

Vi = gki – Gi + dk

Offset condition: S dk = 0,    (k = 1, N), with
Vi - adjustment residual
gki - measured g value of meter  k at point i
Gi - adjusted g value at point i
dk - Offset of the meter k (against the adjusted G)
N - Number of absolute gravimeters involved

4.2 Relative only observation equation for meter q
between points i and j:

Vqij = sq × (Rqi – Rqj) – (Gi – Gj)
It is an unconstrained network adjustment with the
absolute value of g fixed at the point B:

GB = GB-absolute

with
Vij  - adjustment residual

Rqi, Rqj - measurement reading of meter q at point i and j
Gi, Gj  - adjusted g value at points i and j
Sq  - Scale of a relative meter q w.r.t. a defined reference
scale.

4.3 Combined Absolute and Relative observation
equation with the adjusted gravity value G as
common unknowns:

Vqij = sq × (Rqi – Rqj) – (Gi – Gj)
Vi = gki – Gi + dk

with the Offset condition: S dk = 0,    (k = 1,N)

4.4 Weights in principle

Absolute observation equation (point i of meter k):

Wi,k = µ²0 / (m²i,k+M²k)

Relative observation equation (the tie j of meter q):

wj,q = µ²0 / m²j,q
with:

µ0 - unit weight mean square error
m  - measurement error
M - systematic error

4.5 The gradients

Suppose the adjusted gravity value G at a point can
be approximated by a polynomial as function of the
height H:

G(H) = a + bH + cH²

Because the three positions of 30, 90 and 130 cm
are measured, the coefficients a, b, c can be
uniquely determined. The gravity difference and
average gradient between H1 and H2 (H1 > H2) can
be written:

     dG = G(H2) - G(H1) = b(H2-H1) + c(H2²-H1²)
     dG/(H2-H1) = b + c(H2+H1)

The gradient at height H:  dG/dH = b + 2cH

5 Preliminary results

The results here are preliminary and may be subject
to minor changes.

Fig. 5 is the histogram of the adjustment residuals
of all the measured ties for the CG-5 008. The
completed schedule gives 157 measured relative
ties. The RMS (root of mean square) of the 157
residuals is ±1.5 µGal. This implies the most
probable error of a measured gravity difference of
this meter is ±1.5 µGal. For other meters, the RMS
varies between 1.5 ~ 2.5 µGal. Table 2 lists the



adjusted gravity differences of the combined
adjustment between any two ICAG points.

Fig. 5 Histogram of the adjustment residuals for Scintrex
CG-5 8 with observation number N=157, RMS=1.5 µGal

Fig. 6 presents the discrepancies of the two
completely independent solutions. The relative
solution is that of the unconstrained network
adjustment with the gravity value at B fixed to the
mean of the measured absolute g values and the
scale is fixed to that of the CG-5 008. The
maximum difference is 2 µGal at A2 with the RMS
of the total differences being +/-1.3 µgal. Further
investigation is required to explain the discrepancy
at each point. Generally speaking, the discrepancy
is within the uncertainties of the absolute and
relative determinations. Here 14 absolute
gravimeters out of the total 19 meters were used in
this preliminary analysis. Further investigation
should be made for using the results of other 5
meters.

Fig. 6 Differences between the adjusted absolute-only (14
meters) and relative-only (14 meters) g values: RMS=
+/-1.3 µgal (µGal, preliminary)

Fig. 7 Offsets of the 14 absolute meters computed by
different adjustment methods (µGal, preliminary)

Fig. 7 shows the offsets of the 14 absolute
gravimeters determined by the three different
adjustment methods, they are close to each other
and within the uncertainties. Fig. 8 gives the daily-
variation of the offset of the FG5-108 belonging to
BIPM. The FG5-108 followed a special schedule to
occupy 6 points and 29 continuous one day-
determinations (average of each full day
measurements) were made in total. Further
investigation is required to explain the offset
determined at B point, of which the variation seems
too big.

Variation of the Offset FG5 108 
29 day-occupat ions, Mean = - 2 . 1 +/ - 1. 0  uGa l
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Fig. 8 Offsets of the daily-averaged gravity value by
FG5-108 (µGal, preliminary)

Fig. 9 B site vertical gradient between 30-90-130 cm
(µGal/m, preliminary)

Fig. 10 Horizontal gravity variation over the B site at
90 cm w.r.t. B3 (µGal, preliminary)

Fig. 9 shows the non-linearity of the gradients
between 30-90-130 cm at the 7 points over the site
B, especially the points B2, B3, B4 and B6. Table 3
lists the polynomial coefficients of the gradients at
the 12 points. Fig. 10 gives the horizontal gravity
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changes over the site B. Fig. 9 and 10 were plotted
using a 4-meter solution which is slightly different
to the 14-meter solution (Table 2).

6. Conclusion

During the ICAG 2005, relative gravity difference
and precision levelling measurements were carried
out in addition to the absolute gravity
determinations. An optimal design was developed
for the relative campaign for the network and the
scheme of observations. The uncertainty of the
adjusted g-difference is of the order of 1~2 µGal,
probably ± 1.3 µGal in the average. Consequently
the uncertainty of the adjusted gravity gradient is
about ± 1.3 µGal/m. The agreement of relative-only
and absolute-only g values is about ± 1.3 µGal if
the relative differences are referred to the mean
absolute g-value; uncertainty of the g-values of the
combined adjustment is about ± 1 µGal; the
combined adjustment gives also the offset of the
absolute meters with an uncertainty of about 1
µGal; the absolute g difference of ICAG 2005 to the
previous comparison ICAG2001 is about
± 1 µGal.

Further investigation in the behaviour of each
individual relative gravimeter will be discussed in a

forthcoming paper after the ICAG 2005 absolute
gravity values will be officially released. Only then
a final statement on the benefits of a combined
adjustment of absolute and relative gravity
observations and the impact on offset
determination, e.g. at points with few absolute
occupations can be made. This will allow an
assessment of the necessity of the huge efforts
associated with the relative network observation
scheme.
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Tab. 2 Gravity differences between the ICAG
points at 90 cm (µGal, preliminary)

Point A   A1   A2   B    B1   B2   B3   B4   B5   B6   C1   C2
A     0   11   -5-2317-2311-2296-2299-2313-2318-2295 2420-6338
A1  -11    0  -16-2327-2322-2306-2310-2324-2329-2306 2410-6349
A2    5   16    0-2311-2306-2290-2294-2308-2313-2290 2426-6333
B  2317 2327 2311    0    5   21   17    3   -1   21 4737-4022
B1 2311 2322 2306   -5    0   16   12   -2   -7   16 4732-4027
B2 2296 2306 2290  -21  -16    0   -4  -18  -22    0 4716-4043
B3 2299 2310 2294  -17  -12    4    0  -14  -19    4 4720-4039
B4 2313 2324 2308   -3    2   18   14    0   -5   18 4734-4025
B5 2318 2329 2313    1    7   22   19    5    0   23 4739-4020
B6 2295 2306 2290  -21  -16    0   -4  -18  -23    0 4716-4043
C1–2420-2410–2426-4737-4732–4716-4720–4734-4739-4716    0-8759
C2 6338 6349 6333 4022 4027 4043 4039 4025 4020 4043 8759    0

Tab. 3 Polynomial gradient coefficients and
dG(gravity differences) between 90 and 130 cm

(µGal/m, preliminary)

     Point    a     b    c  dG/µGal
A   25983 -318  7.6  -120
A1  25975 -328 14.9  -118
A2  25989 -321  9.3  -120
B   28290 -305  4.4  -118
B1  28276 -295  3.4  -115
B2  28256 -293  6.0  -112
B3  28274 -309  7.3  -117
B4  28292 -312  6.2  -119
B5  28289 -299  1.4  -118
B6  28261 -295  3.6  -115
C1  23282 -315    -  -126
C2  32041 -287    -  -115
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Abstract.     from 1983 and which has been partly destroyed, When establishing the gravity network, precise 
values of the vertical gravity gradient are needed to 
reduce measurements at the level of benchmarks. 
As the determination of the gradient is time-
consuming and expensive, this article presents the 
first effort of modelling it within the scope of the 
new French gravity network. Some existing mathe-
matical models based upon derivation of geoid un-
dulation or gravity anomalies integration are listed 
and commented. Variants using terrain information 
are also tested. Gradients measured and modelled 
by several methods are compared, leading to a stan-
dard deviation of the differences of 14.5×10−8 s−2 
(145 E) with the best method.  

• setting up an integrated geodetic and gravimetric 
network in accordance with the recommenda-
tions of the EUREF, 

• verifying and improving the old gravity coverage 
in view of a more accurate geoid model. 

An accuracy of 10×10−8 m s−2 (10 µGal) is ex-
pected. It is planned to measure 200 points by abso-
lute and relative gravimetry and 900 points by rela-
tive gravimetry. Figure 1 shows the state of the ob-
servations at the end of 2005. Presently the regions 
of Alsace and the Vosges are being observed by 
IGN. Observations should be completed by the end 
of 2008. 

The gravity values are recorded with 3 kinds of 
instruments: Keywords.  Vertical gravity gradient. 
• Absolute Mico-g FG5 and A10 gravity meters, 
• Relative Scintrex CG3M gravity meters. 1 Motivations and objectives 
Of course the vertical gravity gradient is needed to 
account for the various instruments heights and to 
reduce the measurements at the level of the bench-
marks. Instruments height varies from about 9.5 cm 
with the Scintrex put directly on a benchmark, to 
1.31 metres with the FG5. In some cases, the in-
strument height can be larger. 

Since 2000, the Institut Géographique National has 
been measuring gravity on the points of the French 
geodetic GPS network. At the same time, the Ecole 
et Observatoire des Sciences de la Terrehas created 
or re-measured 12 fundamental stations with an 
FG5 gravity meter. This work aims at: 

When using the FG5, the gravity gradient is al-
ways measured. In other cases, measurement of the 
gradient on the field is problematic because time 
consuming. For instance, a measurement with the 
A10 takes half an hour, this time would be in-
creased by a factor of 3, if the gradient had to be 
measured. 

• renovating the old gravity  network,  which dates 
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So, the objective of this study is to determine if 
the vertical gravity gradient can be modelled from 
available data. The required accuracy is about some 
10−8 s−2  (some µGal/m or 10 E). 

2 Mathematical models 

2.1 Expression of the vertical gradient in 
terms of geoid undulation 

Fig. 1. Gravity measurements made by the IGN on the 
French geodetic network – progress state at the end of 2005. 

A first method to compute the vertical gravity gra-



dient has been offered in (Heiskanen and Moritz, 
1967, p. 116). Starting from Laplace’s equation 
applied to the anomalous potential and the funda-
mental equation of physical geodesy in the spherical 
approximation, they propose an expression for the 
radial derivative of the gravity anomaly ∆g as a 
function of the geoid undulation and its derivative 
toward north and east. It can easily be shown that, 
with the same approximation, the geoid undulation 
can be replaced by the height anomaly ζ which is 
more commonly used in France. R stands for the 
mean radius of the Earth, r the radius vector, ϕ  and 
λ the geographic latitude and longitude respec-
tively, γ the normal gravity: 
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The vertical gravity gradient is then obtained by 
adding the normal gravity gradient, with g the grav-
ity and h the height above the reference ellipsoid: 
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This first method is only valid given the hypotheses 
of harmonicity of potential and spherical approxi-
mation. Furthermore the accuracy of the results is 
very sensitive to the resolution of the geoid or qua-
sigeoid model and to truncation errors. As sug-
gested in (Heiskanen and Moritz, 1967), it is con-
venient to approximate geoid undulation locally by 
a polynomial to compute its derivatives, choosing 
the degree to reach the best compromise between 
loss of resolution and gain in accuracy. 

2.2 Integral methods 

An integral method is presented in (Heiskanen and 
Moritz, 1967, pp. 115-116). From Poisson’s integral 
and the development of gravity anomalies in spheri-
cal harmonics, they derived the formula: 
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where P refer to the computation point, ψ is the 
spherical angle between the computation point and 
the integration point, σ the domain of integration (a 

portion of the unit sphere). Then, the vertical grav-
ity gradient can be obtained in the spherical ap-
proximation by equation (2). The computation point 
P and the running point are assumed to be on the 
same sphere of radius R surrounding the Earth to 
ensure harmonicity. As explained in the cited book, 
the indetermination 0/0 which seems to affect the 
integrand when the integration point tends toward 
the computation point is easily overcome if the 
gravity anomaly is twice derivable northward and 
eastward. In that case the innermost element of in-
tegral (3) can be computed for a small circle of ra-
dius s0 on the surface of the sphere: 
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Another integral approach is given in (Rózsa and 
Tóth, 2005). The radial derivative of the gravity 
anomaly is expressed as: 
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where K is a kernel function which depends not 
only upon the spherical distance ψ, but also on the 
vector radius of the computation point r: 
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Pl is the Legendre polynomial of degree l. Formulas 
(5) and (6) can be derived from relations between 
the coefficients of the developments of ∆g and its 
radial derivative in spherical harmonics, implying 
harmonicity and the spherical approximation. With 
equation (5), the computation point can be at a dif-
ferent level from the points where gravity anomalies 
are known (which should lie on the sphere of radius 
R). The drawback of (5) in its present form is that 
the integrand tends to infinity in the vicinity of the 
computation point. Although promising, this 
method has not been numerically tested in this 
study. 

2.3 The use of terrain information 

With the integration methods, terrain information 
can be used in a well known remove-compute-
restore process. This has the advantage of smooth-
ing the gravity anomalies and to ensure harmonic-



ity. For instance, refined Bouguer anomalies can be 
computed. Then, after integration by (3) or (5), the 
terrain effect on the vertical gradient of gravity is 
restored. Nevertheless, difficulties may occur with 
inconsistencies between point heights and the digi-
tal terrain model. Furthermore, the terrain effect on 
the gravity gradient is very sensitive to the distribu-
tion of neighbouring masses. Very high resolution 
DTM and sophisticated software are needed. When 
using the prism method, it is suitable to keep in 
mind the discontinuity of the vertical gradient on 
that face (Nagy et al., 2000). The inclination of the 
top face of the prism should be taken into account. 

graphic surface and 7 inside buildings or in cellars 
(Figure 2). Two points were measured twice in dif-
ferent seasons and climatic conditions: the first one 
in the town of Clermont-Ferrand, the second one at 
the top of the old “Puy de Dôme” volcano. Varia-
tions reached 13×10−8 and 27×10−8 s−2, respectively. 
At the top of the Puy de Dôme, gravity gradients 
were measured at 2 places, one outside and one 
inside a garage. A difference of 50×10−8 s−2 was 
recorded. These remarks illustrate once again how 
difficult the measurement and modelling of the 
gravity gradient can be. 
 

Terrain data are also useful to improve the inter-
polation of gravity anomalies before integration. In 
that case and as it will be viewed later, even me-
dium-resolution digital terrain models and standard 
method bring appreciable gain in accuracy. 

Quasigeoid model 
 
In order to compute the vertical gravity gradient 
from height anomalies by the method described in 
section 2.1, the EGG97 quasigeoid model (Denker 
and Torge, 1998) has been used. This model has the 
advantages of a high resolution in grid spacing 
(1′×1.5′, i.e. 1.9 km) and a great accuracy. 

3 Data description 

Gravity gradients  
 Gravity data 
Measurements of vertical gravity gradients have 
been provided by four institutions: the Ecole et Ob-
servatoire des Sciences de la Terre, the Bureau de 
Recherches Géologiques et Minières, the Service 
Hydrographique et Océanographique de la Marine 
and the Institut Géographique National. They fol-
lowed roughly the same procedure: at least two sets 
of gravity values were measured at three levels with 
a Scintrex CGM3 gravity meter. The gradient has 
been derived by linear regression. An accuracy of 
3×10−8 s−2 to 7×10−8 s−2 (3×10−8 µGal to 
7×10−8 µGal) has been reported. 31 measurements 
on 29  points have been made in all, 22 on the topo- 

 
The Bureau de Recherches Géologiques et Minières 
and the Bureau Gravimétrique International pro-
vided gravity data covering France, the neighbour-
ing countries and marine areas (Figure 3). Their 
mean density is 0.59 points per square kilometer 
with significant variations: data are particularly 
sparse in some mountainous areas like the Alps and 
the center part of the Massif Central and in the At-
lantic Ocean along the coastline. The accuracy of 
terrestrial gravity values has been evaluated to 
0.25~0.75 mGal by the BRGM. These figures may 
worsen up to 1 or 2 mGal when computing Bouguer 

-6° -4° -2° 0° 2° 4° 6° 8° 10°
42°

43°

44°

45°

46°

47°

48°

49°

50°

51°

52°

Outside measurement

Inside or underground
measurement

  
Fig. 3. Distribution of gravity data. Fig. 2. Location of vertical gradient measurements. 



or residual anomalies due to errors in position or 
inconsistencies with the digital terrain model. 
 
Digital terrain model 
 
The digital terrain model has been extracted from 
the IGN data base. It covers the whole of France 
and surrounding countries with a resolution of 4.5″ 
in latitude and 6″ in longitude (about 140 m). Its 
accuracy has been evaluated to 5 metres (up to 
15~20 m in rough terrain) in a comparison with 753 
geodetic benchmarks. 

4 Numerical tests 

4.1 Comparisons between modelled and 
measured gradients 

Five sets of vertical gravity gradients have been 
compared to values determined in the field. Only 22 
points outside any building and located on the to-
pographic surface were considered. Table 1 summa-
rizes the results. 

For the first test, the EGG97 height anomalies in 
addition to Eqs. (1) and (2) were used. For each 
point, the quasigeoid was locally approximated by a 
polynomial of degree 2 using 9 nodes of the grid. 
The height anomaly and its derivatives were com-
puted from the polynomial. 

For the 2nd test, point free-air gravity anomalies 
were gridded by collocation with a resolution of 
0.0015°×0.002° (about 165 metres), then Eqs. (3) 
and (2) were applied. No terrain information was 
used. 
In the 3rd test, point Bouguer anomalies were first 
computed then gridded with the same resolution as 
above. Residual gradients were obtained through 
Eq. (3). Terrain effects were restored with standard 
prism method and TC software (Forsberg, 1994). 
For  this  step,  the  point  heights  were assigned the 

value interpolated in the digital terrain model aug-
mented by 1 metre, in order to avoid two kinds of 
problems: singularities which occur if points lie just 
on the topographic surface and inconsistencies be-
tween the point heights and the DTM. Finally the 
normal gradient was added. 

In the 4th test, Bouguer anomalies were first com-
puted then gridded with a medium resolution of 
0.01°×0.015°. Terrain effects were restored, leading 
to a grid of free-air anomalies made denser by up to 
0.0015°×0.002°. Eq. (3) and (2) were used to com-
pute gradients. 

The 5th row of Table 1 appears as a reference: 
only the normal gravity gradient was computed and 
compared to measurements. 

Comparison of tests 1 and 5 shows that the intro-
duction of height anomalies and their derivatives 
improves the normal gradient only slightly. The 
spectral content of the quasigeoid is probably insuf-
ficient. Test number 2 proves that interpolating 
gravity anomalies carelessly, leads to an inaccurate 
solution. The remove-integrate-restore method em-
ployed in test number 3 does not give as good a 
result as the integration of high quality free-air 
anomalies, as in test number 4, which produces the 
best results. This is probably due to the poor resolu-
tion of the DTM (about 140 m) and inaccuracies in 
terrain effects: they were computed by splitting up 
the terrain into right rectangular prisms, neglecting 
the slope of the topographic surface. This has more 
serious consequences on the gradients than on the 
accelerations. 

4.2 The influence of the radius of integra-
tion 

In order to find an optimal radius of integration, 
vertical gravity gradients were computed with the 
same method as in the 4th test above, using a radius 
of integration increasing from 0° to 0.5°. The results 

Table 1.  Comparison of measured and modelled vertical gravity gradients. 

Test # Input data Method              Mea
Mean 

sured  −   com 
Min 

puted     (10−8 
Max 

 s−2) 
 Std Dev 

1 Height anoma-
lies 

Combination of height anomalies and their 
derivative 

−1.5 −53.1 29.6 18.0 

2 Gravity 
anomalies 

Integration of free-air anomalies (no ter-
rain information used) 

  5.3 −55.9 86.9 27.0 

3 Gravity 
anomalies 

Removing terrain, interpolation, integra-
tion, restoration 

−1.1 −49.1 36.6 17.6 

4 Gravity 
anomalies 

Removing terrain, interpolation, restora-
tion, densification, integration 

−1.5 −35.9 41.4 14.5 

5 Just ϕ, h Normal gradient −2.2 −65.8 26.3 20.5 
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of gradient prediction. 

were compared with measured gradients. The graph 
in Figure 4 represents the standard deviation of the 
differences as a function of the radius. Points inside 
buildings were not considered. From this we can 
conclude that an optimal radius would be between 
0.1° and 0.2°, that is 10 to 20 kilometres. Obviously 
this value would have to be adapted to the accuracy 
of the method of computation. Furthermore, this 
value confirms that the spectral contents of gradi-
ents are concentrated in the short wavelengths, and 
that global geopotential models are of little use for 
gradient modelling, as long as their resolution ex-
ceeds ten kilometres or so. 

4.3 Gradients inside buildings 

In this section, the accuracies of gradient prediction 
for two sets of points are compared: points outside 
buildings, on the topographic surface and points 
inside buildings or in cellars. As shown in Table 2, 
the precision of prediction is about 2.5 times worse 
for the latter set. This confirms that gradient model-
ling is somewhat adventurous inside buildings. Ac-
curate local mass models are needed and direct 
measurement could be the best solution. 

Table 2.   Comparison of the quality of gradient prediction of 
points outside and inside buildings. 

Points Point 
number 

    Measured − computed 
 Min  Max 

(10−8 s−2) 
Std Dev 

Outside 22 -35.9 41.4 14.5 
Inside 7 -54.2 48.2 36.7 

5 Conclusions and perspectives 

With a view to reducing field operations when the 
new French gravimetric network is established, 
several methods to predict vertical gravity gradient 
have been compared to a set of 22 measured gradi-
ents. Using height anomalies and their derivatives 
issued from the EGG97 quasigeoid model, the accu-
racy of 20.5×10−8 s−2 (205 E) of the normal gradient 
was slightly improved at the level of 18.0×10−8 s−2. 
Better results were obtained by integrating free-air 
gravity anomalies carefully interpolated with the 
help of a medium-resolution digital terrain model: a 
standard deviation of 14.5×10−8 s−2 was reached 
with a radius of integration of 10~20 km. This accu-
racy is not sufficient to ensure a proper reduction of 
measurements in a modern high-precision gravity 
network. The use of high-resolution terrain models 
and more accurate algorithms to compute terrain 
effects on gravity gradients seems to be the key 
issues in view of reaching a precision of some 
10−8 s−2. 
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∗Abstract. ICAG-2005, an international 
comparison of absolute gravimeters, was held in 
September 2005 at the Bureau International des 
Poids et Mesures (BIPM), Sèvres, France. Nineteen 
absolute gravimeters performed measurements of 
free-fall acceleration g at eleven sites of the BIPM 
gravity network. Fifteen relative gravimeters were 
used to measure the vertical gravity gradients and to 
provide gravity ties between the sites. The 
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maximum g-difference was about 9 mGal. The 
status of a pilot study was agreed for this 
comparison by the Consultative Committee for 
Mass and Related Quantities. For the first time in 
the ICAG series, a technical protocol specifying the 
organization, measurement strategy, data 
processing, calculation of the uncertainties and 
presentation of the results, was developed for the 
ICAG 2005. The unweighted mean value of the 
results of absolute measurements referred to the site 
A is presented and compared with the similar values 
obtained in ICAG-1997 and ICAG-2001.  
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1 Introduction 
 
 The seventh in the series of International 
Comparisons of Absolute Gravimeters begun in 
1980, ICAG 2005 was carried out at the BIPM 
(Sèvres, France). This comparison was organized 
by the Working Group on Gravimetry of the 
Consultative Committee for Mass and Related 
Quantities (CCM) of the International Committee of 
Weights and Measures (CIPM), Study Group 2.1.1 
of the International Association of Geodesy (IAG) 
and the BIPM. 
Comparing the measurement results of absolute 
gravimeters of the highest metrological quality is 
the best, and perhaps the only, way to test the 
uncertainty in absolute measurements of free-fall 
acceleration. 
In a worldwide metrology system all the measuring 
instruments in any measurement field should be 
traceable to a primary measurement standard in the 
corresponding field (often, but not necessarily, the 
national standard). A primary standard is designated 
or widely acknowledged as having the highest 
metrological qualities and whose value is accepted 
without reference to other standards of the same 
quantity [1].  
According to the CIPM Mutual Recognition 
Arrangement (CIPM MRA) between more than 
sixty national metrology institutes (NMIs) 
worldwide (see the information on the CIPM MRA 
on the website of the BIPM [2]), the equivalence of 
national measurement standards should be 
established in key comparisons (KCs). The 
participants of the KC are the NMIs or other 
laboratories designated by a NMI as holding the 
national measurement standards. In the field of 
gravimetry very often absolute gravimeters are not 
recognized as the national metrology standards. 
Such absolute gravimeters can also participate in 
the KC and their designation can be obtained during 
the course of the KC. According to the CIPM MRA 
rules, the results of laboratories which are not NMIs 
or designated by NMIs cannot appear on the Key 
Comparison Data Base (KCDB), neither can their 
results be used in calculation of the Key 
Comparison Reference Value (KCRV). The KCDB 
also contains lists of calibration and measurement 
capabilities (CMCs) offered by NMIs and 
designated laboratories to the general public. 
Whenever possible, CMC claims must be supported 
by KC results. 

Ideally, the determination of the KCRV in the 
ICAGs is a natural way to obtain the shifts of the 
results of the individual gravimeters from the 
KCRV and to use them as a correction in the 
measurement of free-fall acceleration. The 
realization of such a programme is possible if the 
reproducibility in the measurement of individual 
gravimeters is confirmed. 
Considering that choosing KC status would limit 
the participation in ICAG-2005, the BIPM and the 
steering committee (L. Vitushkin, M. Becker, O. 
Francis, A. Germak,  Z. Jiang) suggested that this 
comparison be organized as a pilot study. The status 
of a pilot study made it possible to be more flexible 
in the invitation of the participants which could be 
not only the NMIs but also other organizations, for 
instance the geophysical institutes. 
Except for a more inclusive participation, the 
ICAG-2005 was organized according the rules for 
KCs. In particular, a technical protocol specifying 
the organization, measurement strategy, data 
processing, calculation of the uncertainties and 
presentation of the results, was developed. 
 
2 Organization of absolute 
measurements. 
 
To prepare for the ICAG-2005, the BIPM 
constructed two new outdoor sites having a 
difference of free-fall acceleration g of about 
9 mGal to make it possible to calibrate relative 
gravimeters. Prior to the absolute measurements, 
the vertical gravity gradients at all the sites and the 
ties (differences of g between the sites) of the BIPM 
gravity network were measured using seventeen 
relative gravimeters [3]. 
The gravity network of the BIPM consists of four 
sites: A, A0, A1 and A2 in the Observatory 
building, seven sites: B, B1 – B6 in the Pavillon du 
Mail and two outdoor sites: C1 and C2. 
The FG5-108 absolute gravimeter belonging to the 
BIPM occupied the B3 site from 3 to 24 September 
2005, during the absolute measurements. This 
gravimeter has performed regular (almost daily) 
measurements to monitor the stability of the gravity 
field of the BIPM. With the same goal, the FG5-202 
absolute gravimeter (Royal Observatory of 
Belgium) was used to check the stability of the 
gravity field at the A2 site from 6 to 21 September. 
Nineteen absolute gravimeters from seventeen 
countries and the BIPM have participated in the 
comparison (Table 1). 
As seen in Table 1, some of gravimeters have 
already participated in two or even three ICAGs at 



the BIPM. It is interesting to analyze, in particular, 
the reproducibility of their results. 
The gravimeters IMGC-2 [4] and TBG are that with 
the symmetric (up-down) trajectory of free moving 
test body. All other gravimeters are of a free-fall 
type. The FGC-1 gravimeter [5] has an original 
cam-driven dropper mechanics different from that 
of FG5 gravimeters. 
In the GABL-G gravimeter an iodine-stabilized 
diode-pumped solid-state Nd:YAG laser at 532 nm 
is used as a coherent light source in the laser 
displacement interferometer. All other gravimeters 
used the iodine-stabilized He-Ne lasers at 633 nm. 
 
Table 1. Participation of institutes and gravimeters 
participated in ICAG-1997, ICAG-2001 and ICAG-
2005 
 

1997 2001 2005

1 Germany, BKG FG5-101 FG5-101 FG5-101

2 BIPM FG5-108 FG5-108 FG5-108

3 Belgium, ORB FG5-202 FG5-202 FG5-202

4 France, EOST FG5-206 FG5-206 FG5-206

5 Switzerland, METAS FG5-209 FG5-209

6 Spain, IGN FG5-211 FG5-211

7 Japan, AIST/NMIJ FG5-213 FG5-213

8 Czech Republic, GOP FG5-215

9 Luxemburg, UL/ECGS FG5-216

10 Finland, FGI JILAg-5 JILAg-5 FG5-221

11 Chinese Taipei, CMS/ITRI FG5-224

12 France, DLL CNRS/MU FG5-228

13 USA/USGS A10-008

14 USA/JILA CU/NIST FGC-1

15 Russia/ IAE RAS GABL-E GABL-G

16 Italy/INRiM IMGC IMGC IMGC-2

17 Austria/BEV JILAg-6 JILAg-6 JILAg-6

18 Canada/NRCan JILA-2 JILA-2 JILA-2

19 Ukraine/NSC IM TBG

Gravimeter
Country, institute

 
 
The BIPM calibrated the frequencies of all the 
lasers and verified the frequency of Rb-clocks and 
GPS receivers of the absolute gravimeters. The 
atmospheric pressure was measured continuously 
during the comparison using a calibrated digital 
barometer and these data were provided to the 
participants. 
In addition, for the first time the laser beam shapes 
were determined using the CMOS camera for those 
gravimeters, whose construction allows this 
measurement. 
During the comparison up to nine absolute 
gravimeters occupied simultaneously the sites of the 
BIPM gravity network. The absolute gravimeters 
usually were installed on the sites and adjusted in 

the day-time and the measurements were performed 
in the night (during at least 12 hours). 
 
3 Results of absolute measurements. 
 
97 absolute measurements at eleven sites of the 
BIPM were performed in the period from 3 to 25 
September 2005. 
The results of the measurements of FG5-108 at B3 
and FG-202 at A2 were stable with the standard 
deviation of the mean results within 1 µGal. This 
confirms the appropriate stability of gravity field at 
the BIPM during the comparison. 
According to the Technical Protocol two forms of 
the presentation of the results of the absolute 
measurements were used. 
For the gravimeters JILA, FG5 and A10 the raw 
data (pairs of time and length intervals in the format 
used in the software developed by “Micro-g 
Solutions, Inc.”, now “Micro-g La Coste, Inc.”) 
were presented. Then, as in ICAG-1997 and ICAG-
2001, the raw data were re-processed using, when 
possible, the same software. This, in principle, 
should allow better understanding of the sources of 
the uncertainties.  
For the gravimeters IMGC-2, TBG and GABL-G 
the presentation of raw data is not possible because 
data formats different from that used in the 
gravimeters JILA, FG5 and A10. 
Taking in consideration that 1) in the future, wider 
participation of the gravimeters of different types is 
possible, including instruments based on atom 
interferometry, and 2) the participating laboratory is 
responsible for the presentation of the final results 
of the measurements obtained during the 
comparison, the Technical Protocol of ICAG-2005 
requires that the final results of the absolute 
measurements be calculated and presented by the 
participants. 
Finally, the pilot laboratory (BIPM) obtained the 
raw data from the operators of JILA, FG5 and A10 
gravimeters and the final results from all the 
gravimeters, as calculated and presented by the 
participants. 
It is worth noting, that for the most part, the 
differences between the results re-processed in the 
unified manner and those presented by the operators 
were within 1 µGal. 
The CIPM MRA “Guidelines for CIPM key 
comparisons” (see on BIPM website [2] ) define the 
rules that we followed for the preparation of the 
report. The first draft, draft A, includes the results 
transmitted by the participants. It is confidential to 
the participants. The second draft, draft B, is no
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Fig.1. Results of the measurements of the absolute gravimeters during ICAG-2005 transferred to the site A 
(height of 0.9 m). 
 
longer confidential and may be the subject of a 
publication. It must include uncertainty estimates 
for all results. For Key Comparisons, draft B is 
published as a final report on the KCDB, upon 
approval of the Consultative Committee. 
At the time of preparation of this paper not all the 
uncertainty budgets were presented and it was 
decided to present the results of the comparison 
without the names of the absolute gravimeters. 
The results of the absolute measurements of 
individual gravimeters in ICAG-2005 are presented 
in Fig. 1 with their standard deviations. The 
unweighted means of the results of each gravimeter 
at each site are transferred to site A at a height of 
0.9 m above the pillar. The ties between the sites 
are calculated as the g-differences of the means of 
all the results of gravimeters measured at that site. 
Such g-differences (ties) were used to transfer the 
g-value from each site to site A. 
The unweighted mean of all the results transferred 
to A (at 0.9 m) is (g – gr)A = 5704.3 μGal with the 
standard deviation of 3.2 μGal. The reference value 
is gr = 980920000 μGal. 
In Fig. 2 the unweighted mean values (g – gr), 
obtained at the site A (height of 0.9 m) in three 
consecutive comparisons at the BIPM in 1997 ([6], 
Table 7), 2001 ([7], Table 5a) and 2005, are 
compared.  

These values are (5707.8 ± 2.8) µGal, 
(5698.5 ± 2.2 )µGal and (5704.3±3.2)µGal in 1997, 
2001 and 2005, respectively. 
The results the absolute gravimeter FG5-108 
belonging to the BIPM (transferred to A at the 
height of 0.90 m), obtained in the comparisons in 
1997, 2001 and 2005 are also shown in Fig. 2. All 
these results are within 1 µGal.  
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Fig. 2. The unweighted means (•) of the results of 
all the absolute gravimeters transferred to A (at 0.9 
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Fig. 3. The results of the measurements of the individual absolute gravimeters, obtained in the ICAGs at the 
BIPM in 1997, 2001 and 2005 and transferred to site A at the height of 0.9 m. gm = 980925705.9 µGal is the 
mean of g-values of the FG5-108, obtained in 1997, 2001 and 2005. 
 

The availability of the results of from two or even 
three consecutive comparisons for some absolute 
gravimeters allows the analysis of the 
reproducibility of the results of their measurements 
on condition that the gravity field at the BIPM is 
stable. One can come to some conclusions on such 
reproducibility from the Fig. 3. This figure plots the 
deviations of the results of individual absolute 
gravimeters, obtained in the comparisons from 
1997 to 2005, with respect to the mean value 
980925705.9 µGal of the results of FG5-108 at A 
(0.90 m) over these three comparisons..  
As seen in Fig. 3, the deviations of the results of the 
measurements of individual gravimeters from the 
reference value vary in sign and magnitude. The 
changes in the results of the measurements by the 
same gravimeters in three ICAGs can reach about 
10 µGal. However, the changes in measured values 
do not imply changes of gravity field of the BIPM 
for, in this case, all the changes would be of the 
same sign and of almost the same magnitude. This 
demonstrates the level of the reproducibility of the 
measurements of absolute gravimeters. 
One of the reasons for such low reproducibility 
could be the change of the shape of the laser beam 

in the interferometer [8-10]. It was possible to 
measure the beam shape of majority of absolute 
gravimeters that participated in ICAG-2005. 
Results showed that the diameters of the output 
beams from the beam splitter of the interferometer, 
measured by CMOS camera were between 3.2 mm 
and 6.2 mm (at an intensity level 1/e2 relative to the 
maximum) for the different gravimeters at the same 
position of the cross section where the beam was 
measured. If the laser beam diameter if smaller than 
a certain cut-off value, which depends on the 
wavelength, the diffraction correction should be 
calculated. This correction depends on the optical 
layout of the interferometer (for example, on the 
difference of the lengths of the measuring and 
reference arms of the interferometer). In ICAG-
2005 the diffraction correction was applied only for 
the gravimeter GABL-G, which uses a 532 nm 
laser. 
When all the uncertainty budgets for all the 
absolute gravimeters are completed, a global 
adjustment of absolute and relative data obtained at 
all the sites of the BIPM gravity network will be 
performed to obtain the final weighted results at the 
sites A and B. 



4 Conclusions 
 
The number of the absolute gravimeters 
participating in the ICAGs at the BIPM continues 
to increase.  
The development of the Technical Protocol brings 
the ICAG closer to a CIPM key comparison. One 
aim of CIPM key comparisons is to determine the 
degree of equivalence among national standards. 
ICAG-2005 paves the way for including national 
standards of gravimetry in this programme. 
The work on the evaluation of uncertainty budgets 
for measurement using the absolute gravimeters 
should be continued. 
The analysis of the results of three consecutive 
ICAGs at the BIPM in 1997, 2001 and 2005 shows 
that the level of irreproducibility of the results of 
absolute gravimeters cannot be attributed to long-
term instability in the gravity field at the BIPM. 
Further investigations of the sources of the 
uncertainties in absolute measurements should be 
continued and the methods of adjusting the 
gravimeters should be improved to make them less 
operator dependent and better controlled, as, for 
example, control of the laser beam-shape and 
evaluation of the diffraction correction, if 
necessary. 
The organization of regional multilateral 
comparisons of the absolute gravimeters with the 
appropriate technical protocol is of importance for 
the further study of their metrological 
characteristics and of the establishment of the link 
between the ICAG at the BIPM and regional 
comparisons and for better understanding of the 
role of the Key Comparison Reference Values in 
absolute measurement of free-fall acceleration. 
As was concluded after all the previous 
comparisons, we continue to emphasize the 
importance of participation in future comparisons 
of various types of absolute gravimeters based on 
different basic principles and different designs. 
It is important to develop a unified format for the 
presentation of the final results of the 
measurements of absolute gravimeters, which will 
contain the information necessary for the 
comparison of their results and for the application 
of the data of the measurements of gravity field. 
Regular monitoring of the gravity field at the BIPM 
between the comparisons as well as continuous 
monitoring during the comparison should be 
continued to control the possible changes of gravity 
field at the BIPM. 
The experience in the organization of the pilot 
study ICAG-2005 according to the rules of CIPM 

key comparisons is invaluable for the improvement 
of the technical protocol for the next ICAG at the 
BIPM in 2009 and for the organization of regional 
comparisons of absolute gravimeters. 
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Quality of Lithuanian National Gravimetric Network 
 
E. Parseliunas, P. Petroskevicius 
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Abstract. In 1994 the absolute gravity 
measurements were carried out by J. Mäkinen 
(Finish Geodetic Institute) at three stations of 
Lithuania. Measurements were performed by 
ballistic gravimeter JILAg-5. Absolute gravity 
measurements were repeated in 2002. The 5 µGal 
precision of the gravity acceleration was derived. 
The differences between the gravity acceleration 
values, obtained in 1994 and 2002 fall into the limits 
of the accuracy of measurements. 

These three stations form the National zero order 
gravimetric network – the basis of the new gravity 
system and further densification of the gravimetric 
network. 

From 1998 to 2001 the National first order 
gravimetric network was observed. There are 51 
gravimetric points in the National first order 
gravimetric network, evenly distributed in the 
territory of country. Measurements were carried out 
by LaCoster & Romberg gravimeters. Each gravity 
difference of the network was measured at least 
three times with 3 or even 6 gravimeters. Accuracy 
of adjusted gravity acceleration values of 3–4 µGal 
was received, and the standard deviation of the 
single gravity difference observation of 14 µGal was 
derived. 

In July of 2006 some points were re-observed by 
2 pairs of SCINTREX CG-5 gravimeters. Accuracy 
of adjusted gravity acceleration values of 3–7 µGal 
was received, and the standard deviation of the 
single gravity difference observation of 17 µGal was 
derived. Comparison of computed gravity 
acceleration values shows, that differences are 
bigger, than it was expected. It can be concluded 
that further studies of the stability of the gravimeters 
performance and the uncertainties in relative 
measurements is still required. 

 
Keywords. Gravimetric network, gravimeter, 
gravity measurements 
 
 
1 Introduction 
 

Analysis of the gravimetric networks of the 
neighbour countries [1–6] show, that existing 
gravimetric control of Lithuania do not fit to the 
modern requirements. Lithuanian National 
Gravimetric Network was established and 
gravimetric reference was evaluated by support of 

Finnish, Danish, Polish and USA specialists in 
1994–2001.  

National Lithuanian Gravity Network is built on 
three absolute gravity stations measured by dr. 
Jaakko Mäkinen (Finnish Geodetic Institute) in 
1994 and 2002 [7–9]. Network consists of 51 
gravimetric points. Observations were performed by 
3 – 6 LaCoste & Romberg gravimeters. Calibration 
of gravimeters was performed between absolute 
gravimetric points in Lithuania and Poland. Errors 
of gravity accelerations changes determined 
between points are less than 5 µGal. 

By creating the National gravimetric Network the 
IGSN71 datum was transferred over the territory of 
the country. Network is a precise gravimetric 
reference for detailed research of gravity field and 
other activities. 

 
2 Absolute gravity stations 
 

National Lithuanian Gravity Network is built on 
three absolute gravity stations measured by dr. 
Jaakko Mäkinen (Finnish Geodetic Institute) in 
1994 and 2002 (Figure 1). These stations form the 
zero order gravimetric network. 

 

 

Fig. 1. Scheme of absolute gravity stations and calibration 
lines 

 
The ballistic gravimeter JILAg-5 was used. Sites 

for gravimetric points were selected in calm and 
geologically stable locations. Station VILNIUS – 



cellar, PANEVEZYS – basement and KLAIPEDA – 
ground floor. Monuments for the points are – 
reinforced concrete poles, 2 m in depth. There are 
brass marks fixed into monuments. Elevation of 
marks was determined by precise levelling.  

Absolute gravity measurements were organized 
by series of 25 falls. Time period of each series was 
5 minutes, and time between series – 10 minutes. 
Total number of measurements in 1994 and 2002 is 
presented in Table 1 and 2 respectively. 

 
Table 1. Absolute gravity measurements in 1994  

Station Period 
Height, 

mm 
Number 
of series 

Number 
of falls 

VILNIUS 07 15–17 826 168 4200 

KLAIPĖDA 07 22–23 835 140 3500 

PANEVĖŽYS 07 28–29 832 110 2750 

 
Table 2. Absolute gravity measurements in 2002 

Station Period 
Height, 

mm 
Number 
of series 

Number 
of falls 

VILNIUS 08 04–05 832 102 2550 

KLAIPĖDA 08 07–09 842 142 3550 

PANEVĖŽYS 08 11–13 843 144 3600 

 
Differences between gravity values at marker 

height 
9402

0
−∆g  determined in 1994 and 2002 are 

presented in Table 3. These are not large, and do not 
exceed 10,8 µGal, that is within an observation 

accuracy. Mean values of gravity 
vg0  at the markers 

level were used for the new adjustment of National 
Lithuanian Gravity Network.  

 
Table 3. Absolute gravity stations  

Station name 9402
0

−∆g , µGal 
vg0 , µGal 

VILNIUS –10,7 981459083,6 

KLAIPĖDA –4,4 981547766,6 

PANEVĖŽYS –4,2 981527060,0 

 
Satellite points have been established at the close 

neighbourhood of absolute gravimetric points. 
Gravity value at the satellite points was determined 
by relative observations from absolute points using 
LaCoste & Romberg gravimeters. A precise 
levelling and soil moisture measurement of the 
points is performed periodically. Ground water level 
is observed continuously. 

Lithuanian National Gravimetric Network was 
related to absolute stations in Poland BOROWA 
GORA and GDANSK and to gravimetric point 
GIBY. In these points the calibration of LaCoste & 
Romberg gravimeters G-1012, G-1036, G-1078, G-
1084 was performed. 

3 Relative gravity measurements  
 

The relative gravity measurements have started in 
1998. Two LaCoste & Romberg gravimeters G-618 
and G-867 were used. Initially the gravimetric 
network consists of 64 points [9]. Gravimeters were 
calibrated at absolute gravity stations in Denmark, 
Estonia, Latvia and Lithuania. The measurement 
campaign was organized in “loops” of 8 to 12 
points, and the initial and final point was the same 
(more often – absolute gravity station). Totally the 
16 loops were performed. 

There are the 51 gravity point in the final scheme 
of the Lithuanian National Gravimetric Network 
(including 3 absolute gravity stations) (Figure 2) 
[10–12].  

Points are located at the solid public buildings 
(mostly – churches), either on the stable fundaments 
of the buildings.  

Relative gravity measurements were performed 
by LaCoste & Romberg gravimeters in 1999, 2000 
and 2001. Scale factors of the gravimeters G-191, 
G-192, G-193 were detected by intensive 
measurements on the calibration line VILNIUS–
PANEVEZYS. Linear scale factors k and its standard 
deviations m of LaCoste & Romberg gravimeters are 
presented in Table 4. 

Totally were observed 117 gravity differences. 
Every difference was measured three times by 3 or 
even 6 LaCoste & Romberg gravimeters: G-1012, 
G-1036, G-1078, G-1084 by Polish Institute of 
Geodesy and Cartography and G-191, G-192, G-193 
by NIMA. There are 62 closed figures (48 triangles 
and 14 quadrangles) in the gravimetric network 
(Figure 2). Maximal closing error 27 µGal. 60% of 
closing errors are bellow 10 µGal. 

 
4 Network adjustment and quality 
analysis  
 

Several adjustments of the gravimetric network 
following different strategies were made [11]. In 
Table 5 some data on relative gravity measurements 
is presented: k – number of observed points, n – 
number of measurements, m – standard deviations 
of single measurement in µGal. Total number of 
measurements is 6200. 

Lithuanian National Gravimetric Network was 
adjusted in six variants: 
1. Six initial points – absolute gravity stations 

(VILNIUS, KLAIPĖDA, PANEVĖŽYS, 
BOROWA GORA and GDANSK) and station 
GIBY – and their standard deviations were 
used. All relative gravity measurements were 
put in the adjustment procedure. 
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Fig 2. Scheme of Lithuanian National Gravity Network and misclosures 

 
2. Three initial points – absolute gravity stations 

(VILNIUS, KLAIPĖDA, PANEVĖŽYS) and 
their standard deviations were used. Relative 
gravity measurements of 1998 was not used. 

3. Three initial points – absolute gravity stations 
(VILNIUS, KLAIPĖDA, PANEVĖŽYS), but 
their standard deviations were not used. All 
relative gravity measurements were put in the 
adjustment procedure.  

4. As (3), but standard deviations of initial points 
were used as well. 

5. Only one initial point – absolute gravity station 
VILNIUS – was used. 

6. Two initial points – absolute gravity stations 
VILNIUS and PANEVĖŽYS – were used. 
 

Differences of gravity acceleration values, 
computed in six variants, do not exceed 8 µGal.  

Corrections to absolute gravity stations after 
adjustment are presented in Table 6. It is seen, that 
in all adjustments corrections are slightly bigger to 
station KLAIPĖDA. It is systematic effect, which 
probably was called due the station was not included 
into detection of gravimeters scale factors. 

 

 
Table 4. Linear scale factors of LaCoste & Romberg gravimeters 

 

1998  1999 2000  2001 Gravimeter 
k m k m k m k m 

G-618 1,00083 0,00020       
G-867 1,00066 0,00020       
G-191     0,999330 0,00022 0,999563 0,00003 
G-192     1,000152 0,00022 1,000220 0,00021 
G-193     1,001703 0,00022 1,002053 0,00021 

G-1012   1,001682 0,00011 1,001531 0,00015 1,001487 0,00013 
G-1036   1,003940 0,00015     
G-1078   1,000533 0,00009 1,000542 0,00015 1,000097 0,00010 
G-1084     1,000771 0,00015   



Table 5. Information about relative gravity measurements 
 

1998  1999 2000 2001 Totally 
Gravimeter 

k n m k n m k n m k n m n 
G-618 53 180 16 – – – – – – – – – 180 
G-867 53 180 14 – – – – – – – – – 180 
G-191 – – – – – – 20 279 16 29 566 12 845 
G-192 – – – – – – 20 290 14 32 654 14 944 
G-193 – – – – – – 20 289 16 33 666 15 955 

G-1012 4 62 8 30 532 17 24 304 16 24 235 11 1000 
G-1036 4 62 9 30 530 20 – – – – – – 592 
G-1078 4 62 10 30 532 16 24 302 13 24 235 19 1000 
G-1084 – – – – – – 24 294 15 – – – 294 
 

 
Table 6. Corrections to absolute gravity stations after 
adjustments, µGal 
 

Station/Variant 1 2 4 5 6 
VILNIUS –1 –4 –2 0 +1 
PANEVĖŽYS –4 –6 –4 –2 –1 
KLAIPĖDA +4 +10 +6 +9 +10 

 
5 Relative gravity measurements in 
2006 

 
In July of 2006 some points were re-observed by 

2 pairs of SCINTREX CG-5 gravimeters. 
Gravimeters were calibrated at absolute gravity 
stations VILNIUS and PANEVĖŽYS (Table 7).  

 
Table 7. Linear scale factors of CG-5 gravimeters 
 

2006 07 13  2006 07 28 No 
k m k m 

182 1.008788 0.000117 1.008285 0.000120 
183 0.999935 0.000024 0.999884 0.000035 
184 1.000931 0.000113 1.000393 0.000105 
185 1.000001 0.000029 0.999876 0.000021 

 
The measurement campaign was organized in 

“loops” of 8 to 12 points, and the initial and final 
point was the absolute gravity station. Totally the 8 
loops were performed and 27 points of the National 
Gravimetric Network were observed. At each point 
10 cycles of 55 seconds read time by two 
gravimeters were done. 

Accuracy of adjusted gravity acceleration values 
of 3–7 µGal was received, and the standard 
deviation of the single observation of 17 µGal was 
derived. Differences of gravity acceleration values 
against the officials (adopted from the first variant 
of adjustment) are presented in Table 8 and 9. 

Comparison of computed gravity acceleration 
values shows, that differences are bigger, than it was 
expected. Especially contradictory results were 
received by pair of gravimeters 182 and 184. It can 
be concluded that further studies of the stability of 
the gravimeters performance and the uncertainties in 
relative measurements is still required. 

Table 8. Differences of gravity acceleration values, derived in 
2006 by CG-5 gravimeters No 182 and 184, µGal 
 

No. Point 182 184 
1 ALYTUS           0 +1 
4 EIŠIŠKĖS         +10 –24 
6 JONAVA           –16 –41 
9 KĖDAINIAI        –7 –34 

16 MARIJAMPOLĖ   –1 –41 
25 RIETAVAS         +6 +9 
30 ŠAKIAI           –12 –48 
31 ŠALČININKAI      +23 –16 
34 ŠILAI            –5 +14 
36 ŠILUTĖ           –28 –21 
38 TAURAGĖ          –23 –15 
40 UKMERGĖ          –14 –13 
42 VARĖNA           +34 –7 
44 VIEVIS           –28 +1 

 
Table 9. Differences of gravity acceleration values, derived in 
2006 by CG-5 gravimeters No 183 and 185, µGal 
 

No. Point 183 185 
2 BIRŽAI           0 –1 
7 JONIŠKIS         –3 +38 

10 KELMĖ            –1 –14 
11 KRETINGA     –29 –28 
13 KURŠĖNAI    –6 - 
17 MAŽEIKIAI   –9 - 
26 ROKIŠKIS         0 –4 
29 STULGIAI         –19 –20 
33 ŠIAULIAI         –14 –6 
34 ŠILAI            +15 +6 
39 TELŠIAI          –12 - 
40 UKMERGĖ          +7 +10 
41 UTENA            +11 +16 
43 VIDIŠKĖS         +19 +1 
46 ZARASAI          0 +13 

 
6 Conclusions 

 
1. The IGSN71 datum instead of Potsdam system 

was introduce in Lithuania. The absolute gravity 
datum is now accurate to 5 µGal. Measurements 
were performed in 1994 and 2002 by ballistic 
gravimeter JILAg-5 at three stations: VILNIUS, 
KLAIPĖDA and PANEVĖŽYS. 

2. From 1998 to 2001 the National first order 
gravimetric network was observed. There are 51 



 

gravimetric points in the National first order 
gravimetric network. Each gravity difference of the 
network was measured at least three times with 3 or 
even 6 LaCoster&Romberg gravimeters. Accuracy 
of adjusted gravity acceleration values of 3–4 µGal 
was received, and the standard deviation of the 
single gravity difference observation of 14 µGal was 
derived. 

3. In July of 2006 some points were re-observed 
by 2 pairs of SCINTREX CG-5 gravimeters. 
Accuracy of adjusted gravity acceleration values of 
3–7 µGal was received, and the standard deviation 
of the single observation of 17 µGal was derived. 
Therefore comparison of computed gravity 
acceleration values shows, that differences are too 
big, and the quality of the Lithuanian National 
Gravimetric Network should be studied deeper. 
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Abstract.   The aim of the article is the 

confrontation of the methods of periodical errors 

analysis for the relative gravimeters 

LaCoste&Romberg G No.1068 (LCR1068) and 

No.176 (LCR176). Two methods were used, the 

harmonic analysis (HA) using least-squares method 

and the spectral analysis (SA) using Fourier 

transformation (FFT). 

Imperfections of gearwheels in the measuring 

mechanical system cause systematic periodical 

errors in reading. The periodical errors are being 

determined at the special gravimetric baselines. The 

analysis is based on the comparison of gravimeter 

readings in a counter unit (CU), supposedly 

affected by periodical errors, with the fixed values 

of the gravity acceleration (based on many 

measurements of various gravimeters). Both 

methods were applied to the same data files and the 

results were compared.  

The significant equalities for some periods were 

found in results. The amplitude magnitudes (almost 

0.12 µms
-2

) can significantly affect the results of 

the gravity measurements. However, some 

discrepancies were found in the results of both 

methods that limiting usableness of these methods. 

 

Keywords. Relative gravimetry, gravimetric 

baseline, spectral analysis 
 

 

1 Introduction 
 

Gravimeter LaCoste & Romberg (LCR) is a relative 

static gravimeter (Simon (1995)). Its measuring 

system is metallic. The beam is using a „zero 

length“ spring, which is a patent of LaCoste & 

Romberg. The movement of spring is realized with 

the assistance of gearing system, which connected it 

with the nulling dial (reading screw). The principle 

is based on adjustment of the beam (represented by 

movement of the mass) to the nulling (equilibrious)     

setting with the assistance of the nulling dial. The 

simply rotary motion of toothed wheel could 

produce systematical errors by its imperfect shape. 

Next source of errors could be irregularity in 

division of nulling dial scale and irregularity in the 

height of the micrometer screw thread. Expected 

periodical errors are combination of number of 

teeth on toothed wheel in the gear box (Tab.1). The 

parameters of periodical errors are being 

determined at special gravimetric baselines 

(Lederer (2002)). Gravimetric baselines consist of 

gravimetric points with high accuracy of gravity 

acceleration. It means baseline where were done 

many accurate relative or absolute measurements. 

The baseline must be gauged not only with the 

same type of many various gravimeters but also 

with the various type of gravimeters, in order to 

eliminate influence of periodical and other 

systematical errors for each individual gravimeter. 

The concept of periodical errors analysis is based 

on comparison between gravimeter reading 

(affected by periodical errors) and adjusted values 

of gravity acceleration on baseline points 

(Kostelecky (1998)). Conditions for acquisition of 

objective results is carrying out in the whole range 

of measuring system. 

 

                       
 

Table.1 Expected periodical errors for gravimeters                            

LaCoste & Romberg. 



2 Source data 
 

As an input data in our analyses was used all data 

from the measurements of gravimeters LCR 176 

and LCR 1068 at the baselines till the year 2005 

(see Figure 1). 

 

 
 

Fig.1  Input data for the harmonic and spectral analysis 

acquired from the adjustment (both gravimeters, all 

baselines). 

 
2.1 Microbaseline Pecny-Chocerady (Pec.) 
 

Microbaseline Pecny-Chocerady was established in 

the neighborhood of the Geodetic Observatory 

Pecny (GOPE). Gravity difference of the points is 

approximately 492 µms
-2 

and the baseline consists 

of 19 points, which have a typical gravity 

difference   2.5 µms
-2

 (the tower), 25 µms
-2

 (area of 

GO Pecny) and 90 µms
-2

 (Ondrejov-Chocerady). 

Baseline Pecny-Chocerady is suitable for 

determination of periodical errors in the range 1-40 

CU for G meter. Upper part of the baseline is 

applicable for computation of errors with smaller 

periods, but the number of measurements does not 

allow us to determine small periods with the 

sufficient accuracy. 
 

2.2 Baseline Modra-Piesok (Mod.) 
 

Baseline Modra-Piesok (Slovakia) was built in the 

calm area at the Small Carpathians foothill at the 

beginning of nineties of the last century. The 

baseline consists of 21 (originally 17) points 

stabilized in high quality with forced centering. The 

total gravity difference between final points is    

199 µms
-2

, gravity difference between consecutive 

points is nearly regular, little bit less than 10 µms
-2 

in average. 
 

2.3 Main Gravimetric Baseline (MGB) 
 

Main Gravimetric Baseline  (see Figure 2)   

(Lederer (2002)) was built in the year 1959. 

Nowadays it is being measured from Litomerice to 

Horni Dvoriste in total amount of 25 points with 

variable gravity difference. 

The total gravity difference between final points 

is approximately 3000 µms
-2

. This huge gravity 

range can be exploited for long-periodical errors 

determination. As a adjusted values of gravity 

acceleration we can use more than 40 years of 

measurements with many different gravimeters. 
 

3 Methods comparison 
 

Our input data may be understood as a signal 

function ( )RLf 2∈ . We can suppose, the signal is 

band-limited, i.e. the spectrum ( )#2ˆ RLf ∈  has a 

compact support. The signal is represented by a set 

of samples ( )nn xff = , Zn∈ . 

Our task is to find (reconstruct) an original signal 

( )xf  from its samples nf . The problem is 

narrowly connected with famous Shannon-

Whittaker sampling theorem (Mallat (1999)): 

supposing f̂  has a support in 
TT
ππ ,− , we can 

write 

( ) ( ) ( )
∑
∈

−
−=

Zk
nx

nx

T

TnTfxf π
π

π

πsin
    (1) . 

Here we use a “regular sampling” nTxn =  of a 

frequency T1 . 



In practice we have only a finite number N  of 

samples nf , 1,...,0 −= Nn . Moreover, in our 

case we have a non-uniformly sampled data, so in 

general 1+< nn xx   but nTxn ≠ . Remind also, 

that the condition for support in 
TT
ππ ,−  might not 

be entirely valid in practice! For that reasons 

Shannon-Whittaker theorem can not be used 

directly, but we can follow its principle to find a 

signal approximation. 

In our case (periodical errors of relative 

gravimeters) exists a good reason to suppose, the 

signal consists of a bunch of sine waves with 

known periods (sourced by the instrument) and 

some additional random noise (unknown spectral 

properties, we can say nearly-white noise). There 

can be other functions in signal (i.e. polynomials) in 

some situations, but in our case there was not 

reason for this presumption. 

The reconstructed signal approximation will be 

element of finite-dimensional space of dimension 

M , spanned by the set of basis functions 

( )RLk

2∈ϕ , 1,...,0 −= Nk . We will use a 

linear algebra approach for the signal 

reconstruction.  

( ) ( )∑
−

=

==
1

0

M

k

nkknn xcxff ϕ      (2) , 

here we are looking for the set of unknown 

coefficients Cck ∈ .  

Following the principles of Shannon-Whittaker 

theorem and from reasons treated before, we put 

( ) ( ) ( )
kk P

x

P

x
k ix sincos +=ϕ  , where 0>kP   are 

some periods. The periods should correspond to the 

Shannon-Whittaker theorem; especially we cannot 

choose frequency equal to or higher than Nyquist 

critical frequency T2
1

  (Mallat (1999)). Note that 

( ) kP
xi

k ex =ϕ , taking into account formula 

θθθ sincos ie
i += . 

     

Two different approaches were used in our paper. 
 

3.1 Harmonic analysis 
 

With a knowledge of sources of the signal (i.e. 

knowledge of periods of sine waves in the signal), 

we take only limited set of M basis functions with 

given periods kP . In this case NM < , so the 

problem is overdetermined.  We should apply some 

regularization method like LSM.  This would also 

efficiently suppress the influence of noise included 

in samples nf . On the other hand, there can remain 

some undetermined waves in the signal. Helpfully, 

the signal-samples residua can be statistically 

checked (Divis et al. (1992)) for randomness of the 

noise. 
 

3.2 Spectral analysis 
 

In the preceding case we could not be sure if there 

remain some frequencies in the signal. For that 

reason we can attempt to find most of possible 

(allowable/available) frequencies. We are limited to 

N  frequencies, so the problem will be uniquely 

solvable. The common idea is to choose the periods 

equidistantly, kP
NTk

π2= .  Note the basis 
kϕ  is 

orthogonal in ( )RL2
 (with standard inner product). 

The linear system  

( ) ( ) ∑∑
−

=

−

=

===
1

0

1

0

2
N

k

xi

k

N

k

nkknn
nN

k

ecxcxff
π

ϕ     (3) 

can be solved uniquely for Cck ∈ . In the case of 

regular sampling, i.e. nTxn =  the solution can be 

understood  as  a  discrete  Fourier transform 

(Mallat (1999)), where 
T

f

k
kc

ˆ

= . So, the advantage 

of the FFT algorithm can be exploited. Because our 

sampling is non-uniform, we use interpolation 

methods to resample the signal regularly. Note that 

this process adds “interpolating” noise to the set of 

new samples. This noise might significantly (it 

depends on original sampling characteristics, 

maximal gap, …) affect the original signal, so the 

“spectrum coefficients” kc  would be strongly 

inaccurate. 

The future research will be aimed to finding and 

applying of an efficient method for determining 

spectrum from non-uniformly sampled data. The 

method should be also connected with some robust 

statistic method to determine relevancy of an 

acquired waves. 
 

4 Proceeding 
  

4.1 Spectral analysis 
 

Because of the significantly irregular (non-uniform) 

data sampling (Fig.1) and gaps between baselines, 

it is better to proceed spectral analysis for every 

baseline separately. From this reason each baseline 

fits for different periods. The microbaseline   



Pecny-Chocerady is completely unsuitable for 

spectral analysis because of the significant 

irregularity of the data sampling and a very small 

amount of data. 

Because of the non-uniform sampling, the 

interpolation between the data samples was 

processed. Three interpolation methods were used 

to check and moderate an impact of the 

“interpolation” noise. 
 

4.2 Harmonic analysis 
 

The calculated amplitudes were checked by the 2.5 

multiple of the standard deviation. The resultant 

amplitudes are not possible to consider as 

independent. As it is clear from analysis, the 

amplitudes are little bit different in the case of 

common or separated computing.     

 

 
 

Fig.2  Resultant FFT spectra from SA (different data 

interpolation methods) and harmonic amplitudes (checked 

by 2.5 multiple of their standard deviation) for the 

gravimeter LCR1068 and the Main Gravimetry Baseline 

(CZ). 

 

As the conclusive results, only the amplitudes 

which corresponds significantly in both the 

harmonic analysis and the spectral analysis results 

were taken (see Table 2a, Table 2b). 
 

5 Conclusions 
 

5.1 LCR1068 results 
 

We have found the systematic error of period   

36.67CU with amplitude 12µµµµGal and the 

systematic error of period 7.33CU with amplitude 

7µµµµGal. The appearances of other frequencies were 

not proved (see Table 2a). 

The results of harmonic analysis have found 

some periods, which can be considered as 

significant due to the standard deviation, but these 

periods have not been detected in the FFT spectra 

(see Figure 2). This non-existence of some 

systematic periods in the FFT spectra is not 

possible to explain as the result of the data spacing. 

There is also necessary to consider, the result of 

harmonic analysis is affected by an interference of 

close significant noise frequencies. 

 

 
 

Table.2a Results LCR1068 summary 

 
5.2 LCR176 results 
 

As the result we found the systematic error of 

period 7.89CU and amplitude 4.5µµµµGal.               

The appearance of other systematic frequencies is 

arguable (see Table 2b). 

 

The future research will be aimed to finding and 

applying of an efficient method for determining 

spectrum from non-uniformly sampled data. The 

method should be also connected with some robust 



statistic method to determine relevancy of an 

acquired waves. 

The issue of the comparison of the results of both 

methods is the possibility of separation of the true 

systematic frequencies and the noise frequencies in 

the cases, when the results of harmonic analysis 

might be affected by the noise interference (Fig.2).  

 

 
 

Table.2b Results LCR176 summary 
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Abstract. For highly accurate absolute gravity 
measurements (on the level of 1-2 µGal) using FG5 
gravimeters it is necessary to ensure a correct 
adjustment of the meter and to guarantee many 
optimal conditions at the observing site. Effects of 
the interference fringe size on the FG5 No. 215 
results were experimentally studied by absolute 
gravity measurements repeated under different 
conditions. The fringe signal size was changed for 
first by rotation of the Faraday isolator and for 
second with the help of additional polarization 
filter. The relation between the gravity and fringe 
signal size within the range of 180-430 mV was 
approximated by a regression line with the 
regression coefficient of 0.015 ± 0.002 µGal/mV 
and 0.011 ± 0.002 µGal/mV, respectively. Although 
the fringe signal effect is not dramatic for FG5 No. 
215, the correction of FG5 results to the same fringe 
signal level improve the accuracy of absolute 
measurements. 
 
Keywords. Absolute gravity, FG5, fringe signal 
_________________________________________ 

1 Introduction 

Absolute gravity measurements belong to the 
progressive methods of which results are important 
for monitoring geodynamic phenomena. At present 
the most precise absolute gravimeters are the FG5 
gravimeters (Niebauer et al. 1995). For achieve the 
accuracy on the level of 1-2 µGal  it is necessary to 
ensure a correct adjustment of the meter and to 
guarantee many optimal conditions at the observing 
site.  

The FG5 uses a laser interferometer to determine 
the position of the free-falling test mass accelerated 
due to gravity. The laser interferometer generates 
interference fringes as the test mass falls. The 
fringes are counted and timed with an atomic clock 
to obtain precise time and distance pairs (FG5 
Operator’s Manual). These pairs are necessary for 
determination of free-fall acceleration. 

 
Fig. 1 Absolute gravimeter FG5 No. 215 at the GOP. 

This study was motivated by the emerged 
problem with the dependence of FG5 results on the 
fringe amplitude, caused by frequency dependent 
time delay of the ultra fast comparator (Niebauer et 
al. 1995) placed on the APD (Avalanche Photo 
Diode) circuit board. The comparator converts the 
sinusoidal fringe signal (frequency up to about 
6 MHz) to a TTL square wave suitable for timing 
measurements.   

The effect of the fringe signal on the FG5 
No. 215 (see, Figure 1) results were observed in 
spite of the fact that the fringe problem described 
above was basically solved in 1995 by interchange 
of the problematic comparator (AMD686) for a 
much faster comparator (AD9696). The comparator 
AMD686 caused a “gravity’ change of about 



12 µGal for the fringe signal in the range of 
200−400 mV.  

2 Experiments 

Repeated absolute gravity measurement with 
FG5 No. 215 for different fringe signal were used 
for investigation of the fringe effect. The APD 
circuit board was equipped by two different ultra 
fast comparators (AD9696 and newer AD8561) 
during experiments. Both comparators should be 
resistant for the fringe problem described above 
(Niebauer et al. 1995).  

The fringe signal size was changed first by 
rotation of the Faraday isolator and second with the 
help of additional polarization filter placed to the 
interferometer base (see, Figure 2). The size of the 
fringe signal (peak to peak) was changed within the 
range of 180-430 mV. The nominal fringe signal is 
280-360 mV (see, FG5 Operator’s Manual).  

 

 
Fig. 2 Interferometer base of the FG5 No. 215. Faraday 
isolator (A), polarization filter (B) and APD circuit board 
(C). 

At least 600 drops during 4 hours were measured 
for each fringe signal setting. The results of free-fall 
acceleration were converted to the gravity with the 
help of correction for:  
• synthetic earth tides, 
• air pressure variations using the coefficient 

−0.3 µGal/hPa, 
• polar motion using IERS (International Earth 

Roration Service) data. 

3.1 Experiment with Rotation of the Faraday 
Isolator 

Fringe signal change by rotation of the Faraday 
isolator is the usual procedure for setting of the 
fringe size. The experiment was carried out for two 

different ultra fast comparators on APD circuit 
board (AD9696 and newer AD8561), see Figure 3.  

The measurement has been carried out during 
three 3-day periods. The interferometer was 
repeatedly aligned after each rotation of the Faraday 
isolator and 6 sets (900 drops during 6 hours) were 
measured with FG5 No. 215 after this alignments. 

 

 
Fig. 3 Ultra fast comparator on APD circuit board. 

 
Fig. 4 Relation between set gravity of the FG5 No. 215 and 
fringe signal for ultra fast comparator AD9696. 

 
Fig. 5 Relation between set gravity of the FG5 No. 215 and 
fringe signal for ultra fast comparator AD8561. 



The relation between the fringe signal and the 
measured gravity was approximated by a regression 
line (see, Figure 4 and 5). The regression 
coefficients for both type of comparators indicate 
comparable results. The change of the fringe signal 
size by the rotation of the Faraday isolator induced 
the “gravity” change characterized by the regression 
coefficient of 0.0152 ± 0.0014 µGal/mV. 

3.2 Experiment with Polarization Filter 

A polarization filter was added to the 
interferometer base of the FG5 No. 215. It was 
placed directly next to the output of the laser beam 
from the laser baseplate. The fringe signal was 
changed by the rotation of the polarization filter 
after 4 measured sets (600 drops during 4 hours). 
The newest type of ultra fast comparator (AD8561) 
was installed on the APD circuit board. 

 

 
Fig. 6 Relation between set gravity of the FG5 No. 215 and 
fringe signal changed by polarization filter. 

 The relation between the fringe signal and the 
measured gravity was once again approximated by a 
regression line (see, Figure 6). The regression 
coefficient of 0.0110 ± 0.0016 µGal/mV was 
estimated from two epochs of measurements (21-23 
February 2006 and 1-3 March 2006). 

4 Conclusions 

The experiments carried out at the Geodetic 
Observatory Pecný detected an effect of the 
interference fringe signal on the results of the FG5 
No. 215. This effect was confirmed for the change 
of the fringe size first by rotation of the Faraday 
isolator and second by rotation of the additional 
polarization filter placed to the interferometer. The 
relation between the gravity and the fringe signal 
within the range of 180-430 mV was approximated 
by a regression line with the regression coefficient 

of 0.015±0.002 µGal/mV and 0.011±0.002 
µGal/mV, respectively. It means a correction of 
about 1.3 µGal for 100 mV. Both methods are 
technically same. Advantage of the method with the 
additional polarization filter is the simplicity - the 
interferometer needn’t be aligned after rotation of 
the filter. 

The source of the fringe effect is not known. The 
experiments were carried out for two different types 
of ultra fast comparators (AD9696 and newer 
AD8561) with the same results. 

The changeable fringe signal causes a systematic 
error which size is on the level of FG5 accuracy. 
The correction of FG5 results to the same fringe 
signal improves the accuracy of absolute 
measurements. 

It would be useful to carry out a similar 
experiment also for new type of FG5 interferometer 
with fiber optics. Technically, same results should 
be reached like for FG5 No. 215 equipped with bulk 
type of interferometer. 
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Abstract. The precise calibration of relative gravity 
meters is essential for the accuracy of gravimetric 
surveys. We show that in the new Zugspitze cali-
bration system established in 2004 – 2005 excellent 
accuracies of the linear calibration factor of relative 
gravity meters in the range of 1–2 * 10-5 can be 
obtained. The calibration system is particularly 
useful for the precise calibration of Scintrex linear 
quartz gravity meters. The key advantages of the 
new calibration system are (a) the large gravity 
range of up to 528 mGal and (b) the short transport 
time of instruments by cable cars between the ab-
solute gravity reference stations. This allows im-
proving the accuracy of the Scintrex relative gra-
vimetric observations by carrying out numerous ties 
over large gravity differences in a day or less. We 
study the accuracy and repeatability of Scintrex 
CG3 and CG5 calibration observations and the 
influence of seasonal effects due to environmental 
mass changes based on a time series of 57 calibra-
tion experiments over a period of 22 months. We 
show that variable attraction of snow can cause 
considerable effects up to 40 µGal, in particular on 
stations in the summit zone. This is confirmed by 
forward modelling using a hydrological snow 
model with a 1km grid. We conclude that gravity 
meter calibration should be preferably carried out 
between July and December when the snow effect 
is small and repeatability of calibration experiments 
is within ±10 µGal. 
 
Keywords. Gravity meter calibration, Scintrex 
Autograv gravity meter, gravity change 

1 Introduction: The Zugspitze Gravity 
Meter Calibration System 

The precise determination of gravity differences 
with the widely used mechanical (e.g., LaCoste-

Romberg) and electrostatic (e.g., Scintrex CG3 and 
CG5) spring gravity meters requires a best possible 
calibration. The excellent suitability of the Zug-
spitze summit (2962 m) for gravity meter calibra-
tion has already been recognized in 1937, when 
reference gravity stations have been established by 
pendulum observations (Weiken 1950). The sta-
tions have been used for gravity meter calibration, 
e.g., by Morelli (1951).  
Today, with high precision free fall absolute 
gravity meters reference gravity values improved 
by 2 - 3 orders of magnitude in accuracy can be 
obtained. Therefore, in 2004 - 2005 a new 
calibration system has been established by repeated 
observations at 6 stations using the free fall 
absolute gravity meters FG5-220 (IFE) and A10-
002 (BKG), cf. Figs. 1 and 2.  

 
Fig. 1 Absolute gravity stations on Zugspitze summit; 
gravity meters A10 (BKG, lower left) and FG5 (IFE, lower 
right) 
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Fig. 2 Gravity stations, gravity differences and transportation 
in the Zugspitze calibration system  

The calibration system is designed in particular for 
the best possible calibration of Scintrex Autograv 
CG3 and CG5 gravity meters for which only a 
linear calibration factor or at most a very small 
quadratic term have to be determined. The key 
advantages of the Zugspitze calibration system are 
large gravity differences of up to 528 mGal and – at 
the same time – transport times of only 10 – 20 
minutes between the absolute stations. The short 
transport time allows carrying out a number of 
station ties within a day which considerably 
increases redundancy and accuracy of the relative 
gravimetric observation.  

Table 1 Results of absolute gravimetry in the Zugspitze 
calibration system. For FG5 results cf. Timmen et al. (2006). 
A10 results are preliminary. 

Table 1 shows the absolute gravimetry results for 
all epochs and reference levels. The FG5 accuracy 
estimate is 3 µGal (Timmen et al. 2006). The pre-
liminary A10 accuracy estimate obtained from 
comparisons at other stations is 5 - 10 µGal. The 
reduction to another reference level is done using 
the precisely observed vertical gravity gradients 
given in Table 1. This accounts for another error of 
about 3 µGal. Note the extremely large vertical 
gradient in station ZUG117 at the very top of Zug-
spitze. At ZUG100 – only 15 m below – the gradi-
ent is already considerably smaller. 
At the summit stations ZUG100 and ZUG117 sig-
nificant gravity changes have been observed. The 
gravity result in February is larger by 26 - 33 µGal 
than in September. We show in Sect. 5 that this 
variation can largely be attributed to the attraction 
of snow masses in the summit zone. At other sta-
tions, the largest change is 8 µGal which is within 
the observation accuracy.  
As the calibration system is intended to serve as a 
long-term calibration reference, the height differ-
ences between the gravity stations have been pre-
cisely measured. This will allow checking the long-
term stability by repeated observations. Each of the 
stations is connected by precision levelling to 
benchmarks. Some of the benchmarks have been 
tied by static GPS observations to GPS permanent 
stations provided by the Institute for Meteorology 
and Climate Research in Garmisch as well as by 
the German Sapos permanent network. 
The absolute gravimetry stations are easily acces-
sible. On station ZUG117, no FG5 observations 
have been feasible due to the restricted space. Sta-
tion ZUG200 unfortunately is no more accessible 

Station (Height), Epoch Instrum. Dur. Gravity (µGal) Gravity(µGal) Gravity(µGal)
Vertical Grav. Gradient (h) Scintr. ref. level A10 ref. level FG5 ref. level

0.26 m 0.705 m 1.20 m

ZUG117 (2956m) 2005 02 17 A10-002 1 980056179 980055946 980055688
-522.0µGal/m 2005 09 28 A10-002 0 980056146 980055914 980055656

ZUG100 (2941m) 2004 09 18 FG5-220 24 980062587 980062380 980062149
-465.3µGal/m 2005 02 17 A10-002 1 980062613 980062406 980062176

2005 09 28 A10-002 0.3 980062586 980062379 980062149

ZUG200 (2660m) 2004 09 09 FG5-220 24 980155017 980154861 980154687
-350.5µGal/m 2005 02 17 A10-002 5 980155016 980154860 980154687

ZUG301 (994m) 2005 07 20 A10-002 0.5 980524498 980524373 980524233
-282.0µGal/m 2005 09 28 A10-002 0.3 980524504 980524379 980524239

WANK100 (1738m) 2004 12 01 FG5-220 24 980373710 980373537 980373346
-387.7µGal/m

WANK200 (735m) 2004 12 03 FG5-220 24 980584700 980584573 980584432
-284.7µGal/m 2005 02 19 A10-002 1 980584694 980584568 980584427

2005 07 20 A10-002 0.3 980584702 980584575 980584435
2005 09 27 A10-002 0.3 980584701 980584574 980584433



due to construction activities. 

2 Calibration of Scintrex CG3 and CG5 
Gravity Meters 

To obtain the maximum accuracy for the linear 
calibration factor, the instrument to be calibrated 
has to perform observations over a large gravity 
range with accuracy similar to that of the reference 
gravity differences from absolute gravimetry. Tak-
ing into account the accuracy of the reduction to the 
Scintrex reference level (0.26 m above ground), the 
reference gravity differences in the Zugspitze cali-
bration system have an accuracy of 6 – 15 µGal. 
Thus, the best achievable calibration accuracy is 
about 1.2*10-5. Instrumental errors of the Scintrex 
gravity meters have to be thoroughly examined, and 
a suitable sequence of observations has to be found. 
If calibration is not carried out simultaneously with 
absolute gravimetry, gravity changes by environ-
mental mass changes have to be considered in ad-
dition. They should be modelled as far as possible 
and required, or mitigated, e.g., by avoiding cali-
bration at seasons when such effects are strong. 

3 CG3 and CG5 Instrumental Errors 

Previous investigation on the accuracy performance 
of the CG3 and CG5 gravity meters led to rather 
inhomogeneous results. In microgravimetric sur-
veys, often excellent accuracies of a few µGal have 
been obtained. Timmen and Gitlein (2004) found a 
relative accuracy limit of 1*10-4. Hackney (2001) 
obtained rather poor accuracies in a gravimetric 
network in Australia. Budetta and Carbone (1997) 
observed a large change in the calibration factor by 
1*10-3 over one year, together with a strongly 
varying drift parameter. For calibration experiments 
in the Zugspitze calibration system, the following 
error sources deserve special attention: 
Transport After transport, many Scintrex gravity 
meters exhibit a significant time-dependent change 
in the reading, possibly due to the relaxation of 
tension in the sensor which has been accumulated 
during transport (Hackney 2001). For the CG3 
310218 instrument of IAPG, this hysteresis is often 
strong (up to 60 µGal) during 30 minutes after 
transport. Figure 3 (top) shows strong but homoge-
neous hysteresis most of which is cancelled out in 
the station difference. Figure 3 (bottom) shows 
inhomogeneous hysteresis which can result in large 
errors. Hysteresis of the instruments CG3 310218 
(IAPG) and CG3 303202 (BKG) has been found to 
decrease for most station occupations. In contrast to 

this, Hackney (2001) reported strongly increasing 
hysteresis of his instrument for all occupations. For 
the CG5 44 of BKG a considerably lower 
hysteresis magnitude has been found. Thus, 
hysteresis magnitude and direction seem to vary 
from instrument to instrument. 
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Fig. 3 CG3 hysteresis after transport. Each signature 
corresponds to a 60 sec observation set. Station occupation 
duration is 30 - 60 min (25 - 60 sets), and cable car transport 
between stations is about 25 min. Top:  strong but 
homogeneous hysteresis, bottom: inhomogeneous hysteresis 

Temperature effects The temperature of the 
gravity sensor is stabilized by heaters within 10-3 
K. Residual temperature variations are observed 
with an accuracy of 10-5 K and corrected for. 
During observations in the Zugspitze calibration 
system, relatively strong residual variations have 
been observed for ties between station pairs with 
very different ambient temperature. Thus, an error 
of the temperature correction coefficient could 
cause significant errors. We did not find a 
correlation between the sensor temperature and 
gravity reading. However, this should be further 
studied. 
Stability of the instrument electronics On 
the 1*10-5 accuracy level, instabilities of the 
instrument electronics could play a role. E.g., the 
AD converter of the electrostatic gravity sensor is 
not specified to be stable to this accuracy. 
Accelerations due to microseismics, wind 
and human noise The large number of observa-
tions (cf. Sect. 4) allow comparisons between in-
struments, stations and days with respect to the 
amplitude of these effects. 
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Fig. 4 Time series of gravity differences (in mGal) for 5 
station ties from absolute gravimetry and calibrated Scintrex 
relative gravimetry, together with seasonal gravity variation 
obtained from the GLOWA Danube snow model  

4 A Time Series of Calibration 
Experiments 

To investigate the instrument accuracy and long-
term stability as well as gravity changes due to 
environmental mass changes, a time series of 57 
calibration experiments have been carried out dur-
ing a total time span of 22 months. At each epoch, 
gravity differences (ties) between one or several 
pairs of stations have been observed with CG3 
310218. For some epochs, simultaneous observa-
tions of CG3 303202 and CG5 44 of BKG have 
been carried out. The results are shown in Fig. 4 
together with the reference gravity differences from 
absolute gravimetry. Each Scintrex gravity differ-
ence is derived from 3 - 9 single ties observed dur-
ing one day. From least squares adjustment very 
good accuracies of 1 - 6 µGal have been obtained 
for most station ties (Fig. 4). For station tie no. 2 

only 3 - 4 single ties have been observed at some 
epochs due to time limitations, resulting in poorer 
accuracies of up to 20 µGal. Results for tie no. 5 
are obtained from the sum of ties no. 1 and 2, ex-
cept for the first epochs which have been observed 
directly. 
The consistency between epochs is rather poor for 
the first few epochs of ties no. 1 and 5, when sta-
tions were occupied during 5 min only and unde-
tected hysteresis effects may have caused large 
errors. Later, the station occupation duration was 
gradually increased to 30 min, leading to an im-
proved repeatability below ±10 µGal for ties no. 2 
– 4 which is similar to the accuracy of the 
reference gravity differences from absolute 
gravimetry. Ties no. 1 and 5 involving Zugspitze 
summit are constant within ±10 µGal from July to 
December only, while showing a seasonal trend 
from January to June with results smaller by up to 
40 µGal. The time variation in both absolute and 
relative gravimetry results is approximately 
consistent with differences in snow attraction 
obtained by forward modelling using data of the 
GLOWA-Danube snow module, cf. Sect. 5. 
From all epochs where simultaneous absolute and 
relative gravimetry is available, linear calibration 
factors for the employed Scintrex instruments have 
been determined by least squares adjustment. Table 
2 shows the calibration accuracies obtained.  

 
instrument # of ties calibr. factor 

accuracy 
CG3 310218 9 1.2e-5 
CG3 303202 5 2.0e-5 
CG5 44 7 1.4e-5 

Table 2 Accuracies of calibration from repeated calibration 
experiments 

5 Effects of Environmental Mass 
Changes 

Snow Around Zugspitze summit, in winter maxi-
mum snow heights of up to 5 m are observed (1 - 2 
m water column equivalent). In the higher regions, 
significant snow masses persist until June. We used 
a snow model from the GLOWA-Danube hydro-
logical project (Mauser and Ludwig 2002) to 
compute the attraction of snow mass up to a 
distance of 40 km on each gravity station. The 
model contains snow water column equivalent in a 
1 km grid and daily resolution for the years 1995 to 
1999. For the computation of attraction, the snow 



data have been represented by point masses on a 
digital terrain model grid. In the near zones around 
the gravity stations, the coarse GLOWA Danube 
snow grid has been interpolated to a 50 m high 
resolution digital terrain model. Thus, the proper 
terrain height of the snow data is used. However, 
the model cannot represent local (sub-grid) snow 
variability. Nevertheless, a point-wise comparison 
with observed snow height at a station of German 
Weather Service (DWD) near Zugspitze summit 
showed a fairly good agreement. 
As no model data have been available for the time 
period of the calibration experiments, the results for 
a winter with little snow (1997/98) and for another 
with very much snow (1998/1999) have been 
selected for a qualitative comparison. Figure 4 
includes the differences in snow attraction for all 
station ties. For ties no. 2 and 4, the effect of the 
snow model is below 9 µGal throughout the year. 
For ties no. 1 and 5, large variations up to 60 µGal 
are obtained which are largely due to the snow 
effect at the Zugspitze summit station ZUG117.  
For these ties, both the observed gravity differences 
and the modelled differences in snow attraction 
decrease rather slowly in the period from December 
to May together with increasing snow mass 
accumulation in the summit region. The values 
increase again sharply in June and July together 
with snow melt in the summit region. The 
amplitudes of the modelled snow effect are, 
however, larger than the observed gravity 
variations. For calibration purposes it is important 
to note that in the period from July to December the 
snow effects are small also for the ties involving 
Zugspitze summit. For tie no. 3 the agreement is 
poor. Probably the Scintrex accuracy estimates 
obtained for this tie are too optimistic. 
Glacier melting The melting of the small 
Schneeferner glacier below Zugspitze summit was 
estimated to cause a gravity change of about 2 
µGal/year. This effect is slightly too small to be 
detected in the gravity time series available so far. 
Groundwater and other water storages The 
valleys around Garmisch contain important 
groundwater storages with significant temporal 
variations. Unfortunately, there are no hydrological 
observations available close to the gravity stations. 
The time series of gravity differences may contain 
effects from water storage changes, but they seem 
to be smaller than ±10 µGal. 
Atmosphere The gravity observations have been 
reduced for the deviation from normal air pressure 
using the empirical regression coefficient 0.3 
µGal/mbar. However, in the complex topography of 
the Zugspitze calibration system the effect of actual 

air mass distribution may deviate significantly 
from this simple relation. 

6 Conclusions 

The large number of observations carried out 
during the calibration experiment time series allow 
valuable insight into the characteristics and 
accuracy of the Scintrex CG3 and CG5 gravity 
meters. The repeatability of the gravity differences 
in the Zugspitze calibration system observed by 
these instruments is within ±10 µGal for most 
station pairs which is similar to the accuracy of the 
reference gravity differences from absolute 
gravimetry. For ties involving Zugspitze summit, a 
seasonal variation of up to 40 µGal is observed. 
This is approximately consistent with the variation 
in snow attraction derived from the snow module 
of the GLOWA Danube hydrological model. The 
effects of snow are large in the months January to 
June, which should be avoided for precise 
calibration. The effects of other environmental 
mass changes seem to be moderate. Hysteresis 
after transport has been identified as a critical error 
source for several CG3 instruments. A preliminary 
recommendation is to extend station occupations to 
a duration of at least 30 minutes. 
Taking properly into account the instrument 
characteristics and the seasonal effects, in the 
Zugspitze calibration system gravity differences of 
about 500 mGal can be observed with an accuracy 
of 5 - 10 µGal by the Scintrex CG3 and CG5 
instruments, allowing a calibration with an 
excellent relative accuracy of 1 - 2*10-5. 
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Abstract.  
 
The team of the Gravity Observatory of Strasbourg, 
France, took absolute gravity measurements at 
Dumont d’Urville (Antarctica) and Canberra 
(Australia) in February 2006. First we report on 
these measurements and then we compare with 
previous measurements taken by the same group at 
Dumont d’Urville in 2000 and by American and 
Japanese groups at Canberra in 2003 and 2004. The 
results show a very large stability of the Antarctic 
site demonstrated both by absolute gravity variation 
(0 ± 1.94 µGal/yr) and height variations from 
DORIS (0.29 ± 0.13 mm/yr) and GPS (- 0.01 ± 0.21 
mm/yr) observations. At Canberra an uplift is 
observed by GPS (+ 2.39 ± 0.06 mmyr-1) and 
DORIS (+ 5.49 ± 0.49 mm/yr) at the Mt Stromlo 
sites whereas absolute gravity would show an uplift 
at the seismic vault (- 2.5 ± 0.1 µGal/yr) and a 
subsidence at the superconducting gravimeter site 
(+ 3.7 ± 1.6 µGal/yr). At Tidbinbilla, absolute 
gravity variations (- 3.90 ± 0.76 µGal/yr) and 
vertical GPS (+ 2.16± 0.25 mm/yr) both show an 
uplift. 
 
Note: in the following we shall use 1 µGal = 10 –8 
m/s2. 
 
Keywords. Absolute Gravity, DORIS, GPS, 
Antarctica, Dumont d’Urville, Canberra, 
Tidbinbilla 
 
 
1. Introduction 
 
During the 2005-2006 summer season of the 
Southern Hemisphere, the team of the Gravimetric 
Observatory of Strasbourg (France) using the 
FG5#206, completed a 5-year program of absolute 
gravity (AG) measurements supported by the 
French Polar Institute (I.P.E.V.). During the 
previous campaigns, AG measurements were taken 
at Dumont d’Urville (DdU, Antarctica) in 2000 

(Amalvict et al., 2001, Hinderer et al., 2002) and in 
Islands of the Indian Ocean: Kerguelen in 2001 
(Amalvict et al., 2001a), Kerguelen and Crozet in 
2003 (Amalvict et al., 2003), Kerguelen, Crozet and 
Amsterdam in 2005 (Amalvict et al., 2005). 
Antarctica is a very large area the behaviour of 
which is decisive for climatology, ice melting, 
study of mean sea level variations, etc… However 
very few AG measurements have been operated on 
this continent; Amalvict initiated in 2003 the listing 
of this measurements (Amalvict, 2003; Amalvict 
and de Linage, 2004) and a subsequent complete 
list, as for 2005, can be found in Mäkinen et al. 
(2006). New measurements were taken in 2006 and 
there are now 26 measurements at 12 stations, 
among them only few benefit from repeated 
measurements (four stations), though repetition is 
crucial for the determination of trends which can be 
interpreted in terms of constraints for the modelling 
of Post Glacial Rebound (PGR) or Glacial Isostatic 
Adjustment (GIA). There are indeed various 
models of deglaciation predicting gravity and 
height variations in Antarctica (James & Ivins, 
1995, 1998; Peltier, 1995; Nakada et al., 2000), but 
to be better constrained, they need the input of 
observational data. This enhances the call for new 
AG values. 
The ship (Astrolabe) goes to Terre Adélie from 
Hobart (Tasmania, Australia) and we took this 
opportunity to make AG measurements in Canberra 
(Mt Stromlo and Tidbinbilla) on the way back from 
Antarctica (Fig. 1). The Canberra Observatory, on 
Mt Stromlo, hosts since 1997 a superconducting 
gravimeter (SG) belonging to the National 
Astronomical Observatory (NAO) of Mizusawa, 
Japan. Different teams visited the site for AG 
measurements several times (Amalvict et al., 
2001b), in order to calibrate the SG, to monitor the 
stability of the station and to establish a high 
quality reference station. Unfortunately, a severe 
bushfire destroyed the buildings of the Observatory, 
sparing nevertheless the SG room and the SG itself. 
Our 2006 measurements repeated the 2004 
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measurements taken by the Kyoto University 
group, one year after the bushfire. All the 
mentioned AG measurements are collocated with 
precise satellite positioning techniques (GPS, 
DORIS), which becomes now the standard modus 
operandi for repeated AG measurements. 
 

 
 
Figure 1 –Location of the AG measurements sites. 
 
2. Antarctica – Dumont d’Urville 
 

2.1. 2006 AG measurements  

A 5-year project, supported by the French Polar 
Institute (IPEV), started in 2000. The aim of the 
project was to measure for the first time AG in the 
French scientific stations located in Antarctica 
(DdU in Terre Adélie) and in South Indian Ocean 
Islands (Kerguelen, Crozet, Amsterdam). 
Measurements at DdU are repeated after 6 years. 
The station is located on Petrels Island at 5 km of 
the continent; the gravimeter, the FG5#206, was 
deployed in 2000 in a small shelter. It has been 
enlarged in 2006 with great care for saving the AG 
point and its access for the repetition of the precise 
levelling operated in 2000 by the French 
Oceanographic Service (SHOM). DdU is a very 
windy station, so it was decided to have a large 
number of drops per set to get the value of gravity 
with a set standard deviation as small as possible, 
by averaging a high number of single values. The 
adopted sequence in 2006 is 200 drops per set, 10 s 
between drops and 1 set per hour. Measurements 
took place from 5 to 8 February 2006, 82 sets were 
measured and the final value was obtained from 
16187 drop values. The parameters of the station 
are presented in Table A1. We processed the raw 
data by mean of the ‘g6’ software from Micro-g 
Solutions. We applied the standard corrections to 

the raw data: polar motion, vertical gradient of 
gravity, atmospheric pressure using the standard 
nominal pressure, solid Earth and oceanic tides. 
The final value of gravity at the ground level is g = 
982 387 167.0 ± 3.5 µGal. The set standard 
deviation is mainly due to the remaining part of the 
loading tide, which is not modelled precisely 
enough, and to the noisy conditions of the station. 
 

2.2. 2000 AG measurements 
 
The first absolute measurements ever performed in 
Terre Adélie were operated from 26 February to 2 
March 2000 with FG5#206. At that time we 
measured 25 drops per set with a 10s interval 
between drops and 4 sets per hour, averaging the 
final value from 11800 individual drops. The final 
value, after correcting according to the same 
regulation than for the 2006 measurements is: g = 
982 387 167.0 ± 11.11 µGal. Let us note that it is 
not the value published in Amalvict et al., 2001 and 
Hinderer et al., 2002. In these two papers, the 
nominal pressure was calculated from the average 
value of the pressure observed at the station for 50 
years, instead of the standard pressure. The 
correction that we have to apply to the 2000 result, 
due to the change of nominal pressure is – 7.2 µGal 
(Mäkinen et al., 2006). The high value of the set sd 
in 2000 is mainly due to the small number of drops 
per set, but also to the remaining un-modelled 
oceanic tide and to the super-spring performances 
at that time that has been improved later by Micro-
g. 
 

2.3. Height changes and gravity variation 
 

2.3.1. AG measurements 
The difference between the two values of gravity 
(∆g = g2006 - g2000) is null with a large set sd (set SD 
= {(set SD2006)2 + (set SD2000)2 }1/2) 11.65 µGal, 
which is dominated by the 2000 set SD. The 6-year 
time interval between measurements leads to a 
‘trend’ of gravity  = 0 ± 1.94 µGal/yr. g&
A negative value of corresponds to an uplift. g&
 

2.3.2. Precise positioning 
Two techniques of precise positioning using 
satellites are collocated at DdU. Guy Woppelman 
(TIGA, SONEL) derived a trend from GPS 
observations between 1998.2 and 2005.7 (2006, 
private communication, still preliminary result) 
equal to h  = - 0.01 ± 0.21 mm/yr. &

Pascal Willis (IGN – JPL) derived in the ITRF2005 
(2006, private communication, also as a 
preliminary result) a trend equal to  = 0.29 ± 0.13 
mm/yr. 

h&

A positive value of  corresponds to an uplift. h&

 



3.1. Mount Stromlo 2.3.3. Comparison 
3.1.1. 2006 measurements – FG5#206 The combined effect of PGR, and PDIM (present 

day ice melting) is supposed to be the cause of 
changes in the vertical position of the station. 
Models of prediction ((James & Ivins, 1995, 1998; 
Peltier, 1995; Nakada et al., 2000), which take into 
account several scenarios of PGR and GIA, all 
predict in the DdU region (Wilkes Land) a small 
vertical displacement, ranging from 0 to 4 mm/yr. 

SG site -  
The measurements took place from February 18 to 
22 2006. The adopted sequence is 100 drops per 
set, 10 s between drops and 1 set per hour. The total 
experiment led to 10314 accepted drops; the series 
is long in order to calibrate the SG, which requires 
several days of parallel recording. The coordinates 
of the station and the parameters for corrections are 
given in Table A1 of the Appendix. The solid Earth 
tides and loading tides are corrected by using the 
tidal parameters (amplitude and phase) derived 
from a tidal analysis of SG recording. The final 
value at the ground level is g = 979 549 878.0 ± 0.9 
µGal. Let us notice that the use of the observed 
tidal parameters leads to a strong reduction of the 
set sd. 

 
 

Model 
h&  

mm/yr 

AG 
g&  

µGal/yr 

DORIS 
h&  

mm/yr 

GPS 
h&  

mm/yr 

0 to 4 0 ± 1.94 0.29 ± 0.13 -0.01 ± 0.21
 
Table 1 – Changes in gravity and in height, at DdU 
(Antarctica).  
 Seismic Vault 
Summarising the results in Table 1, we are facing a 
very good agreement between predictions, AG 
changes and vertical position changes. All the 
results are in favour of a large stability of the 
station. 

The site located at the GEOSCOPE station was 
occupied on 25 and 26 February 2006, with the 
same sequence of 100 drops per set and hour and 
10 s between drops. The station information is 
given in Table A1. As the station is only 5 km from 
the SG site, we correct for the tides with the 
observed tidal parameters. Due to a technical 
problem, the pressure sensor was out of use during 
the measurements. We correct for the atmospheric 
pressure, in post-processing the data, by taking into 
account the pressure observed at the SG site. The 
final value of gravity, at ground level, is: g = 979 
569 851.5 ± 0.8 µGal. The set sd is even smaller 
than at the SG site, showing the high quality of the 
GEOSCOPE station. 

 
 
3. Australian sites 
 
A SG is installed at the Canberra Observatory since 
1997, which belongs to the National Astronomical 
Observatory of Mizusawa, Japan. The site has been 
visited several times by AG meters from different 
teams (Japan, Australia and France), in order to 
calibrate the SG (Amalvict et al., 2001b) and to 
determine the absolute value of gravity and 
establish a high quality reference point (Murakami 
et al., 1997). Unfortunately, a severe bushfire 
destroyed the Observatory building in 2003, 
including the AG reference station. Luckily, the SG 
itself remained untouched by the fire. It has been 
recalibrated for the first time in 2004 by a Japanese 
team (Fukuda et al., 2005). The FG5#210 was 
deployed in a room close to the SG, establishing the 
first AG measurement at this temporary site, prior 
to the establishment of the future permanent AG 
reference site at Mt Stromlo. In addition, 
measurement was taken at the nearby Seismic Vault 
(SV) which shelters instruments of the GEOSCOPE 
network; the site will remain a secondary reference 
site in the future. Moreover, we measured the AG at 
Tidbinbilla where the NASA deploys the Canberra 
Deep Space Communication Complex as the only 
Australian tracking station. We decided to re-
measure all these sites on the way back from 
Antarctica  

 
3.1.2. Previous measurements 

SG site -  
The site was occupied for the first time, by the 
FG5#210 from Kyoto University from March 29 to 
April 4 2004. They processed the 2004 raw data 
with vertical gradient of gravity and nominal 
pressures values identical to the ones we used in 
2006 to compare both results. Nevertheless, their 
tidal corrections were calculated using the nominal 
tidal models from the ‘g-software’ of Micro-g 
Solutions. The final value at the ground level is g = 
979 549 870.7 ± 3.0 µGal (Fukuda et al., 2005). 
The set sd is higher than in 2006, mainly because of 
the imperfect modelling of the tides. 
 
Seismic Vault 
The site was, as well, occupied for the first time by 
the FG5#210 operated by the Kyoto University 
group. The SG site being a temporary one, it 
seemed useful to measure at a perennial place for a 
future link to the future reference AG point. 
Measurements took place from 23 to 26 March 
2004 and the raw data were corrected in a similar 
way than at the SG site. The final value at the 

 

 



ground level was: g = 979 569 856.6 ± 1.7 µGal 
(Fukuda et al., 2005). Again, the set sd, though 
small, is higher than in 2006. 

 
Figure 2 – Time series of GPS observations at the 
Mt Stromlo station, courtesy P. Tregoning, 2006. 

  
3.1.3. Changes in gravity and height 

of the station 
The above analyses of data for precise positioning 
by satellite observations agree for uplift, though its 
rate may vary by a factor 2. AG variation 
 The change of gravity at the SG site is ∆g = g2006 - 

g2004 = + 7.3 ± 3.1 µGal with a time span ∆t = 2 
years. The consequent trend is = + 3.7 ± 1.6 
µGal/yr. In the same way, we derive at the seismic 
vault ∆g = g

g&

2006 - g2004 = - 5.1 ± 1.9 µGal over 2 
years leading to the trend = - 2.5 ± 0.1 µGal/yr. g&

Comparison 
Table 2 summarises the above results: 
 

AG 
g&  

µGal/yr 

DORIS 
h&  

mm/yr 

GPS 
h&  

mm/yr 
Seismic Vault 

- 2.55 ± 0.96 
SG site 

+ 3.71 ± 1.56 

 
+5.49 ± 0.47 

 
+2.39 ± 0.06 

The two sites are separated by 5 kilometres and we 
would expect a similar behaviour of gravity 
changes at the two locations. We could think of 
several explanations to explain the difference: 
tectonics and hydrology do not seem to be good 
candidates, we can also dismiss a possible annual 
cycle since the two series of measurements took 
place at the same period of the year (February and 
March). Of course, a very local hydrological effect 
could be the source of the difference. One could 
also consider an instrumental offset between the 
instruments but it does not seem to be likely for it 
would appear at the 2 sites; moreover the two FG5s 
were controlled at their respective home sites, both 
of which controlled by SGs. 

 
Table 2 – Changes in gravity and height at Mt 
Stromlo sites (Australia). 
 
The change of gravity at the seismic vault is in 
agreement with the uplift observed by both GPS 
and DORIS, but the positive change of gravity at 
the SG site is still to be explained. 
 
 

3.2. Tidbinbilla   Precise positioning techniques The Canberra Deep Space Communication 
Complex is located at Tidbinbilla, roughly distant 
of 25 kilometres from the Mt Stromlo sites. A 
garage hosted, in the past, several absolute gravity 
measurements. 

Mt Stromlo is equipped with both GPS and DORIS 
facilities. Zuheir Altamimi (IERS) provided us with 
a trend over the 1999.2 – 2005 period equal to  = 
+ 4.42 ± 0.23 mm/yr (private communication). The 
2000.2 – 2005 GPS data have been processed by 
Paul Tregoning (RSES, ANU – Canberra) leading 
to the trend:  = + 2.39 ± 0.06 mm/yr (Fig. 2, 
private communication). The data gap in 2003 is 
due to the outrage caused by the bushfire. The clear 
difference between 2000 – 2002.75 and 2004 – 
2006 is responsible for the apparent positive uplift. 
We do not include the data before 2000 because of 
the radial change in the nature of global tracking 
data during 1999/2000 when the Rogue / 
Turborogue GPS receivers had their firmware 
upgrades (Tregoning et al.,). The analysis of 
DORIS data is provided by Pascal Willis (IGN, 
JPL) over 7.3 years and the trend is h  = + 5.49 ± 
0.49 mm/yr.  

h&

h&

&

 
3.2.1. 2006 measurements – FG5#206 

Measurements took place on 24-25 February 2006 
with a sequence similar to Mount Stromlo one: 100 
drops per set and per hour, 10 s between drops. The 
total number of accepted drops is 2382 for 24 sets. 
The coordinates and parameters of the site are in 
Table A1. As the station is near to Mount Stromlo, 
we used the observed tidal parameters to correct the 
raw gravity data for the tides (solid Earth and 
oceanic). The final value of gravity at the ground 
level is then: g = 979 576 105.0 ± 0.7 µGal.  
The small number of rejected drops and the small 
set sd demonstrate the high quality of the station.  
 

3.2.2. Previous measurements 
 This site has been visited twice in the recent past. In 

June 2003 Micro-g Solutions measured with the 
FG5#111 and Kyoto University measured with the 
FG5#210 on 14-16 April 2004. Using both the 
same corrections, parameters and modelled tides for 
tidal correction, the respective results are: g2003 = 
979 576 114.4 ± 2.3 µGal and g2004 = 979 576 114.3 
± 2.4 µGal. 

 
 
 
 
 
 
 
  

 



3.2.3. Changes in gravity and height 
of the station 

There is no DORIS beacon at Tidbinbilla, but there 
is a permanent GPS receiver. Its trend from IGS00 
is h  = + 2.16± 0.25 mm/yr whereas the linear fit of 
the 3 AG measurements (2003, 2004 and 2006) 
lead to  = - 3.90 ± 0.76 µGal/yr. 

&

g&
These results both suggest an uplift 
 
 

3.3. Comparing Mt Stromlo and 
Tidbinbilla 

 
Figure 3 shows the change in gravity (∆g) with 
respect to the change of height (∆h). 
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Figure 3 – Change of height vs gravity change at 
Tidbinbilla; PT = Paul Tregoning, ZA = Zuheir 
Altamimi, PW = Pascal Willis. 
 
For the Mt Stromlo we choose the change of 
gravity at the seismic vault that is in agreement 
with the observations of positioning techniques and 
plotted the 3 points corresponding to the solutions 
we have there. We also plotted the straight line 
corresponding to the free air gradient (- 0.3 
µGal/mm). 
The first comment is that all the points are below 
this line whereas the points are usually below it. 

The point SV / DORIS is the only one whose error 
bars include the free-air gradient. A second 
comment is that the solutions at Tidbinbilla and at 
the SV / GPS_PT agree within the error bars. This 
could reflect a common behaviour, which is 
consistent with the proximity of the stations. The 
cause to explain gravity/height ratios larger than the 
free air one is still under investigation. A possible 
reason is hydrology as shown in Hinderer et al. 
(2006). 
 
 
4. Conclusions 
 
We have repeated AG measurements in Antarctica 
at DdU, six years after the first measurement. The 
lack of change in the gravity value agrees with the 
small trend of vertical displacement observed by 
the collocated GPS and DORIS stations. Vertical 
stability is also the prediction of the various 
existing modelling for that part of the Antarctic 
continent. A new measurement is planed at DdU in 
2008 during the International Polar Year, with 
additional measurements at Dome C (Concordia 
station) which will be the first measurement 
performed on ice, repetition of measurements after 
approximately ten years at Terra Nova Bay and Mc 
Murdo and first measurements at Casey. We have 
repeated AG measurements at three sites near 
Canberra, Australia. Two of them give good 
agreement between AG and height changes 
observed by GPS and DORIS at the Mt Stromlo 
Seismic Vault ( = - 2.5 ± 0.1 µGal/yr and  = + 

2.39 ± 0.06 mm/yr,  = + 5.49 ± 0.49 mm/yr) and 
Tidbinbilla, Canberra Deep Space Complex, ( = - 

3.90 ± 0.76 µGal/yr and h  = + 2.16± 0.25 mm/yr). 
On the contrary the variation of gravity and the 
vertical displacement disagree at the Mt Stromlo 
SG site ( = + 3.7 ± 1.6 µGal/yr). 

g& h&

g&
h&

&

g&
These measurements should also be repeated in 
2008 on the way back from Antarctica.  

 
Appendix 
Table A1 shows the parameters and final g-value at each station measured in 2006 with the FG5#206 of 
Strasbourg (France). The value of gravity is given at the ground level, after all reductions. Table A1 provides 
altogether the coordinates of the stations, the nominal pressure calculated according to IAGBN standards 
(Boedecker, 1988), the vertical gradient of gravity at the reference point, the number of measured drops and the 
date of measurements. 
 
 

Station Latitude 
Longitude 

Height 
m 

Nominal 
pressure

hPa 

Vertical 
gradient 

of gravity
µGal/cm 

Number 
of drops

Date 
 

2006 

g value 
µGal 

 



DdU 
Antarctica 

66.67° S 
140.17° E 

35 

996.5441
 

-3.82 ± 
0.03 

 

16187 
 

5-8 
February 

 

982 387 167.0        
± 3.5 

 

SG site             
Mt Stromlo 
Australia 

35.3206° S 
149.0075° E 

762.51 

924.94 -2.78 10314 18-22 
February 

979 549 878.01       
± 0.91 

Seismic Vault  
Mt Stromlo 
Australia 

35.3188° S 
148.9963° E 

685 

933.62 
 

-2.65 
 

3474 
 

25-26 
February 

979 569 851.50       
± 0.80 

Tidbinbilla 
Canberra DSCC 
Australia 

35.4010° S 
148.9821° E 

640.81 

938.60 
 

-2.604 
 

2382 
 

24-25 
February 

979 576 105.0        
± 0.70 

 
 
Table A1 – AG measurements in 2006 with the FG5#206 - Station parameters and gravity value, at the ground 
level. 
 
  
Table A2 shows the parameters and final g-value at the same stations, measured in 2003 and 2004 with the 
FG5s#111 & 210. The value of gravity is given at the ground level, after all reductions.  
 

Station Operator 
gravimeter 

Instrument Number 
of drops

Date 
 

g value 
(µGal) 

SG site             
Mt Stromlo 

Kyoto 
University  

FG5#210 9224 29 March – 4 April 
2004 

979 549 870.7 ± 3.0 

Seismic Vault  
Mt Stromlo 

Kyoto 
University  

FG5#210 3581 
 

23-26 March 2004 
 

979 569 856.6 ± 1.8 
 

Tidbinbilla 
Canberra DSCC 

Micro-g 
Solutions  

FG5#111  June 2003 979 576 114.4 ± 2.3 

Tidbinbilla 
Canberra DSCC 

Kyoto 
University  

FG5#210 7060 
 

31 March –3 April 
2004 

979 576 114.3 ± 2.4 
 

 
Table A2 – AG measurements at Australian sites in 2003 and 2004 with the FG5s#210 and 111 - Station 
parameters and gravity value, at the ground level, after Fukuda et al., 2004 
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1 - INTRODUCTION 
In order to improve its national geoid, 
and be able to address high accuracy 
gravity-related issues, France plans to 
update its national gravity network and 
gravity map by the end of year 2008. 
In this context, a careful validation and 
improvement of the existing gravity 
data is necessary since the existing 
gravity stations (about 410000) and 
base stations (more than 1000) should 
be integrated in the new gravity 
references. 
Integration of new gravity network 
measurements (performed by IGN since 
2003) and existing ones require that 
both the gravity data and their position 
are controled. 
The controls address possible 
distorsions : 
 1- between the new and old networks: 
field tie measurements are done, 
 2- between the new network and the 
national gravity map: gravity prediction 
is performed at the new network base 
locations using the existing gravity 
measurements. 
For this purpose, the accuracy of both 
the gravity and position of the ~410000 
gravity stations, must be verified. 
 

Fig.1: Location of the 414400 gravity stations of the BGF. The 30 mis-positioned 
surveys are highlighted. 

 
THE FRENCH GRAVITY DATABASEAll the gravity data are integrated in the « Banque Gravimétrique de la 
France » (BGF), under the responsibility of the BRGM, and can be accessed via the BRGM Infoterre Web portal 
(http://www.brgm.fr). A large part of the French gravity data have been measured between 1945 and 1975, by several 
operators. The diversity of the sources and the drastic evolution of archiving procedures since then, have required 
very careful management of these data. 
Inevitably, while changing from one gravity or positioning system to an other, or when digitizing these data, some 
errors have been introduced. For example, the survey CM571, which was referred to an old german cadastral system 
in Elsass, has a shift of ~800 m. 
In order to identify and eliminate as much as possible such erroneous data, several methods have been developped or 
adapted. These methods concern : 
 1- the gravity value and corrections of the data, 
 2- their positioning. 

mailto:g.martelet@brgm.fr
mailto:Michel.Sarrailh@cnes.fr
mailto:n.debeglia@brgm.fr
http://www.brgm.fr/


2 - REVISION OF THE POSITIONING 
 
2.A – Methodology of re-positionning 
The BGF contains more than 410000 gravity stations divided into 173 gravity surveys. 
The main objective of this work was to identify and correct existing systematic shifts of the gravity stations for each 
survey.For each survey, two different approaches have been adopted: 

- an automated approach designed to find the optimal horizontal displacement of the survey that minimises 
the difference of altitude between the stations and a DTM (see insert), 
 - a visual identification of the shifts and distorsions of the positioning with respect to the roads (where most 
stations were measured) and ad hoc re-positioning of the surveys using a GIS « rubbersheet » algorithm (see insert). 
 

"RUBBERSHEETING" DEFORMATION 
The source layer (dots) is adjusted to a target 
layer (black lines). In our application, the source 
layer was the gravity stations and the target was 
the French road database (BD Carthage, 
produced by IGN). 
During the process, the surface is deformed 
using a piecewise transformation that preserves 
straight lines. Displacement links (red arrows) 
are user positioned to constrain the amount of 
deformation. 
Rubbersheeting has been achieved using Arc-
Gis 9.0 built-in algorithm.   

Rubbersheeting 

 
2.B – Results of re-positionning 

 
Fig. 2: X-Y shifts of the gravity surveys, obtained on the left by comparison with the DTM, on the right,with the rubbersheet 
method. 
Average displacements of the gravity surveys obtained for each method are shown in FFiigguurree  22. In the visual 
approach, only 30 surveys out of the 173, were re-positioned since the others appeared properly positioned at the 
1/25000e scale (discrepancies not more than half a millimeter, i.e. ~15m). 
Improvement of the positioning before and after the two methods were applied, has been evaluated for each method: 
- comparing visually the location of the gravity stations with respect to the roads, 
- computing the average and standard deviation of the difference of altitude of the gravity stations with the IGN 
50x50m DTM, for each gravity survey (FFiigg..  33aa). This indicator was also expressed as a percentage of improvment of 
the standard deviation (FFiigg..  33bb). 
Data used to evaluate the postioning quality of the gravity surveys (produced by IGN), are: 
- DTM 140x140m, DTM 50x50m – vertical accuracy: ~1 m to +/- 20 m in the mountains 
- BDCarto, digitized roads – horizontal accuracy: ~10 m 
- Scan25, digital 1:25000 topo maps – horizontal accuracy: ~10 m 



 
 
 
 
 
 
 
 
 
Fig. 3: Statistics showing the 
improvement of the new positioning in 
terms of reduction of the difference of 
altitude of the gravity stations with the 
50x50m DTM; 
a) Average difference of altitude between 
the gravity stations and the DTM for each 
re-positioned survey, 
b) Improvement (%) of the standard deviation 
of the difference of altitude between the DTM 
and stations. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Exemples of 
rubbersheeting re-positioning 
showing (left): shearing 
deformation, (right): rotating 
deformation. Both deformations 
were probably introduced while 
digitizing old datasets. 
 

 
For the 30 surveys re-positioned by the two methods, the difference of altitude with the DTM is always 
improved.The comparaison of the results of the two methods of re-positioning don't show large discrepancies (FFiigg..  
33bb). 
The method based on the adjustment on a DTM (see insert), has the advantage to be automated, but a graphic control 
is nevertheless useful. 



The method based on the rubbersheeting deformation can take into account piecewise local deformations (FFiigg..  44) (for 
example due to the digitizing of old maps), but can be used only when the stations where measured mainly on the 
roads. 
 
DEFORMATION BASED ON THE ADJUSTMENT ON A DTM 

 

In this method, constant X-Y shifts of 
the gravity stations for each survey are 
assumed. 
Adjustment of the location of gravity 
stations is achieved, searching the shifts 
in latitude and longitude which 
minimize the differences between the 
altitudes of the stations and a DTM. 
The algorithm uses an iterative process 
which converges quickly. 
Adjustment of the location of gravity 
stations by this method have been 
compared using 140x140m and 50x50m 
DTMs (FFiigg..  55). Both adjustments 
produce coherent results. Adjustment 
with the more detailed DTM generally 
produces results intermediate between 
the rubbersheet and 140x140m DTM. 
 
 
 
 
 
 
 
 
 
Fig. 5 : Altitude differences between 
DTM 50x50m and the CM196 gravity 
data: (up) before adjustment (-23.2 < dz 
< 25.8 m), and (down) after adjustment 
to the 50x50m DTM (-12.2 < dz < 9.0 m). 

  
 
 
2.C – Conclusions and perspective of the re-positionning 
A careful validation of the results and subsequent choice of the type of displacement that should be applied to each 
survey is necessary. 
After the modifications of positioning will be applied: 
 - terrain corrections of the displaced stations will be re-computed. They might be significantly improved, 
since the principal source of error of the terrain effect is erroneous altitude differences between the stations and the 
DTM. 
 - precision of the control of erroneous gravity values will be more accurate (next section). 
 
2 - CONTROL OF ERRONEOUS GRAVITY VALUES 
 
2.A – Introduction 
The objective of this work was to identify among the ~410000 stations of the BGF, existing erroneous gravity values, 
if possible, understand the source of the error and correct it, or remove the outliers. 
The validation procedure adopted is based on an algorithm of prediction of the Bouguer anomaly for every station of 
the database, using the surrounding gravity measurements. When the difference between the station value and the 
computed prediction exceeds a determined threshold, the station is flagged. 



 
The prediction is computed using a surface fitting triangulation procedure (DSURF module, from the IMSL library) 
using the following control parameters: 
 - Raymax (m): maximum search radius, - Toldz (m): maximum difference of altitude of the stations used for the 
prediction, - Kdata: maximum number of stations used for the prediction. 
 
If too few stations (less than 4) are available in the search radius, the prediction cannot be achieved. 
A gravity station is considered erroneous: 
- if the difference between the station value and the average computed prediction exceeds a tolerance value 
tol (mGal), 
- or if the difference between the station value and the average computed prediction exceeds (ksig x standard 
deviation). 
 
2.B – Evaluation of the method 
The gravity validation procedure has been evaluated on a regional 100x100 km subset dataset, extracted from the 
BGF (FFiigg..  66). 
 

 
Fig. 6: Test of the validation procedure at a regional scale. 
Parametres used are: Raymax = 5000 m; toldz = 250 m; 
kdata = 20; tol = 3 mGal; ksig = 3. 

 
 
 
 
 
Fig. 7: Control of the erroneous station n° 8. 
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Careful local analysis of the results of the procedure was done (FFiigg..  77), which allowed to modify the algorithm, in 
order to obtain results as close as possible to visual estimations. 
The validation procedure can be parameterized in order to identify poor quality gravity data, in a more or less 
restrictive manner. 
It will be used: 
 - to identify and eliminate punctual erroneous data, 
 - to identify possible systematic errors and correct them, if possible, 
These errors being cleared out, the overall accuracy of the dataset will be evaluated and a map will be produced, 
displaying levels of confidence of the gravity stations. 
 
2.C – Preliminary determination of erroneous gravity data 
The gravity validation procedure has been tested on the whole French gravity database in order to: 
 - present a first evaluation of the amount and repartition of poor quality gravity data, 
 - evaluate the computation time necessary to achieve a complete control of the stations of the French 
database. 
These results are preliminary since neither the modifications of the positioning have been introduced yet in the 
database, nor the terrain corrections have been recomputed. 



 
The results of the computation 
(FFiigg..  88) show that most 
erroneous data (black dots) are 
located in the montainous areas 
(Alps, Pyrénées, Massif 
Central). This suggests a strong 
importance of the relief on the 
errors.  
Possibly, the control of 
positioning and re-computation 
of terrain corrections in these 
areas might improve the 
accuracy of these data. 
The computation time on a 
standard desktop Pentium PC, 
for the whole database, was 
about 8 hours. 
This relatively short 
computation time is compatible 
with several runs with gradual 
thresholds of validation. 
 
Fig. 8: Test of the validation 
procedure at the scale of France. 
Parameters used are: Raymax = 
5000 m; toldz = 250 m; kdata = 
20; tol = 5 mGal; ksig = 3. 

Erroneous point

Unpredicted 

 
2.D – Conclusions and perspectives to the gravity validation 
 
A robust method of identification of erroneous gravity data by prediction of the Bouguer anomaly for every station of 
the database, using the surrounding gravity measurements has been implemented. 
After correction of the positioning and re-computation of terrain corrections, use of this algorithm for the whole BGF 
should allow: 
- the elimination of punctual erroneous data, 
- the identification and possibly correction of systematic errors. 
The production of a map displaying levels of confidence of the gravity stations would provide a more realistic 
evaluation of the accuracy of the data than the existing averaged error informations (based on instrumental 
characteristics of the surveys). 
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Abstract. In 2006 the Land Relations and Cadastre 
Agency of Republic of Moldova in cooperation 
with the National Geospatial-Intelligence Agency 
(NGA) of United States of America performed 
gravity campaign to establish a new fundamental 
gravity network MOLDGRAV06.  

Gravity measurements were carried out at 20 base 
stations and their excentric. In order to constrain the 
relative gravity measurements 3 absolute gravity 
stations were determined using FG5 absolute 
gravimeter.  

The absolute gravity data acquisition and 
processing were done by Micro-g software. The 
Total uncertainties of the absolute gravity 
measurements are about 5 µGal. The relative 
gravity stations and local vertical gradients have 
been measured using three LaCoste & Romberg G 
meters. The gravity network was designed as 
polygons. Each station was occupied at least twice.  

The preliminary data processing was performed 
by GVREC, ETIDE and GVCOMP programs. The 
network adjustment was performed by GRAVNET 
program. The RMS value of the relative gravity 
stations is better than 10 µGal. 
 
Keywords. Absolute gravity, relative gravity, 
gravimeter, gravity network, gravity vertical 
gradient. 

1 Introduction 
 

This report presents the results of the first-order 
gravity network survey campaign carried out by 
Institute of Geodesy, Engineering Research and 
Cadastre (INGEOCAD) subordinated to Land 
Relations and Cadastre Agency of Republic of 

Moldova in cooperation with the National 
Geospatial-Intelligence Agency (NGA). The project 
was requested by National Army Topographic 
Service, Chiriac (2006).  

Three absolute gravity stations were established 
throughout the country using a Micro-g Solutions 
FG5 absolute gravimeter. Excenters and several 
satellite stations for each absolute as well as 17 
additional first-order gravity base stations were also 
established relative to the absolutes using three 
LaCoste & Romberg G gravimeters (see Fig. 1.1). 
 

  
Fig. 1.1 The First order Gravity Network Diagram 
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The survey fieldwork was conducted during the 
period May–June, 2006. The value of the absolute 
gravity was established at the floor. The absolute 
gravity sites were selected by INGEOCAD and 
Institute of Geophysics and Geology personnel, at 
two existing seismic stations with stable isolated 
concrete piers suitable for the measurements. 

The location of the absolute gravity sites follow a 
set of criteria developed to optimize performance of 
the absolute gravimeter. These criteria include 
permanency, stability of the underlying ground, 
adequate space and electricity, temperature stability 
and protection from the weather (see Fig 2.1). The 
relative sites were chosen more as an accessible and 
stabile location to provide a high accuracy base 
station available for future surveys (see Figs 2.2, 
2.3). 

2 Survey operations 
 

The FG5 107 absolute gravimeter was set up and 
placed into automatic operation at each of the three 
sites (see Fig 1.1). The meter ran for 24 to 36 data 
sets, one set of 100 drops per hour. Data was then 
analyzed and certain sets were rejected. All gravity 
data were stored on disk for post processing. 
 

  
 
Fig. 2.1. Chisinau AA absolute gravity station on the main 
pillar of the Institute of Geophysics and Geology Seismic 
observatory.  

 
A vertical gradient was measured at each absolute 

and two satellite stations using a combination of 
three LaCoste & Romberg model G relative 
gravimeters. The vertical gradient was measured 
directly over the station by observing at ground 
level and at a height of +1.00 meter.  

For easier accessibility, an excenter gravity 
station was established out of doors close to each 
absolute station. This was accomplished with the 
same instruments used for determination of the 
vertical gradient. 

 

 
 
Fig. 2.2. Palanca E relative gravity station on the pillar of 
EUREF site. 

 
First-order base stations were established using 

three relative gravimeters in standard double ladder 
sequence loops with either a newly established 
absolute or excenter station as control. Each station 
was observed at least twice by each meter. In some 
cases stations were observed in multiple loops from 
the same or a different control station. A series of 
polygons were later combined in the data reduction 
to form a strong country wide first-order gravity 
network. 

 

 
 
Fig. 2.3. Balti C relative gravity station on the main entrance 
stairs of the St. Nicolae Cathedral. 



Satellite stations were observed in close 
proximity to each absolute station. The stations 
were all observed with its respective absolute or 
excentric station as control, in the same manner as 
the previously mentioned base stations. Each of 
these stations also meets the first-order 
requirements. 

3 Computations and analysis 
 
The vertical gradient, updated polar motion 
coordinates, and position information were entered 
into the Micro-g Solutions program “g” version 4.0 
to compute the absolute observations. Standard 
input parameters, such as earth tides, speed of light 
correction, local barometric pressure correction, and 
the DC tidal term (Honkasalo correction) were set 
to the appropriate values as recommended by 
Micro-g Solutions and the International Gravity 
Commission. 

The data from the relative gravimeters were 
recorded and field checked at each site using NGA 
programs GVREC and GVCOMP. Later it was 
combined by site and reduced using the NGA 
program GRAVNET which performs a least 
squares adjustment on the data, automatically 
setting the internal weight codes. The preliminary 
absolute gravity value from the field observations 
was used as initial control to determine the vertical 
gradient. The corrected absolute gravity value was 
held fixed in the final adjustment of the relative 
gravity data, for each site. A combined network 
adjustment was performed on all network base 
stations, holding all three absolute stations fixed. 
Satellite stations were adjusted separately holding 
only each respective absolute station fixed. 

The final mean gravity value is set within the 
FG5 gravimeter at a reference height above the 
ground. The gravity gradient is then mathematically 
applied to the value in order to obtain a gravity 
value at the ground surface where the actual station 
exists. This ground surface value is the absolute 
station value reflected in this publication from 
which all relative measurements are based. 

4 Survey results 
 
The accuracy of the absolute stations is based on the 
FG5 manufacturer’s estimated uncertainties for 
many different components (see Table 4.1). These 
components include uncertainties in the modelling, 
system and set up. Default values as recommended 
by Micro-g were used for each set up. Total 
uncertainties for each setup are approximately         

± 0.005 mGal, see NGA (2006).  
The measurement precision and set scatter for 

each station is the standard deviation of all drop sets 
at each site, each set being approximately 100 
drops. This value is a good indication of site 
stability and should be included when determining 
the overall accuracy of the gravity station. 

 
Table 4.1. Gravity value of the absolute stations. 
 

Station name Gravity  
Value  
(mgal) 

Total  
uncertainty   
(mGal) 

CHISINAU AA 980767.445 0.00444 
GIURGIULESTI AA 980628.643 0.00507 
BRICENI AA 980867.919 0.00453 

 
The Root Mean Square (RMS) of the remaining 

relative stations (see Table 4.2) based on the least 
squares adjustment of the relative gravity 
observations is better than 0.010 mGal, see NGA 
(2006). 

 
Table 4.2. Gravity value of the relative stations. 
 

Station name Gravity 
Value 
(mGal) 

RMS 
 (mGal) 

HINCESTI D 980762.084 0.007 
LEOVA B 980751.437 0.007 
BASARABEASCA D 980739.426 0.007 
CAUSENI D 980762.251 0.009 
PALANCA E 980727.001 0.009 
CAHUL B 980670.650 0.008 
TARACLIA C 980670.489 0.007 
NISPORENI D 980798.552 0.008 
UNGHENI C 980801.701 0.007 
CRIULENI D 980802.994 0.007 
COSTESTI D 980860.949 0.008 
FALESTI D 980822.745 0.008 
BALTI C 980846.797 0.007 
OTACI E 980867.847 0.008 
SOROCA B 980887.697 0.008 
REZINA D 980849.917 0.008 
TELENESTI C 980837.674 0.007 

 
The final precision of the remaining relative 

stations is based on the least squares adjustment of 
the relative gravity observations with respect to the 
absolute station.  It is obtained by calculating the 
Root Sum Square (RSS) of the precision of the 
absolute measurements along with the adjusted 
precision value of the relative measurements.  



5 Comparison with the previous 
network 
 
In 2000 a preliminary national gravity reference 
network of Republic Moldova which consist of 7 
stations, have been measured using one LaCoste & 
Romberg D-214 gravity meter owned by the 
Geological Institute of Romania. Two base stations 
of the national gravity reference network of 
Romania were used to transfer the gravity value 
into the cross-border area, Besutiu et al. (2004). 

Five stations are common to both networks. The 
difference of absolute gravity values between the 
previous preliminary network and the new one vary 
from +19µGal to +85 µGal. 

6 Conclusions  
 
Have been measured 53 ties with 3 different 
instruments which linking the 20 base stations and 
their satellite stations. The solution is perfectly 
stable everywhere on the territory of the country 
with accuracy better than 10 µGal. 

The new first order gravity network over 
Republic of Moldova is well constrained by the 3 
absolute gravity stations with the accuracy around 5 
µGal. 

We recommend in the future to densify the 
relative gravity network about 1 point per 15-20 
square kilometres for geophysical applications and 
modelling of the high resolution national 
quasigeoid.  
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Abstract. In Northern Europe the region of
Fennoscandia is characterised by present-day uplift
caused by glacial isostatic adjustment (GIA). The up-
lift effect reaches up to 11 mm/year at the Earth’s
surface. This effect can be observed geometrically,
e.g. by GPS or spirit levelling, and gravitationally
by absolute gravimetry. A new challenge is the de-
termination of the GIA-induced gravity changes by
the satellite mission GRACE. During the mission du-
ration of GRACE (more than five years), a tempo-
ral gravity change of about 100 nm/s

�

is expected in
the centre of the Fennoscandian land uplift area (the
Bothnian Bay). The configuration of GRACE is ba-
sically suited to determine this magnitude of varia-
tion. But the GRACE observations contain the inte-
gral signal of various geophysical processes such as
atmospheric, oceanic and hydrological effects which
may conceal the uplift signal.

In this study, we determine secular and periodic
gravity changes in Fennoscandia from the GRACE
monthly solutions as provided by CSR, University of
Texas, and Geoforschungszentrum Potsdam (GFZ)
for the first 4 years of the GRACE mission. We com-
pare the resulting variations with hydrological mod-
els and match the GRACE derived signals with those
obtained from a simple uplift model based on geo-
physical predictions.

Keywords. glacial isostatic adjustment, land uplift,
GRACE, gravity changes, hydrological models, pat-
tern recognition

1 Motivation

Gravity field variations as derived from the monthly
GRACE solutions result from the integral effect of
mass variations in the atmosphere, hydrosphere and
geosphere. These effects include oceanic, atmo-
spheric and hydrological mass movements and those
caused by dynamics in the Earth’s interior. In addi-
tion, residual signals from insufficient pre-processing
may be present. The main objective of this study is to
extract mass variations in Northern Europe from the

GRACE data, especially those which are related to
the Fennoscandian land uplift resp. glacial isostatic
adjustment (GIA). One key issue is the separation of
the various signal parts and the reduction of the ob-
served (or derived) quantities by applying dedicated
filter (e.g. Gaussian) and analysis techniques (e.g.
pattern recognition). Besides filtering of the various
signal parts, the quality assessment of the individual
measurements and the reduction models are of spe-
cial relevance, in order to determine the interrelations
and the corresponding accuracies.

Up to now mainly terrestrial data sets (like tide
gauges, GPS measurements, levelling or terrestrial
gravimetry) were used to determine the present-day
land uplift in Fennoscandia (e.g. Ekman 1996, Ek-
man and Mäkinen 1996, Johannsson et al. 2002, Kuo
et al. 2004, Milne et al. 2001, Scherneck et al. 2003,
Wilmes et al. 2005). According to Ekman (1996),
these observations reveal a maximum orthometric
height change of 10.2 mm/year over the Bothnian
Bay and show symmetry around the maximum. The
height change in the centre is associated with a max-
imum gravity variation of 20 nm/s

�

per year. Based
on these numbers, a geoid change of 0.6 mm/year
has been derived for the central area (e.g. Ekman and
Mäkinen 1996).

The detection and recovery of temporal gravity
variations (e.g. caused by hydrological or oceanic ef-
fects) from GRACE data was shown in several in-
vestigations, cf. Chen et al. (2006), Famiglietti et
al. (2005), Frappart et al. (2006), Han et al. (2005),
Rodell et al. (2004), Rowlands et al. (2005), Schmidt
et al. (2006), Swenson et al. (2006), Tapley et al.
(2004), Thompson et al. (2004) and Wahr et al.
(2004). Further references are given in the report of
Ilk et al. (2005). According to sensitivity studies (e.g.
Velicogna and Wahr 2004, NRC 1997) the recovery
of GIA-induced uplift signals might be possible from
gravity variations observed by GRACE.

During the mission duration of GRACE (about
five years), a temporal geoid change of 3 mm is ex-
pected in the centre of the Fennoscandian land up-
lift area, corresponding to a gravity change of about
100 nm/s

�

. As the geoid derived from GRACE data
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Fig. 1. Secular variation in Fennoscandia determined from
GRACE monthly solutions as provided by GFZ (top) and CSR
(bottom), units: nm/s

�
/year. Here a Gaussian filter with radius

500 km has been applied.

can be determined on a monthly basis with an accu-
racy of about 1 mm at a spatial resolution of 800 km
(see also Tapley et al. 2004), the land uplift causes
a measurable signal in the observations (NRC 1997,
Wahr and Velicogna 2002). The separation of this ef-
fect from other time-variable gravity changes is a big
challenge.

2 Processing of GRACE Solutions

The primary objective of the GRACE mission is to
provide global models of the Earth’s gravity field
with high accuracy. The mission allows to deter-
mine the mean gravity field as well as temporal grav-
ity changes on a monthly basis. Dedicated process-
ing even allows a higher temporal resolution up to
10 days. The duration of the mission was originally
planned for 5 years starting in 2002, but operations
might be possible for a considerably longer time span
until 2009 (Flechtner, priv. comm. 2006).

Besides mean global gravity field models from
GRACE, for example EIGEN-GRACE02S (Reigber
et al. 2005), various investigations have been made
on the temporal gravity changes in the past years.
They have shown the ability of GRACE to detect

seasonal water or ice-mass changes in large regions,
such as river basins and in polar regions, where vari-
ous processing and filtering techniques as well as re-
duction models were applied (e.g. Chen et al. 2006,
see also section 1). With an increasing time span of
GRACE data, these computations became more re-
liable and also studies of secular gravity variations
came into touch. We have been following the de-
velopment of GRACE processing since the start of
the mission in 2002 and performed analyses of the
GRACE solutions for the Fennoscandian uplift area
(e.g. Müller et al. 2006). For our computations
we have used the monthly solutions provided by the
Centre of Space Research (CSR) at the University
of Texas and Geoforschungszentrum Potsdam, Ger-
many (GFZ). CSR has provided 47 solutions, from
April 2002 until June 2006 with gaps in May to July
2002 and June 2003. Due to processing instabili-
ties in August to November 2004, we used the con-
strained solutions of R01 provided by CSR. GFZ has
so far released 34 monthly gravity field solutions,
starting in February 2003 to June 2006, with gaps
in June 2003, July to October 2004 and December
2004. We used Release 03 of the GFZ solutions. In
addition also the JPL GRACE solutions have been
compared, but they are not further discussed in this
paper.

All analysis centres have reduced the atmospheric
and oceanic contributions as well as the tidal effects
during the standard GRACE processing by applying
corresponding global models. In Release 03, GFZ
has used the non-mass-conserving OMCT model,
where spurious slopes over land occured. These in-
terfere with the investigation of hydrological varia-
tions over land, therefore the GAB product was re-
added to the GFZ gravity solutions (Bettadpur et al.
2006).

Each monthly GRACE gravity field solution con-
sists of a set of Stokes coefficients

���
an ��� up

to degree and order 120 with corresponding ”best
guess” calibrated errors (GRACE 2006). Due to the
higher errors at shorter wavelengths, the spherical
coefficients were only considered up to degree and
order 50, followed by Gaussian filtering with a ra-
dius of 500 km. Former investigations (Müller et al.
2005, 2006) were made with larger radii (800 and
1000 km). But considering the present accuracy of
the spherical harmonic models and the longer time
span of the monthly solutions, 500 km seemed to be
appropiate for continental areas. This was confirmed
by the investigations of King et al. (2005) comparing
GRACE and GPS data.

For each monthly solution gravity values were
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Fig. 2. Periodic gravity changes in Fennoscandia derived
from the GFZ solutions. Amplitudes of semi-annual variations
(top) and annual variations (middle), and the annual phase in
months obtained with respect to January 2003 (bottom). Units
are nm/s

�
for the amplitudes.

computed on a��x2� grid. In each grid point the
data were used to determine secular (� ) and periodic
(amplitudes

� �
and� �

of typical periods� �) gravity
variations over the corresponding time span:

�� �	 
 � 
 � � � � ��� � � ��
��� � � � ��� �� ���

�� � ��� �� ��� �
(1)

��
is the time difference relative to January 2003.

Index � � �
indicates the semi-annual and� � � the

annual period. The accuracy of the derived gravity
values in the grid points is about 20 nm/s

�

, the accu-
racy of the determined parameters is about 3-4 nm/s

�

for the annual and 5-6 nm/s
�

for the semi-annual am-
plitudes and about 3 nm/s

�

/year for the secular trend,
when applying a Gaussian filter with 500 km radius.

Fig. 1 (top) shows the secular gravity changes as

determined from the GFZ GRACE solutions. A clear
signal in the order of 13 nm/s

�

/year is visible for the
central area. The magnitude of the CSR trend (Fig.
1, bottom) corresponds to the GFZ one, but both sig-
nals show slightly different spatial extension and also
differ from the expected Fennoscandian uplift area
(Lambeck et al. 1998). However, in comparison to
previous studies (Müller et al. 2006), the centre of
the secular signal has moved in north-western direc-
tion towards the expected location of the uplift signal.
Besides different processing techniques, the varying
results may also be caused by the different time spans
of the input data, changed processing and filtering
strategies as well as by the use of refined reduction
models during the standard GRACE processing. Fur-
ther investigations of the secular signal are discussed
in the following sections. Beside the secular gravity
change, large periodic variations in the GRACE data
are present, which might be mainly caused by hy-
drological processes. Fig. 2 shows annual and semi-
annual amplitudes of these periodic variations. An-
nual gravity changes of up to 20 nm/s

�

(Fig. 2, mid-
dle) can be detected. Small semi-annual changes of
max. 7 nm/s

�

are also present (Fig. 2, top), but may
not be significant as the maximum signal is just a
little bit larger than the corresponding error. When
interpreting the results, one has to consider, that the
overall time series of 4 years is still relatively short
and therefore may be corrupted to some extent by
more episodic events like the very dry summers 2003
and 2006.

3 Comparison with Hydrological Mod-
els

Numerous studies have proved that GRACE data is
able to detect continental water storage changes (e.g.
Swenson et al. 2006). For our investigations we com-
pared the results of GRACE data with results of the
hydrological model LaDWorld. LaDWorld is a series
of retrospective simulations of global continental wa-
ter and energy balances, created by forcing the Land
Dynamics (LaD) model (Milly et al. 2002). For our
research we used the sum of simulated variables for
snow water equivalent, soil water and shallow ground
water. Data is provided in monthly solutions from
January 1980 until May 2005 in a

��x1� grid, in units
of water column. We used the time span of April
2002 until May 2005. When comparing this data
with GRACE data, one has to consider that GRACE
monthly solutions do not agree to calendar months,
as hydrological monthly solutions do. Further errors
may be caused by the applied filters as well as the
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Fig. 3. Secular gravity variations in Fennoscandia as derived fromthe CSR solutions (left), LaDWorld (middle) and CSR minus
LaDWorld (right), units: change in equivalent water columncm/year. Here, the considered time span covered three yearsonly.

uncertainties from the hydrological input variables.
Comparisons of LaDWorld with the WaterGapHy-
drologicalModel (Döll et al. 2003) show significant
discrepancies between the two models.

In order to compare the hydrological data with
the GRACE data, the grid was resampled to a��x2�
grid followed by Gaussian smoothing, comparable
to the GRACE smoothing. Only data of the corre-
sponding time span of the CSR solutions was used.
The gravity values of GRACE data were converted
into columns of equivalent water thickness using the
equations given in Wahr et al. (1998).

Fig. 3 (left) shows the GRACE trend for the cor-
responding time span with a maximum of almost 5
cm/year (equivalent water column). Fig. 3 (middle)
shows the secular variation of the hydrological model
LaDWorld. A significantly smaller signal of about 2
cm/year is present in that region, but no clear cen-
tre can be identified. We then reduced the GRACE
signal by the hydrological secular signal, a smaller
secular trend of about 3.5 cm/year remained (Fig. 3,
right). This reduced GRACE signal still shows dif-
ferences in amplitude and location to the expected
GIA-induced present-day uplift signal, which indi-
cates the presence of further signals not considered
so far. These signals may be caused by errors in the
GRACE data, filtering of the data sets, mismodelling
in the reductions, hydrological effects not contained
in the models as well as surges in the Baltic Sea. For
a reliable interpretation these regional effects as well
as the processing strategy have to be considered in
more detail. Our present understanding of the grav-
ity changes in Fennoscandia is, that the periodic and
episodic variations might be of hydrological origin,
whereas the major part of the secular changes can not
significantly be attributed to hydrological processes.

4 Pattern Recognition of the Uplift Sig-
nal

As mentioned above, the Fennoscandian uplift has
already been observed and modelled within the
BIFROST project, where mainly GPS measurements
were analysed. In addition geophysical models were,
e.g., determined by Lambeck et al. (1998). Based on
this information, we modelled the uplift signal as-
suming an ellipsoidal shape with the parameters a =
1070 km and b = 690 km, and a certain distribution of
the gravity variation. The maximum gravity change
in the centre has been selected with 20 nm/s

�

/year.
Then, we constructed a 2-dimensional cosine-surface
with the maximum gravity change in the centre and
decreasing gravity change values to the edges (Fig. 4,
middle). The modelled cosine-surface was fitted to
the results of the GRACE trend signal, which still in-
cludes possible hydrological or further signals. (Fig.
4, right). In this matching process, we only allowed
the simple model to be shifted and rotated. In that
way of pattern recognition, the centre of the uplift
area was determined at the latitude 62� and the longi-
tude 22�. The direction of the semi-major axis of the
uplift model was found to be oriented from North-
West to South-East, where the expected signal should
be oriented from South-West to North-East. Note,
that this fit was just a first rough approach and may
be improved by better uplift modelling (e.g. based
on Thoma 2004) as well as by using more and bet-
ter GRACE solutions and refined reduction models
for the other phenomena like hydrology. In further
tests we will construct more complex models based
on the various constraints from geophysics and will
allow the amplitudes to vary. At that level, we will
also investigate how different land uplift models will
fit to the GRACE results.
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5 Summary and Outlook

In this study we investigated temporal gravity vari-
ations in Northern Europe based upon the monthly
gravity field solutions from GRACE. The GRACE
data clearly show temporal gravity variations in
Scandinavia. These variations have secular and peri-
odic signatures. Especially the periodic amplitudes,
caused by seasonal effects, show good correlation to
the hydrological model used. In contrast the secular
variations are not in good agreement with other PGR
studies, but are getting closer to the expected signal
and distribution when longer time series are consid-
ered. First results show, that hydrological effects can
be reduced partly by considering corresponding hy-
drological models. More GRACE data and a bet-
ter modelling of regional effects, like hydrological
signals not contained in the models and surges in
the Baltic Sea, are required. Also, the separation
of the individual signal parts is still a challenging
task, where different reductions, models and auxil-
iary measurements have to be applied to the terres-
trial and the satellite data respectively. In addition,
the processing and filtering (e.g. isotropic – non-
isotropic) of the various data sets have to be consid-
ered more extensively. In a first approach, we deter-
mined a simple model of the land uplift effect based
on the parameters of the expected uplift signal from
other models. We then compared this simple model
to the GRACE secular variation using a best-fit algo-
rithm. The location and orientation of the model did
not agree with the expected PGR-signal, but the am-
plitude of the GRACE-based result from GFZ looks
similar. In the future, more refined uplift models
shall be developed and compared to the GRACE so-
lutions, which may help to improve the estimation
of the land uplift signal from GRACE data and to
discriminate between the different assumptions and
parameters used in the geophysical uplift models.
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edition, GOCE-Projektbüro Deutschland, TU München,
GFZ Potsdam.

Johansson, J.M., Davis, J.L., Scherneck, H.-G., Milne, G.A.,
Vermeer, M., Mitrovica, J.X., Bennett, R.A., Jonsson,
B., Elgered, G., Elsegui, P., Koivula, H., Poutanen, M.,
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Abstract. The post seismic time dependent motions 
of 1999 Izmit and Düzce earthquake sequences in 
Marmara region ,Turkey, provide the opportunity to 
improve significantly our understanding of the 
mechanical behaviour of the western part of North 
Anatolian Fault. Therefore, an international 
cooperative project have been started to determine 
the long-term potential post seismic crustal 
deformations along the tectonic fault using GPS and 
gravity data sets in this region.  
 We focus into the first results of joint gravity and 
GPS studies to understand 3-dimensions post 
seismic deformations of 1999 earthquakes along the 
North Anatolian Fault between the 2003 and 2005 
years in the Marmara Region. The GPS data set 
following the 1999 earthquakes and the gravity 
observations were analyzed to detect of the accurate 
3-dimension post seismic deformations and to 
determine gravity changes in time and space 
dependent on vertical crustal movements. The first 
results indicate that the gravity changes and some of 
the GPS time series show, strongly, seasonal 
unmodeled behaviours, and vertical motion from 
GPS field and gravity results shows good 
correlation. Furthermore, they show that height, 
gravity and potential changes between the western 
and eastern part of the network are very different. 
The western part shows significant strain loading, 
which is documented by horizontal displacements 
and potential increases. 
Keywords. GPS, Gravity, Marmara Region, Crustal 
Deformation 
 

1 Inroduction 
A high magnitude potential earthquake in the 
Marmara region making up to great deal of 
population and economical sources of Turkey 
would be a significant threat to the region. 
Therefore, it has been very important to identify the 
seismic risk in the Marmara region by monitoring it 
with today’s techniques. GPS campaigns in the 
region have been started since 1988 (Reilinger et al. 
(1997), Barka and Reilinger (1997)). After the 17 
August 1999 Izmit earthquake, numerous studies 
were carried out to identify the scientific details 
about the region with the help of these studies. 
(Özalaybey et al. (2002); Ergintav et al. (2002)). 
Despite of these studies, it is still not clear the 
relation between NAF and the secular faults around 
this region, especially in the vertical component, 
which shows important earthquake activity in the 
region.  
  The aim of the observations is to determine the 
geometric and elastic parameters of the active faults 
by inversion of post seismic deformations. Due to 
the accuracy limitation of GPS up to now only 
horizontal deformations are analyzed. Vertical 
deformations are neglected as well as possible 
gravity changes. The common use of both 
parameters however can help to improve the error 
situation significantly (Gerstenecker et al. (2006)). 
  In 2003, an international cooperative project was 
started by The Scientific and Technical Research 
Council of Turkey Marmara Research Center 
(TUBITAK-MAM), Earth & Marine Sciences 



Fig. 1 GPS stations around the Marmara Sea. Gray lines 
show the active faults according to Saroglu et al. (1992), 
Le Pichon et al. (2003) and Armijo et al. (2005). Ganos 
fault is shown on the European side of the Dardanelles. 
Black lines show the break of the 1999 earthquakes 
(Bürgmann et al. (2002a-b)). 

Research Institute, along with Yıldız Technical 
University, Department of Geodesy and 
Photogrammetry Engineering in Turkey and 
Darmstadt University of Technology, Institute of 
Physical Geodesy in Germany. The goal of this 
project is to detect horizontal and vertical crustal 
motions using GPS and gravimetric methods. In this 
project, it has been aimed to understand about the 
vertical component that was not studied before in 
this region and to monitor the time-dependent 
tectonically induced gravity changes along the 
NAF. 
  The first precise gravimetric survey covering in 
the Marmara region was carried out on October 
2003 to determine the mass and or density changes 
inside the earth crust related to pre seismic and post 
seismic deformations of the region. GPS stations 
which are subset of the Marmara Continuous GPS 
Network (MAGNET), and survey sites constituted 
as two GPS profiles perpendicular to the main 
branch of NAFZ were studied to monitor the crustal 
deformations in long term (Ergintav et al. (2005)). 
With GPS and gravity data, the fault geometry and 
the seismic risk around the region can be tried to 
identify, relative to the stress regime of NAF. 
Moreover, interpretation about physical features of 
these crustal movements occurred before and after 
the earthquakes in the Marmara region will be able 
to estimate future seismic risk. 
 The measurement of vertical time dependent 
deformations are very important to understand the 
mechanics of post seismic deformation and the 
accelerated slip as well as stress transfer between 
particular fault branches because of the dynamic 
long term response of the viscoelastic layer. Hence, 
better estimates of vertical post seismic motions are 
a key factor in seismic hazard analyses (Ergintav et 
al. (2006)). 
 In this study, we describe the first results of joint 
gravity and GPS studies to understand 3-dimensions 
post seismic deformations of 1999 earthquakes 
along the North Anatolian Fault between the 2003 
and 2005 years in the Marmara Region. 
 
2 GPS&Gravity Network and Data 
Processing 
Before the 1999 earthquakes, the Marmara 
Continuous GPS network (MAGNET) (Fig. 1) was 
established to measure the deformations associated 

with strain accumulation along the western NAF 
system. We realized 2 GPS profiles perpendicular 
to the main branch of the North Anatolian Fault 
(NAF) in the Marmara Region to determine the 
temporal and spatial deformation variations from 
which we estimate processes at depth. The first GPS 
profile crosses the Ganos fault in the Western 
Marmara Region and the second one in the Eastern 
Marmara traverses the western part of the 1999 
Izmit earthquake rupture (Fig. 1). In addition, these 
profiles are supplemented by additional stations of 
the so called Tuzla GPS Network “TUGANET” to 
observe deformations at the western part of the 
rupture of the Izmit earthquake (Fig. 1). We observe 
the GPS stations twice a year in June and October. 
During each campaign at each station, two sessions  
of 10 hours are observed. In order to reduce the 
antenna phase pattern problems and the errors on 
the computation of the vertical components, we 
used same receivers and antennas at all campaign 
sites (Trimble 4000 and 5700 with choke-ring and 
Zephyr antennas) (Ergintav, et al. (2006)). 

 GPS data were analyzed with the 
GAMIT/GLOBK GPS processing software 
(Herring, 2000; King and Bock (1998)). The 
reference frame was constrained on each day using 
a reliable set of global IGS stations. Positions of the 
fiducial IGS stations were constrained to ITRF2000 



Fig. 2 Marmara Gravity Network (MAGRANET), and 
triangle points are permanent GPS stations belonging to 
MAGNET. 

Epoch Number of 
Ins. 

Number of 
Obs. 

Mean point 
errors (µgal) 

10-2003 2 434 5.93
06-2004 2 543 4.26 
10-2004 2 477 4.04 
06-2005 2 450 4.19 
10-2005 2 466 4.53 
 

Table 1 Summary of the gravity observation campaigns 

coordinates. Details about the processing method 
are described in McClusky et al. (2000). 
 The Marmara Gravity Network (MAGRANET) 
is a precise gravimetric control network for 
monitoring gravity changes along the NAF due to 
geodynamic processes. The network whose points 
belong to MAGNET was established and consists of 
25 stations (Fig. 2). The MAGRANET was re-
observed five times in October and June of each 
year between 2003 and 2005, simultaneously with 
the GPS campaigns. The effect of seasonal 
variations on both observation sets should therefore 
be similar. We have used the relative spring 
gravimeters LaCoste Romberg LCR-G 85 and 
LCR-G 858 at all campaigns. The Scintrex CGS5 
10076 and 10079 gravimeters have been also used 
since October 2004. The characteristics of the five 
surveys are given in Table 1. 

We computed for each epoch stational point gravity 
values ( g ) from the following a least squares 

adjustment model (Drewes et al. (1991); Torge 
(1989)): 

p

 kikidpkk ∆tdyngv −−−=+ ll , weight  (1) kP

where,  is the vector of the reduced gravimeter 
observation due to the earth tide, air pressure and 
instrument height effects,  is the residual vector, 

 is the unknown gravimeter reading level vector 
at a day,  is the scale correction vector for 
gravimeter (i),  is the unknown drift polynomial 
coefficient vector for gravimeter (i), and ∆t is the 
time of observation referring to an initial time at a 
day. 

kl

kv

dn

iy

id

 The adjustment was carried out with the software 
package “GRAV” developed for adjustment of 
absolute gravity measurements and estimation of 
gravity values as well as gravimeter parameters 
using different adjustment models at the Institute of 
Physical Geodesy, Darmstadt University of 
Technology. A priori as unit weight standard 
deviation σ0= ±10 µgal for a particular observation 
is introduced. 
 
3 Results and Evaluation 
Fig. 3 indicates an example of the GPS time series 
from MAGNET. It starts following the 1999 
earthquake sequence and is fit well by a function of 
the form  

 x(ti)=x(to)+aln(∆t)+v∆t+Annual+Semi-annual (2) 

where, x(ti) and x(to) are the observed site positions 
at epoch ti and to, respectively, a is the amplitude of 
the post-seismic response, v is the steady state 
velocity, and (t−to) is the time elapsed since the 
earthquake. The “Annual” and “Semi-annual” terms 
account for the unmodeled seasonal systematic 
effects. After the onset of the 1999 Izmit 
earthquake, the steady state site velocities can be 
predicted by this functional form, and they are equal 
within uncertainties to the observed site velocity 
prior to the earthquake (Ergintav et al. (2002); 
Ergintav et al. (2004)). The offsets of the 1999 
Düzce earthquake were removed from the time 
series using the detailed coseismic deformations 



Fig. 3 GPS time series of TUBI site in MAGNET.

Fig. 4 Horizontal velocity field of the Marmara Region in 
a Eurasian fixed frame. Thin lines show the active fault 
traces (Saroglu et al. (1992); Le Pichon et al. (2003); 
Armijo et al. (2005)).  

determined from a geodetic model of the earthquake 
(Ayhan et al. (2001)). 
 In Fig. 3, the vertical line shows the time of the 
Izmit earthquake. The thick black line indicates the 
long term behavior of the time series in (2). The 
green lines show the 1-sigma limits of the 
uncertainties. The height component has larger 
scatter and uncertainties than the horizontal 
components. As can be seen in Fig.3, the sinusoidal 
fluctuations of the seasonal effects can be identified 
easily for the continuous GPS sites. The seasonal 
effects were also identified on the campaign data by 
the six-month re-occupation frequency. While one 
of the campaigns was made in October, the other 
was carried out in June for each year. 
 To obtain a reliable long-term velocity for the 
GPS sites, we calculated the velocities from the 
nearly steady-state part of the data between the 
2003 and 2005. Fig. 4 shows the up-to-date 
horizontal velocity field of the Marmara Region in a 
Eurasian fixed frame for the period 2003 - 2005.  
 The general characteristics of the velocity field 
shown in Fig. 4 reflect two different properties for 
the northern and southern parts of NAF.  In the 

southern part of NAF, the velocities are 
approximately equal to the pre-earthquake 
velocities (McClusky et al. (2000); Meade et al., 
(2002)), except a rotation component to the 
southwest. In contrast to this area, the velocities in 
the northern part of NAF are larger than pre-
earthquake velocities, and indicate a high 
correlation with the co-seismic deformation and 
early post seismic motions (Ergintav et al. (2002)). 
The logarithmic behaviour of the time series and the 
spatial character of the observed post seismic 
deformation suggest that early phase of post seismic 
deformation, is due to afterslip extending through 
the crust and perhaps into the upper mantle 
(Ergintav et al. (2002)). 

 Moreover, we study here temporal variations of 
the gravity field. When the effect of external 
phenomena such as tides or environmental 
parameters (e.g atmospheric pressure) are removed, 
the residual change in the gravity field at a location 
is sensitive to the measurement position mainly the 
elevation, since gravity gradients are stronger 
vertically than horizontally, and to the mass 
movement and density change beneath and around 
the measurement point (Ballu et al. (2003)). 
 From the individual point gravity values per 
epoch with respect to TUBI station, we computed a 
linear fit to the gravity variation (single point linear 
gravity change). In addition to the point gravity 
values at a zero-epoch (to), we introduced the linear 



Fig. 5 Linear changes as functions of distance from NAF 
with respect to TUBI station  

Fig. 6 Time dependent potential regression coefficients  

Fig. 7 Gravity changes and the vertical displacements for 
the stations in the south of the Marmara Region  
 

temporal change (dg/dt) per station. The point 
gravity values per epoch are expressed as a function 
of linear variation as follows: 

 g(ti)=g(to)+(dg / dt )(ti−to) (4) 

where g(ti) is the observed gravity value at epoch ti. 
The resulting data (dg/dt) are showed in Fig. 5. The 
linear temporal gravity changes indicate significant 
offsets depended anomalies. While the northern part 
of fault zone shows negative, the southern part 
shows positive changes in time. This is further 
evidence that the gravity changes reflect subsurface 
changes and not only vertical surface motions. 

 Gravity and height changes in time dg and dh are 
interpreted as potential changes dW according to 
(Gerstenecker, et al. (2006)): 

 dW=dg dh [Nm]. (5

We computed for the interpretation the changes of 
the potential dW/year. The results in Fig. 6 for the 
stations at NAFZ and Ganos fault. Applying the law 
of error propagation for the potential changes, we 
obtain statistically significant results. Obviously 
potential changes along NAFZ and Ganos fault are 
quite different. We observe generally a potential 
decrease at NAFZ, whereas at all stations near 
Ganos fault potential increase exists. The regimes 

) 

of both fault zones are quite different (Gerstenecker 
et al. (2006)). 
 Fig. 7 indicates the plots of the linear temporal 
gravity changes and the vertical displacements for 
the stations at NAFZ for October 2004-October 

from Fig. 7, while many sites show the expected 

 

2003 with respect to TUBI site. As can be seen 

negative correlation, and only DUMT site shows 
the positive correlation in the south of the Marmara 
Region. However, the linear temporal gravity 
changes indicate significant offsets depended 
anomalies. While the northern part of fault zone 
shows negative, the southern part shows positive 
changes in time. This is further evidence that the 
gravity changes reflect subsurface changes and not 
only vertical surface motions (Ergintav et al. 
(2006)). 
 



Fig. 8 The gravity changes and the vertical displacements 
by GPS with respect to the TUBI site for the OLUK site. 
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In Fig. 8, the GPS height variations and gravity 
changes at site OLUK with respect to the TUBI site 
are given as an example. In Fig. 8, each 
measurement of the GPS and gravity changes has a 
negative correlation as expected. The long term 
trend also shows the negative correlation. 

in October and June of each 

l 
gravity changes indicate significant offsets 
depended anomalies and the gravity changes reflect 
subsurface changes, not only vertical surface 
motions. 
 The accuracy of the relative gravity 
measurements can be significantly increased by 
establishing an absolute calibration line in the 

ARPS cruise 
party (2005). Submarine Fault Scarps in the Sea of 

(North Anatolian Fault): 

ield Variations across the Asal 
Rift: Insights on Vertical Movements and Mass 

 and Planetary Science Letters, 208, 41-
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southwest in the southern part of NAF, the 
velocities in the northern part of NAF are larger 
than pre-earthquake velocities, and indicate a high 
correlation with the co-seismic deformation and 
early post seismic motions. 
 The potential changes along NAFZ and Ganos 
fault are quite different. The potential decreases at 
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4 Conclusion 
We report the first results of joint gravity and GPS 
studies to understand 3-dimensions post-seismic 
deformations of 1999 earthquakes along the North 
Anatolian Fault between the 2003 and 2005 years in 
the Marmara Region. The horizontal and vertical 
deformation changes were obtained by GPS studies 
and the studies for vertical deformation changes 
were augmented by the gravity changes in the 
Marmara region. The MAGRANET was re-
observed five times 
year between 2003 and 2005, at the same time with 
the GPS campaigns. 
 The results indicate the different present-day 
character of strain accumulation in the western and 
eastern part of the Marmara Region. The post 
seismic motions still influence the seismic hazard in 
the eastern part of the region; the western part needs 
further studies to understand the rheology of the 
fault zone and seismic hazard. The velocity field 
reflects two different properties for the northern and 
southern parts of NAF. While the velocities are 
approximately equal to the pre-earthquake 
velocities except a rotation component to the 

region and by adding absolute gravity 
measurements in our gravity network. 
 

NAFZ, whereas at all stations near Ganos fault 
potential increase exists. The linear tempora
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Combination of GRACE, gravity and GPS data for 

determination of long-term geoid changes in North 

America 

E. Rangelova and M. G. Sideris, Department of Geomatics Engineering,  
University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4 
 

Abstract. Two independent solutions for the rate of 
change of geoid in North America, assumed to be 
due to PGR, are presented. The first solution is 
based on principal component analysis of a GRACE 
time series of geoid change. The second solution is 
derived via least-squares collocation using absolute 
gravity rates and GPS vertical velocities available in 
Canada.  The GRACE geoid rate shows good 
agreement with postglacial rebound models based on 
the ICE5G de-glaciation history, in contrast with the 
geoid rate derived from gravity and GPS data, which 
agrees better with the ICE3G and ICE4G models. In 
view of the still short time span of the GRACE time 
series, and acknowledging the fact that the errors of 
the geopotential coefficients have not been taken 
into account, it is found that the GRACE geoid rate 
should be down-weighted when the two geoid rates 
are combined.   

Keywords. GRACE, postglacial rebound, rate of 

change of geoid. 

 
1 Introduction 

Temporal variations of the geoid comprise an area of 
growing scientific interests since the start of the 
NASA/DLR Gravity Recovery and Climate 
Experiment (GRACE) satellite mission in March 

2002; see Tapley et al., 2004.  With a temporal 
sampling of one month, GRACE data provide a 
unique opportunity to study seasonal, interannual 
and long-term geopotential changes due to mass 
redistributions at the surface of the Earth and its 
interior. One of the expected outcomes of the 
GRACE mission involves constraints on postglacial 
rebound (PGR) models; see Peltier (2004). The 
estimated secular rate, which will be referred to 
long-term rate in view of the satellite mission 
lifetime, will help to decrease uncertainties in the 
mantle viscosity and de-glaciation histories currently 
used in PGR simulations.  
 In Canada, the geoid rate is necessary for 
realization of the new vertical datum, which will be 

based on a precise model of the regional geoid; see 
Véronneau et al. (2006). The availability of absolute 
rates of change of gravity, see Pagiatakis and Salib 
(2003), and GPS vertical velocities allows the geoid 
rate to be modeled independently of GRACE. The 
relatively good gravity data coverage permits 
sampling of the characteristic wavelengths of the 
PGR signal, but also other local processes, such as 
subsidence due to fluid extraction, erosion, tectonics, 
etc., are present which may or may not be 
accompanied by mass changes and are hardly seen 
by GRACE. However, a comparison of 
independently derived geoid rates is useful and 
might be indicative for the data quality and 
achievable accuracy of the geoid rate at present.   
 The purpose of this paper is to model the geoid 
rate using the distributed GRACE Level 2 data and 
to compare it with the geoid rate from gravity rates 
and vertical velocities. For the sake of brevity, the 
first model will be called the GRACE geoid rate and 
the second model will be called the Gdot/GPS geoid 
rate. Furthermore, the two solutions are combined 
via least-squares adjustment, and variance 
component estimation is performed in order to 
assess the relative errors of both models. 
 The estimation of geoid rate from the GRACE 
data is based on principal component analysis (PCA) 
of GRACE time series.  On the other hand, the 
combination of gravity rates and GPS velocities is, 
in essence, a two dimensional approximation 
problem using known relationships between gravity 
field components. The approximation problem is 
solved via least-squares collocation (LSC). Below 
the modeling approaches used are described 
followed by a description of the combination 
procedure and discussion of the results obtained.       

2 Methodology 

2.1 Principal Component Analysis of GRACE 

Time Series 

Principal component analysis provides estimates of 
empirical orthogonal functions (EOF) loading 
patterns of single scalar fields and their variation in 



  

time described by the principal component (PC) time 
series. Data are organized in a (n × p) matrix D, 
where n is the number of observations, i.e., the 
monthly values of the geoid change with respect to 
the long-term mean, and p is the number of 
variables, i.e., the grid cells. The data matrix D is 
decomposed by singular value decomposition 
according to Jolliffe (2002) as follows: 

,VUSD ′=                 (1) 

where U and V are (n × n) and (p × p) matrices, 
respectively, for which IUU =′  and IVV =′  hold. 
The main diagonal of the matrix S contains the 
square roots of the eigenvalues of the spatial 
covariance matrix DD ′ , and the column vectors of V 

give the EOF loading patterns. The PC time series 
are obtained from the column vectors of the matrix P 
determined as follows:  

.USP =                        (2) 

The data are approximated by means of m principal 
components according to: 

( ),ˆ USV'D mm =              (3) 

where Dm
ˆ  is the best rank m approximation of the 

data matrix.  
To represent accurately physical relations in the 

data, rotated PCA is applied by means of different 
schemes to find a new basis in the m–dimensional 
space which simplifies the interpretation of the 
principal components.  A “varimax” rotation on the 
PC time series, as given by Preisendorfer (1988, pp. 
273-283), is used herein. In order to select the 
principal components that will undergo rotation, the 
PC time series are tested for being random samples 
of a white noise process by means of the 
Kolmogorov-Smirnov rule (ibid).  The PC is 
accepted to represent a signal mode if the null 
hypothesis (white noise process) is rejected at 95% 
confidence level.  

2.2 Least-squares Prediction of Geoid Rates 

Using Absolute Gravity Rates and GPS Velocities 

As a generalized approximator/interpolator, least-
squares collocation is an appropriate method for 
predicting geoid rates using available heterogeneous 
data that can include absolute and relative gravity 
rates, point vertical velocities (GPS and tide gauges), 
velocity gradients (repeat precise leveling) and rates 

of change of the geoid (GRACE). Alternatively, 
geodetic integrals (Stokes and Hotine) can be 
applied using absolute or relative rates of gravity 
and vertical velocities. However, this approach does 
not allow incorporation of new data when available, 
which can be considered as a substantial 
shortcoming in view of improving the time span of, 
for example, the GPS and GRACE time series. This, 
in addition to the error propagation, clarifies why 
LSC is the approach adopted in this study.     

The observation equation of the general least-
squares collocation model is given by Moritz (1980, 
p. 144) as follows: 

n,tAXl ++=                  (4) 

where l is the data vector, t is the signal vector 
component of the data, n comprises the vector of 
observational errors, and AX describes the 
systematic component of the data. In this study, it is 
assumed that the trend in the data is solely due to 
postglacial rebound and, therefore, it is modeled 
using relationships between the rates of gravity and 
vertical velocities on the one hand and the rate of 
geoid and vertical velocities (rate of vertical 
displacement) on the other hand. The first 
relationship is given in terms of gravity-to-height 
ratio, based on a-priori knowledge about the ongoing 
process. The second relationship is given by the 
mass flow model, see Sjöberg (1982), which is 
adopted in this study. The relationships between 
signal components of gravity rates, vertical 
velocities and geoid rates are defined in terms of 
cross-covariance matrices as given by Heck (1984).  
The applied computational procedure is described in 
detail in Rangelova et al. (2005).        

2.3 Combination of Geoid Rates  

The GRACE and Gdot/GPS geoid rates can be 
combined via least-squares adjustment using a 
Gauss-Markov model, with the observation equation 
given as follows: 

,2,1,)(, 2
==+= iiiiiii D QlelXA σ              (5) 

where i denotes the two data sets. iA are the (n × u) 
coefficient matrices (assumed of full column rank) 
for the two data sets, X is the (u × 1) vector of the 
unknown parameters, and  il  and ie denote the data 
and error vectors, respectively; 2

iσ are the variance 
factors for the two sets of data, known from the a- 
priori modeling, and iQ are the positive definite 



 

cofactor matrices of the data.  The unknowns are 
estimated as follows: 
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 One possible way to define the unknown 
parameters is to transform both data sets in a 
spherical cap centered at Hudson Bay. This 
approach is useful when a global GRACE geoid rate 
and a regionally estimated Gdot/GPS geoid rate are 
combined. The so-called adjusted spherical cap 
harmonic analysis, introduced by De Santis (1992), 
is applied herein. The adjusted spherical cap 
harmonics comprise two sets of base functions that 
are not orthogonal to each other.  If only one set is 
used, the orthogonality is preserved, and this offers 
flexibility to test the significance of the estimated 
parameters (harmonic coefficients) and to keep 
necessary redundancy by deleting the insignificant 
ones.    
 The variance component estimation is performed 
using the iterated BIQUE method according to Koch 
(1999).      

3 Description of Data Sets 

3.1 GRACE Time Series 

The constrained gravity field solutions from August 
2002 to February 2006 from Release 1 of the CSR 
GRACE Level 2 products in terms of coefficients of 
geopotential are used to construct a time series by 
removing a long-term mean field.  The GRACE data 
was corrected for the ocean pole tide (IERS 
conventions 2003). Because of its large variability, 
the C20 coefficient in each solution was replaced by 
the values obtained via satellite laser ranging and 
distributed with the GRACE data. The solution for 
June 2003 is not available and was predicted via 
least-squares fit of the mean, trend, annual cosine 
and sine components to coefficients. The geoid 
changes at each epoch t were calculated from the 
residual (with respect to the three-year mean) 
coefficients )(tClm∆  and )(tSlm∆  as follows: 
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     (7)  

where a is the Earth’s radius, θ and λ are the co-

latitude and longitude, respectively,  and )(cosθlmP  

are the normalized associated Legendre functions. 

lW  are the weighting coefficients of the isotropic 

Gaussian filter applied to smooth the random errors 
present in the geopotential coefficients; see Wahr et 

al. (1989). The smoothing radius of the filter applied 
is 600 km; see, for example, Chen et al. (2005).  

3.2 Absolute Gravity Rates and GPS Vertical 

Velocities 

Absolute gravity rates are obtained from the re-
adjustment of the historic relative gravity 
measurements in the Canadian Gravity 
Standardization Network (CGSN) with reference 
epoch 2000.0 and constraints provided by absolute 
gravity stations; see Pagiatakis and Salib (2003). 
The CGSN is not designed for geodynamic studies 
and the stations are not observed on a regular basis 
in time. However, gravity measurements span over 
40 years, which allows gravity rates to be estimated 
at the 64 “primary gravity control” sites from the 
network.  
 The GPS vertical velocities are provided by 
Natural Resources Canada. They are obtained 
through combining 36 individual Canadian Base 
Network (CNB) campaigns from 1994 to 2004 using 
single station minimum constraints (Joe Henton, 
personal communication).  
 The CBN sites are not co-located with the CGSN 
sites. This precludes the derivation of a reliable 
gravity-to-height ratio. However, from the weighted 
least-squares adjustment of gravity-to-height ratios 
at 13 GPS and gravity sites (located within 100 km 
radius), a value of -0.18 ± 0.02 µGal/mm was 
obtained, which matches the result of Lambert et al. 
(2006) derived with the North American mid-
continent tilt profile data. This value is (within the 
standard error) close to the theoretical value for 
PGR, i.e., -0.16 µGal/mm; see, e.g., Fang and Hager 
(2001). This indicates that CBN and CGSN data can 
be combined to model the PGR signal in Canada. 

4 Analysis of Results 

In the applied PCA of the GRACE time series, the 
first four principal components comprise physical 
modes. The first PC, which explains more than 50% 
of the data variability, represents the long-term 
geoid changes. The second PC represents the 
hydrologic mass variability in the region; see Figure 
1. The estimated trend in the first PC time series was 
used to scale the corresponding EOF loading pattern  
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Fig.1 The first two principal component time series 

normalized with the standard deviations.  Also, trend is 
fitted to the first PC time series.  

and to derive the geoid rate according to eq. (3); see 
Figure 2. The peak values observed west of Hudson 
Bay correspond, as a location, to the thick Keewatin 
Dome of ice present in the ICE5G model of Peltier 
(2004). In contrast, the Gdot/GPS geoid rate exhibits 
a maximum in the eastern part of Hudson Bay) see 
Figure 3), thus showing better agreement with the 
PGR models based on ICE3G and ICE4G de-
glaciation histories. In fact, the maximum values in 
the eastern part of Hudson Bay are due to the large 
gravity rate observed there. A detailed comparison 
with the ICE3G model can be found in Rangelova et 

al. (2005). Note, however, that the geoid rate in 
Figure 3 was smoothed so it has the same spectral 
content as the GRACE geoid rate. The Gdot/GPS 
geoid rate has more high frequencies (in the spectral 
band between degrees 15 and 20) as a result of the 
least-squares collocation procedure that accounts for 
the local signal in the data.               

It is worth mentioning also that when a three-year 
time series was analyzed, the first two principal 
components reversed there order. This simply 
demonstrates that the hydrologic signal dominates 
the short geoid change time series.  

The GRACE geoid rate was derived from 
homogeneous observations in space and time. This 
is a ultimate advantage compared to the geoid rate 
estimated from gravity and GPS data, and, therefore, 
the GRACE geoid rate is more suitable for PGR 
studies. On the other hand, GRACE measures 
integral mass changes and the long-term geoid rate, 
assumed to be due to PGR, may be corrupted with 
an interannual hydrologic signal. The latter is 
difficult to be verified if it is not present in the 
continental water storage models.   

The Gdot/GPS geoid rate may contain systematic 
distortions inherited from the data sets used. In 

addition, the assumption for gravity-to-height ratio 
may be invalid.  Although the a-priori value is close 
to the theoretical one, the gravity-to-height ratio 
should be estimated rigorously in the least-squares 
collocation procedure.  
 Despite the uncertainties involved in the 
modelling, a combination of geoid rates via least-
squares adjustment together with the estimation of 
variance components (VCE) can provide an 
assessment of relative errors and weights in the 
GRACE and Gdot/GPS geoid rates. This is 
important in view of the fact that the pronounced 
PGR signal in the Laurentide is clearly observed 
after four years of GRACE measurements. In the 
following, the results of the combination procedure 
are discussed.  

A spherical cap (see Sec. 2.3) with an angular 
radius of 30° was centered at the west part of 
Hudson Bay. The original geoid rate grids of 1°×1° 
were transformed into the spherical cap using 
standard coordinate transformation procedures. To 
decrease the computational load in the least-squares 
adjustment, only those values that account for 
virtually all data variability (more than 99%) were 
selected via a modified Gram-Schmidt 
orthogonalization of the coefficients matrices, see 
Chen et al. (1989). Thus, the total number of data is 
106, while the number of unknown parameters is 21 
if the maximum degree of the spherical cap 
harmonics is 5. Figure 4 shows the combined geoid 
rate. The peak is centered over Hudson Bay and the 
maximum rate is 1.5 mm/yr.  
 Two different cases are investigated via variance 
component estimation. In the first case, the cofactor 
matrix is a unit matrix, i.e., no weights are 
introduced for both data sets. In the second case, the 
covariance matrix for Gdot/GPS geoid rate is 
available from the least-squares collocation 
procedure. The a-priori variance factor for VCE is 
0.78 mm2/yr2. Since no errors of the geopotential 
coefficients are provided for the GRACE 
constrained solutions, the accuracy of the geoid rate 
was estimated via propagating the error of the 
estimated trend of the first PC. Thus obtained, the 
maximum errors are between 0.8 and 1 mm/yr over 
Hudson Bay.  
 Table 1 contains the estimated variance factors. 
For the case of equal weights, the variance factors 
are unrealistically small. In fact, although 
convergence is achieved at the sixth iteration, the 
standard deviations of the variance factors are quite 
large. When proper weighting of the data sets is 
introduced, the estimated variance components are 
0.72 ± 0.28 mm2/yr2 and 0.50 ± 0.19 mm2/yr2 for the 
GRACE and Gdot/GPS geoid rates, respectively. 



 

 

Fig. 2 Rate of change of geoid estimated via principal component analysis  
of the GRACE time series. 

 

Fig. 3 Rate of change of geoid estimated via least-squares collocation.  
The data used are absolute rates of gravity and GPS. 

 

Fig. 4 Combined solution with GRACE and Gdot/GPS geoid rate.



 

These estimates depend on the selected subset of 
data through the coefficient matrix in the least-
squares adjustment, and it is expected that they will 
vary if the locations of data points change. For a 
harmonic expansion of degree 5, the estimated 
variance factors indicate that the GRACE geoid rate 
should be down-weighted by a factor of 1.4 
relatively to the Gdot/GPS geoid rate. With longer 
GRACE time series available, it is expected that this 
ratio will decrease. 

Table 1 A priori and estimated variance factors. 

geoid rate weights 2σ , mm2/yr2 2σ̂ ,  mm2/yr2 

GRACE no 1.00 0.25 
Gdot/GPS no 1.00 0.13 
GRACE yes 1.00 0.72 

Gdot/GPS yes 0.78 0.50 

Conclusions 

Two independent solutions for the geoid rate in 
North America were combined via least-squares 
adjustment. The first solution was obtained via 
spatio-temporal analysis of GRACE time series with 
almost four years time span. The second solution is 
based on least-squares collocation using as input 
absolute gravity rates and GPS velocities. Both 
solutions differ in terms of magnitude and location 
of peak values. While GRACE geoid rate is close to 
ICE5G(VM2) model, the geoid rate estimated solely 
from surface measurements agrees better with 
postgalcial rebound models based on ICE3G and 
ICE4G de-glaciation histories.  
 The estimated variance factors of the two 
solutions indicate that the covariance matrix for the 
GRACE geoid rate should be up scaled compared to 
the covariance matrix for the geoid rate from gravity 
and GPS data. More realistic results can be expected 
if errors of the geopotential coefficients are taken 
into consideration and longer time series are 
analyzed. It is planned to repeat this study as soon as 
new information becomes available.  
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Low-degree load harmonic coefficients from
combining GRACE, GPS time series and
a-priori dynamics
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Abstract. One of the primary aims of the Gravity
Recovery and Climate Experiment (GRACE) mis-
sion is to monitor large-scale surfaCe mass changes
by measuring their associated variations in gravity.
We proposed in earlier work to combine the GRACE
measurements with GPS time series provided by e.g.
the International GNSS service (IGS) to strengthen
the long wavelengths of the solution. This appears
necessary because GRACE monthly gravity solu-
tions not yet match the targeted baseline accuracies
at the lower degrees, and they do not provide degree-
1 coefficients. The method of GPS inversion has
been proposed by Blewitt et al. (2001), and sensitiv-
ity studies based on formal error propagation have
indicated that GPS could contribute up to 60% to
degrees 2-4, and up to 30% for selected higher de-
grees in a combination. Characteristic in our ap-
proach is a) the combination of GRACE and GPS in
a weighted least-squares sense, and b) the introduc-
tion of a dynamic constraint on the mass change in
time. Degree-1 load coefficients, derived from GPS
through loading inversion, benefit indirectly from the
combined determination of higher-order coefficients
from GRACE and GPS. We find geocenter estimates
which are consistent with previous studies. Selected
degree-2 coefficients are provided in this paper.

Keywords. Surface mass redistribution, GPS,
GRACE, inversion, hydrology

1 Introduction

One of the main objectives of the GRACE mission
is to monitor hydrological and ocean mass redistri-
bution through its gravitational effect (Tapley et al.,
2004). Monthly gravity fields have been released to
the public, covering a time span from April 2002
onwards. It has been proposed by Blewitt et al.
(2001); Wu et al. (2003), and others, that at larger
spatial scales surface load changes may be derived

independently by geometrically measuring the elas-
tic response of the Earth. We have used the In-
ternational GNSS Service combination solutions for
this purpose. This is particularly interesting as long
as GRACE monthly gravity solutions not yet match
the targeted baseline accuracy at the lower degrees.
Furthermore GRACE does not provide estimates on
degree-1, which corresponds to the geocenter mo-
tion of the Earth. Fig. 1, modified from Blewitt and
Clarke (2003), is an illustration of the dynamic model
behind the methods of GPS and GRACE inversion
for surface loads. Load Love number (LLN) theory
relates load distribution, geoid change and Earth de-
formation. In this approach, the estimated degree-1
surface mass redistribution, obtained from 3D net-
work deformation by consistent choice of degree-1
load Love numbers, consequently yields geocenter
estimates. This method is called the “deformation”
approach considered in Lavallée et al. (2006). It is
important to note that these estimates are not de-
rived within the GPS orbit determination process, but
rather follow from the conservation of momentum in
the Earth-load system. ( In theory, a purely geometri-
cal technique like VLBI would be capable to provide
geocenter estimates through a loading inversion; as-
suming there would be a sufficient number of homo-
geneously distributed observation sites). In principle,
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gravity field changes sensed by GRACE and surface
loading observed by GPS networks include the com-
bined direct and indirect effect of all mass redistribu-
tions within the Earth and its atmospheric and fluid
envelope. It is well-known that one cannot uniquely
solve for 3D density distributions from gravity data;
however, the majority of the mass transports impor-
tant on time scales from daily to inter-annual occur
at or near the Earth’s surface. Under this hypothesis,
gravity changes on these time scales can be uniquely
inverted into mass redistribution within a spherical
shell at the surface (Chao, 2005). Because the at-
mospheric contribution to the surface density change
can be reasonably modelled using atmospheric pres-
sure data, GRACE gravity and GPS displacements
allow to detect changes in the Earth’s hydrological
storage systems.

One is forced to constrain solved-for mass config-
urations either by low-degree truncation, by spa-
tial averaging, or by regularisation operations em-
ploying mathematically or physically motivated con-
straints. This is because the errors in GRACE or
GPS–derived spherical harmonic coefficients are not
“white” over the spectral domain but increase with
higher resolution, because elastic load Love num-
bers quickly loose their power and so the spectral
sensitivity decreases, and, in the case of GPS inver-
sion, the Earth’s coverage with observations is far
from homogeneous. Combining satellite gravity and
geometrical displacements in a joint inversion, pro-
posed by Kusche and Schrama (2005), is expected
to relieve these constraints and improve the reliabil-
ity of estimates. In this paper, we combined GRACE
time-variable gravity fields with global weekly GPS
time series provided by the International GNSS Ser-
vice (IGS), in a weighted least-squares sense, for
the period February 2003 - July 2006. A-priori dy-
namics derived from hydrological, ocean and atmo-
sphere models are used within the combination, to
avoid unrealistic changes and jumps in the solution.
We find that geocenter estimates from this combi-
nation fit quite well to earlier estimates, including
our own in Kusche and Schrama (2005) obtained
using a regularised GPS-only inversion. Moreover,
changes in the Earth’s flattening from the combina-
tion were found fitting remarkably well to those from
SLR (Kusche et al., 2006).

2 Loading Model

As usual, we parameterise the surface mass density
change∆σ, i.e. the anomaly with respect to a long-

term eeference average, in spherical harmonics

∆σ(λ, θ) = aρw (1)

×
∞∑

l=0

l∑
m=0

(∆Cσ
lm cos mλ+∆Sσlm sin mλ)Plm(cos θ).

Here a is Earth’s mean radius,ρw seawater den-
sity, Plm are the fully normalised associated Legen-
dre polynomials, and∆Cσ

lm, ∆Sσlm are the spherical
harmonic coefficients of the surface density anomaly.
Using Farrell’s (1972) loading theory, they can be re-
lated to the spherical harmonic coefficients of geoid
change (∆Cg

lm, ∆Sglm), height deformation (∆Ch
lm,

∆Shlm), and lateral deformation (∆Cψ
lm, ∆Sψlm),

through the elastic load Love numbersk′l, h
′
l, l
′
l

∆Cg
lm =

3ρw
ρe

(1 + k′l)
2l + 1

∆Cσ
lm (2)

∆Ch
lm =

3ρw
ρe

h′l
2l + 1

∆Cσ
lm (3)

∆Cψ
lm =

3ρw
ρe

l′l
2l + 1

∆Cσ
lm . (4)

Degree-1 Love numbers deserve special attention.
Starting withh′1, l

′
1 values from Farrell (1972), re-

ferring to the centre of mass of the solid Earth (CE),
Blewitt (2003) derivedh′1, l

′
1 for the centre of figure

(CF) frame as follows

[l′1]CF = −1
3
([h′1]CE − [l′1]CE) = 0.134 (5)

[h′1]CF =
2
3
([h′1]CE − [l′1]CE) = −0.269 . (6)

We implemented these numbers, which implies that
our estimates for∆Cσ

11, ∆Sσ11,∆Cσ
10 and the geo-

center refer to the motion of the CF origin as defined
in Blewitt (2003) with respect to the centre of mass
of the Earth-load system (CM system). (The origin
of the CF frame is by definition such that the inte-
gral of the moment of the vector displacement field,
taken over the solid Earth surface, is zero). The ITRF
is a realisation of the CF reference system. From the
conservation of momentumm in the Earth-load sys-
tem, it follows that the geocenter estimates relate to
the surface mass change as:

X =
1
M

mx =
1
M

4πa4ρw
3

∆Cσ
11 (7)

Y =
1
M

my =
1
M

4πa4ρw
3

∆Sσ11 (8)

Z =
1
M

mz =
1
M

4πa4ρw
3

∆Cσ
10 . (9)

HereM is the total mass of the Earth, and the factor
in eqs. (7-9) amounts to∼ 0.32. In the method of



GPS inversion, 3D displacement vectors are used to
infer for the load distribution. With height∆h, East
∆x and North∆y components, the relations to be
employed are

∆h = a (10)

×
∞∑

l=0

l∑
m=0

(∆Ch
lm cosmλ+∆Shlm sin mλ)Plm(cos θ)

∆x =
a

sin θ
(11)

×
∞∑

l=1

l∑
m=0

m(−∆Cψ
lm sin mλ + ∆Sψlm cosmλ)

×Plm(cos θ)
∆y = −a (12)

×
∞∑

l=1

l∑
m=0

(∆Cψ
lm cosmλ + ∆Sψlm sin mλ)

× ∂

∂θ
Plm(cos θ).

GRACE observes changes in the Stokes coefficients
of the Earth’s gravity field, typically averaged over
one month. (For the IGS station positions the dis-
placements are cumulated over typically a week).
This results in observation equations

∆Cg
lm =

1
∆t

∫ t+∆t

t

3ρw
ρe

(1 + k′l)
2l + 1

∆Cσ
lm(τ)dτ ,(13)

where the∆t for GRACE is one month and for GPS
it will be one week; this difference in time span has to
be taken into account when combining the different
solutions.

3 Inversion

Previous studies (Wu et al., 2002; Blewitt and Clarke,
2003; Kusche and Schrama, 2005; Mendes Cerveira
et al., 2006) have shown that the design of the inver-
sion strategy is a serious issue. It is very likely that
differing results in the literature may be partly due
to different parameterisation, truncation or regulari-
sation approaches. In these previous studies, as well
as in all GRACE analysis and evident in geophysical
models, the seasonal signal was clearly present, but
not taken as a a-priori information in the estimation.
Our inversion strategy which takes advantage of the
a-priori dynamics will be briefly described here.

3.1 Parameterisation

In a least-squares model, after truncation of the
spherical harmonic series eq. (1) at degreeL, the

unknowns of the inverse problem described in the
previous chapter may be collected in the finite-
sized vectorsx1 = (X, Y, Z)T and x2 =
(∆Cσ

20, . . . , ∆SσLL)T . For the IGS GPS solution
time series it was found that augmenting the vector
with residual Helmert parametersδ may improve the
solution (Kusche and Schrama, 2005), although this
strategy to some extend weakens the normal equa-
tion (Wu et al., 2002), (Lavallée et al., 2006). For the
GRACE observation only vectorx2 is given. We will
treat this situation in the well-known concept of local
and global parameters. Hence,x2 are the global pa-
rameters andx1 andδ are local parameters for GPS.
Even GRACE coefficients of degree> L could be
improved in such a combination scheme, but for that
a full variance covariance matrix is needed to carry
the correlation information. This leaves us for a sin-
gle data set with a parameter vector which can be
split into a localxl and a globalxg part

x =




δ
x1

x2


 =

[
xl
xg

]
. (14)

Using both GPS and GRACE observations a Gauss-
Markov model (Koch, 1999) for weighted data sets
can be formulated. For a single data set the Gauss-
Markov model looks like

y + e = Ax, E{e} = 0, D{e} = C (15)

with observations collected iny, stochastic residuals
e, and variance covariance matrixC. Note this inter-
pretation requires that spatial non-stochastic aliasing
effects are small; meaning that the truncation degree
L must be sufficiently high. The data covariance ma-
trix is extracted from the SINEX files in case of GPS.
For GRACE, we have used either a diagonal matrix
containing calibrated standard deviations, or a full
covariance matrix that has been kindly provided to us
by S. Bettadpur (CSR) from the analysis of August
2003. Combining subsequent GPS solutions with a
GRACE gravity field there will be one set of global
parametersxg and every data set will have their own
local parametersxl,i. With this assumption the de-
sign matrixA and solution vectorx in eq. (15) forp
data sets will become

A =




Al,1 0 . . . 0 Ag,1

0 Al,2 . . . 0 Ag,2

...
...

. ..
...

...
0 0 . . . Al,p Ag,p


 , x =




xl,1
xl,2

...
xl,p
xg




,

whereAl,i is the design matrix for the local param-
eters of data seti andAg,i is the design matrix of



the global parameters for data seti. The variance co-
variance matrix in this model will consist of a block
diagonal matrix holdingCi. In the case discussed in
Chap. 4, typicallyp = 5.

3.2 Dynamics model

Constraining the estimated surface mass distribution
with respect to time evolution is one of our goals in
our approach. The motivation here is to strengthen
the solution and to avoid unrealistic jumps. For the
time evolution we have to define representative time
stamps; for this we use the centretk of a data inter-
val. Within a Kalman filter scheme only the global
parameters are propagated in time, as they already
carry the information of the local parameters. Propa-
gating the global parameters fromtk to tk+1 will be
done by

xg(tk+1) = Φk,k+1xg(tk) (16)

Pg(tk+1) = Φk,k+1Pg(tk)ΦTk,k+1 + Rk,k+1 (17)

with Pg the covariance matrix of the estimated load
SH coefficients,Φk,k+1 the transition matrix from
time tk to tk+1 and Rk,k+1 the propagation noise
matrix which accounts for the uncertainty when
propagating from timetk to tk+1 using an a-priori
model. The matrixRk,k+1 is empirically estimated
from a combination of a hydrological model, a ocean
model and a atmospheric model, by fitting the a-
priori dynamics through the combined model and
evaluating the residuals.

3.3 Combined inversion

After propagating the load coefficients in time they
will be combined with the data. The measurement
update step of our estimation scheme combines the
new data with the estimated load coefficients on the
normal equation level. Using the reduced system
of normal equations (Reigber, 1989) for local and
global parameters the observations can be combined
with the global parameters in a Kalman filter. When
the time span of a data set does not completely fit
into the time epoch of interest, the covariance ma-
trix is scaled with the inverse of the percentage of
the overlap. After the new load coefficients are esti-
mated from the new data the local parameters (geo-
center and nuisance parameter) are derived.

4 Results

Statistics of the analysed combination of IGS sta-
tion position time series and GRACE monthly grav-

ity field models from Geoforschungszentrum Pots-
dam are shown in Fig. 2. GPS and GRACE prod-
ucts have been preprocessed (cleaned, edited, re-
ferred to a common reference in time) as described
in (Kusche et al., 2006). Our results for annual geo-
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Fig 2. Data used for this study: Dots give the number of
GPS sites used per week. Grey-shaded time intervals are
where GRACE solutions have been used.

center estimates, estimated in a 6-parameter post-
analysis model (bias, trend, semi-/annual term) and
valid for the time span 2003.0-2006.5, are sum-
marised in Table 1. They do not contradict those of
others, e.g. Wu et al. (2003) who used JPL GPS so-
lutions of an earlier time frame and a different so-
lution strategy, or Mendes Cerveira et al. (2006) who
used SOPAC GPS solutions and a different technique
of regularisation. The influence of the constraint in
time applied here (Markov process of first order) is
generally little but can amount to a few mm in some
epochs; a slight phase shift is observed which is a
consequence of the modelled dynamics. Using a full
GRACE covariance in the inversion alters the results
only slightly. Fig. 3 shows the estimation of the geo-

Table 1. Geocenter results, annual term (amplitude
[mm]/phase [day of year, since 1 January]), for period
2003.0-2006.5. Diagonal (std) or full (cov) covariance ma-
trix for GRACE.

model X Y Z
No dynamics (std) 2.1/21 2.6/334 3.6/24
No dynamics (cov) 2.3/26 2.7/331 3.6/18
Markov (std) 2.1/23 2.7/330 4.0/18
Markov (cov) 2.3/24 2.8/328 4.1/14

center motion as time series and after an additional
monthly smoothing. The 1σ error bars are almost
identical for all four solutions; we show only those
for the solution without a-priori dynamics and diag-
onal GRACE covariance. For the GRACE fields,
here the atmospheric and oceanographic background
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Fig 3. Geocenter motion for GPS/GRACE combination,
with no a-priori dynamics and standard deviations for
GRACE(black), with no a-priori dynamics and full covari-
ance matrix from GRACE(green), with Markov dynamics
and full covariance matrix from GRACE(red)

fields were reinstated, for the combination fields they
were not subtracted again after the combination with
GPS. Both should thus represent the total of atmo-
spheric, hydro-logic and oceanic mass variability.
Selected degree-2 load coefficients are provided in
Fig. 4. ForC20, the seasonal cycle is clearly visible;
but significantly damped through the inclusion of a
priori dynamics in case of the “Markov” solution.

5 Discussion

Several authors have discussed the possibility that
geophysical station displacements may be masked by
other periodic or episodic effects: multi-path, snow
coverage, ocean–tidal or Earth–tidal mismodelling,
other site-specific or antenna-specific effects. In-
deed it appears likely that these non-geophysical ef-
fects are partly responsible for the difference of GPS-
derived mass distribution fields and GRACE-derived
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Fig 4. Degree two coefficients for GPS/GRACE combi-
nation, with no a-priori dynamics and standard deviations
for GRACE(black), with no a-priori dynamics and full co-
variance matrix for GRACE(green), with Markov dynam-
ics and full covariance matrix for GRACE(red)

ones that can be observed for some regions. On the
other hand, on the global scale there is a clear cor-
respondence between geophysical models, GRACE,
and GPS-derived solutions. It is not likely that all po-
tential distortions pass uncontrolled into GPS inver-
sion or GPS+GRACE combination estimates. First,
apparent 3D displacements due to non-geophysical
effects are not necessarily consistent with the loading
theory – in mathematical terms they are not within
the range of the forward operator described in sec-
tion 2 of this paper – which means there is a rea-
sonable chance that they get caught in an outlier re-
jection procedure, regardless the spherical harmonic
resolution. Second, if they are consistent with the
loading theory, they act like local geophysical load-
ing effects. Then, dependent on the network density
and homogeneity, it is not necessarily the case that
they will distort low-degree spherical harmonic es-



timates – of course for isolated stations it may hap-
pen. What is harmful for this kind of analysis are
non-geophysical signals that appear either on a scale
comparable to the spherical harmonic resolution of
eq. (1) or that correlate with lower-degree harmon-
ics due to spatial inhomogeneous site distribution. A
histogram of the geometric vulnerability of the so-
lution due to isolated location of stations had been
provided in Fig. 5 of Kusche et al. (2006). The com-
bination methodology discussed in this contribution
will serve as a starting point for carrying out more
elaborate parameterisation schemes.

It should be further mentioned that any direct
comparison of GRACE-predicted vertical or hori-
zontal deformation signals with GPS time series has
to circumvent the missing degree-1 terms in the
GRACE analysis. Two solutions exist for this prob-
lem: employing geophysical models or SLR results
for geocenter motion, or estimating and removing
the degree-1 terms from the GPS data themselves
through loading inversion. In the latter case we are
back with the problem discussed here, as one of the
most promising ways to prevent spatial aliasing of
higher-degree loading signals into the degree-1 esti-
mation is just the use of GRACE.

We have implemented a scheme for the joint inver-
sion of global 3D GPS time series, GRACE gravity
fields, and a-priori dynamics into low-degree surface
mass redistribution fields. We arrive at reasonable
geocenter estimates through an elastic loading the-
ory. The choice of the combination scheme is an is-
sue of investigation, but for the cases discussed here
solutions are largely consistent.
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Abstract. Airborne gravimetry is a fast and suffi-
ciently accurate gravity measurement technique to 
derive high resolution geoids in not easily accessi-
ble regions. Under optimal conditions the meas-
urement accuracy varies around 1 to 2 mGal for a 
spatial resolution of approximately 2 km. The 
downward continuation of these observations re-
quires data filtering to reduce the intrinsic instabili-
ties. To ease the downward continuation procedure 
it is helpful to additionally apply a remove-restore 
technique based on gravity field information pro-
vided by digital elevation models, available nowa-
days for most parts of the world. This paper dis-
cusses three different methods for determining the 
effects of topographic masses at aircraft altitude. In 
the first method, the topographic condensation 
masses are expanded into a spherical harmonic ex-
pansion up to a maximum degree of approximately 
360, which corresponds to a resolution of approxi-
mately 30 arc minutes block size. In addition, the 
residual fine structure of the topography is modeled 
by a spherical spline representation. A second 
method is based again on the spherical harmonic 
expansion of the topography, but the fine structure 
is modeled by the integral over the residual topog-
raphy, numerically evaluated by a quadrature 
method based on digital elevation blocks with a 
resolution of 2.5 arcmin side length. The third 
method consists in the integration over the com-
plete topographic masses, again numerically evalu-
ated by an elevation block quadrature formula. The 
integration area is restricted to a specific region and 
the far zone effect is estimated based on a technique 
proposed by Molodenskii. These three methods are 
compared by a numerical example of the Canadian 
Rocky Mountains. The results are validated by 
evaluating the integral of topography over the 
whole earth. 
 
 
Keywords. Helmert’s condensation method, far-
zone terrain effect, space localizing base function, 
direct topographical effect. 

 

 
1 Introduction 
 
The effects of the topographic-condensed masses on 
the geoid heights from airborne gravity are evalu-
ated as two separate contributions: the direct topog-
raphical effect on the gravity and the indirect topog-
raphical effect on the geoid (Novàk et al. 2001). 
Since this investigation puts the emphasis on model-
ling aspects of the topography, we would like to 
show this on the basis of the direct effect of topog-
raphy only. Questions regarding the geoid calcula-
tions itself, which include the indirect effect as well 
as a downward continuation step are not part of this 
study. For further interest see (Müller, Mayer-Gürr 
2003 and Makhloof, Ilk 2006). 
The Helmert disturbing gravity potential    at 
flight level 

hT
R D+  is related to the disturbing gravity 

potential  of the Earth’s gravity field as follows 
(Martinec 1993, Eq. (8)), 

T

 
( , , ) ( , , ) ( , , )hT r T r V rϕ λ ϕ λ δ ϕ λ= −  . (1)

 
where ( ), ,V r ϕ λ∂  is the difference between the 
gravitational potential of the topography  and the 
gravitational potential of the condensed topography 

at a surface inside the Earth or at the geoid, 

tV

cV
 

( , , ) ( , , ) ( , , )t cV r V r V rδ ϕ λ ϕ λ ϕ λ= − . (2)
 
The spherical coordinates ,r ϕ , λ  of the computa-
tion point at airborne altitude refer to a geocentric 
coordinate system. By applying the  partial radial 
derivative to Eq. (2), the direct topographical effect 
on gravity can be determined as: 
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2  Helmert’s condensation methods 
 
In the following, the geoid is approximated by a 
geocentric reference sphere of a radius R (6378 
km). The geocentric radii of the computation and 
the integration points are given by adding the or-
thometric heights of these points to the radius of the 
geocentric sphere. The density of the topographic 
masses is considered to be constant throughout this 
investigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Helmert’s condensation model 
 
The potential of the topographic masses according 
to Newton’s law of gravitation is given by (see Fig. 
1): 

2
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where G denote the gravitational constant, ρ the 
density of the topographic masses, l the distance be-
tween the computation point and the integration 
point and ξ  the geocentric radius of the mass ele-
ment. 
In this investigation the Helmert’s methods of con-
densation are used. In this case the topographic 
masses are shifted along the local vertical and con-
densed at a parallel surface below the geoid. In the 
present application the condensation layer is 32km 

below the geoid (first condensation method of Hel-
mert). In case of the second condensation method 
of Helmert the masses are condensed onto the geoid 
directly. 
Then the potential of the condensation masses is 
given by: 

2 ,
( , , )

Qc

c c
V G R d

l R D Rσ

κ
σ

ψ
= ⋅

+∫∫  (5)

where Qκ is the single layer density, the quantity 
CR  is the radius of the (approximate) condensation 

sphere. In case of Helmert’s first condensation 
method it holds C 1R R D= −  and in case of Hel-
mert’s second method CR R=  where D1 is the Hel-
mert condensation depth. 
 
3 Computation methods for the effects 

of the topographic masses at airborne 
altitude 

 
It is known that the total topographic-condensation 
masses must be calculated globally which is very 
expensive in terms of computation time. To over-
come this problem, three methods are investigated 
in this paper which will be discussed in the follow-
ing. 
In the first method, the topographic-condensation 
masses are expanded into a spherical harmonic ex-
pansion up to a maximum degree of approximately 
360, which corresponds to a resolution of approxi-
mately 30 arc minutes block size. Then the residual 
fine structure of the topography is modeled by a 
spherical spline representation.  
In general, the direct effect of topography can be de-
rived by transforming the inverse distance 
1 ( , , )l R D ψ ξ+  in Eqs. (4) and (5) into a spherical 
harmonic expansion (Heiskanen and Moritz, 1967): 
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where n PQ  are the Legendre polynomials of 
degree n. A separation of Eq. (6) into terms related 
to the coordinates of the computation point P from 
those related to the integration point Q can be made 
by means of the addition theorem of the spherical 
harmonic functions. Therefore the inverse distance 
can be written in the following form (Rummel et al., 
1988): 
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and with  the surface 
spherical harmonics, e.g., 
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Inserting Eq. (7) into Eq. (4), interchanging the 
summation and subsequent integration results in: 
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The same procedure is applied to the potential of 
the condensation masses . cV
In case of the potential of the condensation masses 
eq. (5), the single layer density Q  can be deter-
mined based on the mass condensation condition 
(Martinec, 1998) as: 

κ
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Then the direct effect of topography resDTE  for the 
residual fine structure can be given according to eq. 
(3) as: 
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The topographic heights will be represented by the 
following approximation approach: 
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where  are the unknown spline pa-
rameters, Q  represents the field point and the I 
nodal points 
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r
isr  indicate the location of the spline 

functions 
iQ S . A general form of the spline 

function can be given as: 
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The coefficients  define the shape of the spline 
function. In this particular case degree variances of 
the heights are used to scale the spline functions. 
The quadratic and cubic heights will also be mod-

eled by spline functions. With this definition, the 
base functions can be interpreted as isotropic and 
homogeneous harmonic spline functions (Freeden et 
al. 1998). The nodal points can be generated on a 
geographical grid, on a grid by a uniform subdivi-
sion of icosahedrons or on Gauss-Legendre grids. 

k
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Substituting Equation (13) into Equation (12) results 
in: 
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Applying the addition theorem of spherical harmon-
ics: 
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into account, then the double integral (exemplarily 
for k=1) in Eq .(11) can be expressed as: 
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(17) 

By substituting Eq. (17) (for k=1,..,3) into Eq. (11), 
the direct topographical effect of the residual terrain 
in terms of spherical splines as base functions is fi-
nally given by: 
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In the second method, the topography again is ex-
panded into a spherical harmonic expansion in anal-
ogy to the first method but the fine structure is mod-
eled by the integral over the residual topography. 
Then the potentials of the topographical and con-
densation masses are given by: 
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In this case the spherical density layer Qκ ′ is calcu-
lated only for the residual topography. The evalua-
tion of the integral formulas in eqs. (19) and (20) as 
well as for the  first derivatives are given in Marti-
nec (1998). 
In the third method the area around the computa-
tion point is divided into two parts: a spherical cap 
around the computation point with an appropriate 
radius, called near-zone ( 0σ ) and the rest of the 
Earth, called far-zone ( Fzσ ). A fine resolution 
DTM must be used in the near zone while in the 
far-zone a coarser DTM is sufficient in most cases. 
Near-zone topography effects on the gravity and 
geoid heights can be calculated using rectangular 
prisms, which lead to a particularly simple formula 
(Nagy.1966) or by using a Gauss-quadrature 
method in case of a spherical Earth approximation. 
In this research, the far-zone effects of the global 
topography on gravity and geoid heights are studied 
for Helmert’s methods of condensation. The near-
zone effect is modeled as described in method 2. 
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For an economic computation, the formula for the 
far-zone effect is calculated from the global spheri-
cal harmonic expansion of the topography. This 
will be performed by a Molodenskii-type spectral 
approach. The formula for calculating the far-zone 
direct terrain effect is given by:  

max

0
0

max 2
0

0

max

0
0

max

0
0

max

0
0

2
0

0

2 ( , , ) ( , )

1 ( , , ) ( , )

2 ( , , ) ( , )

( , , ) ( , )

2( ) ( , , ) ( , )

1 ( , , ) ( ,

FZ
P

N
ter

n n
n

N

n n
nP

N
P

n n
nP

N

n P n
n

N
P P

n n
nP

n P n
n

DTE G t H

u H
R H

H u H
R H

w H H

H H v H
R H

w H H
R

π ρ η ψ ψ ϕ λ

η ψ ψ ϕ λ

η ψ ψ ϕ λ

ψ ψ ϕ λ

η ψ ψ ϕ λ

ψ ψ ϕ λ

=

=

=

=

′

=

=

⎛= ∑⎜
⎝

+ ∑
+

− ∑
+

− ∑

−
− ∑

+

−

r=r

[ ]max

1 2)
N

C C⎞
+ −∑ ⎟
⎠

(21)

The coefficients are the Molodenskii 
truncation coefficients. A detailed description of 
equation (21) can be found in Makhloof and Ilk 
(2006). 
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4 Numerical tests 
 
The computational area is bounded by the geo-
graphical coordinates      
and . The density of the topog-

raphy was assumed to be 2670 kg/m³. The height of 
the calculation points is chosen to be D=6km above 
the geoid. The Helmert’s condensation depth in case 
of Helmert’s first method of condensation is as-
sumed to be 32 km (see Makhloof and Ilk 2006). 
The numerical tests are based on the DEM GEBCO 
(

[ ]118.75 , 117.25λ ∈ − ° −
[49.25 ,50.75ϕ ∈ ° ]°

http://www.ngdc.noaa.gov/mgg/gebco). The topog-
raphy of the tested area is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 topography of the tested area 
 

 
4.1 Direct topographical effect  
 
In a first step the long wavelengths contributions of 
the topography are calculated. This is done by de-
veloping the heights, the quadratic heights and the 
cubic heights into a spherical harmonic expansion 
up to a degree of 360. In the next step the unknown 
spline parameters  are determined from the resid-
ual topography. 

k
ia

 
Table. 1 Statistical behaviour of the direct topog-
raphical effect in the case of Helmert’s second 
method of condensation (units in mGal). 

Method Max Min Mean Std 
True-Method(1) 1.35 -1.89 0.02 0.42 
True-Method(2) 2.550 -3.15 0.20 0.61 
True-Method(3) 2.3 -2.62 0.02 0.51 

 
Table. 2 Statistical behaviour of the direct topog-
raphical effect in the case of Helmert’s first method 
of condensation (units in mGal). 

Method Max Min Mean Std 
True-Method(1) 6.60 -4.86 0.04 1.41 
True-Method(2) 7.35 -6.11 0.53 1.75 
True-Method(3) 4.89 -6.10 0.21 1.47 

 
Afterwards the residual effects of the topographic 
and condensation masses are calculated for the two 

http://www.ngdc.noaa.gov/mgg/gebco
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Helmert’s methods of condensation using all three 
described approaches. All calculations are based on 
a sampling of 2.5 arcmin. The results are validated 
by using the GEBCO DTM in a higher resolution 
(interpolated to a sampling rate of 15 seconds) and 
by a global integration. These values are considered 
to be the “true” values. The differences between the 
“true” DTE and the calculated DTE by means of the 
three approaches are shown in the following. Their 
statistical behaviour is represented in Tabel 1 and 
Table 2. 
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3d) Errors N/Fzone Method(3)[mGal]  
 Fig. 3a-d: Results for Helmert`s sec-

ond  method of condensation.  
 
 
 
 
 
 
 
 
 
 
 
 
 3a) True DTE [mGal] 4a) True DTE [mGal] 

  
 
 
 
 
 
 
 
 
 
 
 
 4b) Errors Spline Method (1) [mGal] 3b) Errors Spline Method (1) [mGal] 
 
 
 
 
 
 
 
 
 
 
 
 
 3c) Errors Integral Method (2) [mGal] 4c) Errors Integral Method (2) [mGal] 
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Table 1 represents the statistical behaviour of all 3 
approaches in case of Helmert’s second method of 
condensation. Regarding the min and max values 
the spline approach performs slightly better than the 
other two approaches. The standard deviation and 
mean value for approaches 1 and 3 yield similar re-
sults. Looking at Fig. 3b however shows that the er-
rors using the spline approach behave smoother 
than those depicted in Fig. 3c-d. In case of Hel-
mert’s first method of condensation (see Table 2) 
approaches 1 and 3 again yield similar results. Ap-
proach 2 seems to be less accurate in comparison to 
the other approaches for both condensation meth-
ods. 

 
5. Conclusions 
 
In this investigation, three methods for calculating 
the direct topographical effects at airborne altitude 
were studied. It has been demonstrated that the 
spline approach and the N/Fzone approach yield 
similar results. Considering Fig. 3b the spline ap-
proach seems to model the high frequencies parts 
better than the other approaches, in particular for 
Helmert’s second method of condensation. Further 
investigations should be focused on the spectral er-
ror budget.  Another important aspect regarding the 
accuracy is the choice of an appropriate sampling of 
the topography. A higher sampling rate could im-
prove the results. For further research we also 
would like to investigate the demand on the sam-
pling rate for different altitudes to achieve an accu-
racy level of 1-2 mGal, which corresponds to the 
accuracy level of present airborne gravimetry appli-
cations. In this test scenario (D=6km, sampling 2.5 
arcmin) only Helmert’s second method of conden-
sation calculated with the spherical spline approach 
meets the demand regarding the min and max val-
ues.  
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Abstract. In this paper we determine a regional
spatio-temporal gravity field over the northern part of
South America including the Amazon region using
GRACE inter-satellite range-rate measurements by
application of a wavelet-based multi-resolution tech-
nique with respect to space and a Fourier series with
respect to time. Since the spherical wavelet theory is
based on spherical harmonics, our approach accom-
modates for loading computations in the spectral do-
main as easily as for spherical harmonics.

Keywords. Multi-resolution representation, spher-
ical wavelets, Fourier series, gravity data, GRACE

1 Introduction

Traditionally in satellite gravity recovery problems
the global gravity field of the Earth is modeled as
a series expansion in terms of spherical harmonics
(Reigber et al., 2005). Spatio-temporal gravity fields
from the Gravity Recovery And Climate Experiment
(GRACE) data are usually computed for fixed time
intervals, like one month (Tapley et al., 2004). Since
the Earth’s gravity field shows heterogeneous struc-
tures over the globe, a multi-resolution representa-
tion (MRR) is an appropriate candidate for an al-
ternative spatial modeling (Freeden et al., 1998 and
Schmidt et al., 2007). The MRR means basically the
approximation of a signal under different resolution
levels applying low- and band-pass filters, here re-
alized by spherical scaling functions and wavelets,
i.e., spherical isotropic functions. Thus, the MRR
is interpreted to be an assembly concept based on

modules, each related to a specific geographical re-
gion and frequency band. Whereas the modeling of
coarse structures generally needs only a few obser-
vations, finer structures, however, require a consid-
erably larger number of observations. Consequently,
the computation of the individual modules depends
on the distribution of the observation sites. The tem-
poral variation of the gravity field can be consid-
ered, e.g., by estimating the modules for specific time
intervals (Schmidt et al., 2006) or by introducing
one-dimensional series expansions for scaling and
wavelet coefficients.

In this paper we determine a regional spatio-
temporal gravity model from GRACE data using the
spherical wavelet technique for the spatial part. The
temporal component is modeled by annual and semi-
annual sine and cosine terms. Consequently, we end
up with a four-dimensional (4-D) geopotential model
of tensor product type. Since the spherical scaling
functions and wavelets are derived from spherical
harmonics, our approach accommodates for loading
computations in the spectral domain as easily as for
spherical harmonics. We demonstrate the 4-D model
exemplarily for the Amazon basin.

2 Four-dimensional Modeling

The basic idea of the MRR is to split a given input
signalV (r, t), here thought as the geopotential or
the disturbing potential of the Earth, depending on
position vectorr = r · ξ (r = |r|; |ξ| = 1) and
time t into a smoother version (approximation) and
a number of detail signals (modules) by successive
low-pass filtering. The latter are the spectral compo-
nents of the MRR because they are related to certain



frequency bands. In order to explain this procedure
in more detail we introduce the scaling function

φi(r, rk) =

∞
∑

n=0

2n+ 1

4πR2

(

R

r

)n+1

Φi(n)Pn(ξT ξk)

(1)
of resolution level (scale)i ∈ N0 (Pn( · ) = Legendre
polynomial of degreen ∈ N0; rk = R · ξk = po-
sition vector of a point on the sphereΩR with radius
R, r ≥ R). The Legendre coefficientsΦi(n) define
the low-pass filter behavior of the scaling function;
cf. Eq. (9). The MMR states that the level−(i + 1)
approximation ofV , i.e.

Vi+1(r, t) = (φi+1 ⋆ V ( · , t))(r) (2)

(′⋆′ means spherical convolution) can be decom-
posed into the smoother level−i approximation

Vi(r, t) = (φi ⋆ V ( · , t))(r) (3)

and the detail signal

vi(r, t) = (ψi ⋆ V ( · , t))(r) (4)

absorbing all the fine structures ofVi+1 missing in
Vi, i.e. Vi+1(r, t) = Vi(r, t) + vi(r, t). Con-
sequently, the MRR of an input signalV (r, t) =
VI+1(r, t) + ∆V (r, t) can be written as

V (r, t) = Vi ′(r, t) +

I
∑

i=i ′

vi(r, t) + ∆V (r, t) (5)

with i ′ ∈ {0, . . . , I}. Since the scaling functions
φi+1 and φi act as low-pass filters, the spherical
wavelet function

ψi(r, rk) =

∞
∑

n=0

2n+ 1

4πR2

(

R

r

)n+1

Ψi(n)Pn(ξT ξk)

(6)
of level i means a band-pass filter defined by its Leg-
endre coefficients

Ψi(n) = Φi+1(n) − Φi(n) . (7)

Setting φi(r, rk) =: φi,k(r) and ψi(r, rk) =:
ψi,k(r), respectively, the two-scale relation

φi+1,k(r) = φi,k(r) + ψi,k(r) (8)

follows from the Eqs. (1), (6) and (7). In order to
adapt the number of detail signals, i.e. levels, to the
specific input signalV we use for our investigations

the modified Blackman scaling function defined by
the Legendre coefficients

Φi(n) =







1 for 0 ≤ n < bi−1

Ai(n) for bi−1 ≤ n < bi

0 for n ≥ bi







(9)

with Ai(n) = 0.42 − 0.50 cos(2πni/bi) + 0.08
cos(4πni/bi), ni = n+ int(bi)−2 · int(bi−1), bi =
2 · (bi−bi−1) andb ∈ R

+ (Schmidt et al., 2007). The
Blackman wavelet function defined via the Eqs. (6),
(7) and (9) is strictly band-limited, i.e. only the Le-
gendre coefficientsΨi(n) within the frequency band
Bi := {n|bi−1 ≤ n < bi+1} are different from zero.
Since this function is characterized by its localiza-
tion behavior w.r.t. both space and frequency it can
be applied to regional data sets in order to establish a
regional MRR.

According to Eq. (2) the signal valueVi+1(r, t)
can be modeled as

Vi+1(r, t) =

Ni
∑

k=1

di,k(t) φi+1,k(r) , (10)

wherein the level−(i+1) scaling functionsφi+1,k(r)
are related toNi computation points on the sphere
ΩR with position vectorsri

k = R · ξi
k. Here we

identify the computation points with the knots of a
level−i Reuter grid (Freeden et al., 1998). By intro-
ducing theNi × 1 vectorsφi+1(r) = (φi+1,k(r))
anddi(t) = (di,k(t)) of the level−(i+1) scaling
functionsφi+1,k(r) and the level−i scaling coeffi-
cientsdi,k(t) with k = 1, . . . , Ni, respectively, we
rewrite Eq. (10) as

Vi+1(r, t) = φT
i+1(r) di(t) . (11)

With the Ni × 1 vectorsφi(r) = (φi,k(r)) and
ψi(r) = (ψi,k(r)) we obtain from Eq. (8)

φi+1(r) = φi(r) +ψi(r) . (12)

Considering Eq. (12) it follows from Eq. (11)
Vi+1(r, t) = Vi(r, t) + vi(r, t), wherein the detail
signalvi is defined as

vi(r, t) = ψT
i (r) di(t) . (13)

Analogous to Eq. (11) the level−i approximation
Vi(r, t) can be written as

Vi(r, t) = φT
i (r) di−1(t) , (14)

whereinφi(r) and di−1(t) areNi−1 × 1 vectors
of the level−i scaling functionsφi,k(r) and the



level−(i−1) scaling coefficientsdi−1,k(t) with k =
1, . . . , Ni−1 related toNi−1 ≤ Ni computation
points on the sphereΩR with position vectorsri−1

k =
R ·ξi−1

k (level−(i−1) Reuter grid). Starting with the
coefficient vectordI(t) of highest levelI the vectors
di(t) of the lower levelsi = i′, . . . , I − 1 are com-
putable via the relation

di−1(t) =H i di(t) (15)

between the scaling coefficient vectors of consecu-
tive levels. This procedure, wherein the given ma-
tricesH i operate as low-pass filters, is known as
the pyramid algorithm; for details see Schmidt et al.
(2007). The recursive application of the two-scale
relation (12) yields finally the MRR according to Eq.
(5) with detail signalsvi defined in Eq. (13).

Schmidt et al. (2006) estimated the coefficient
vectorsdi(t) of the levelsi = i′, . . . , I from dif-
ferent data sets covering level-dependent observation
time intervals. Here, however, we model each ele-
mentdI,k(t) of the unknown time-dependent scaling
coefficient vectordI(t) as a Fourier series, i.e.

dI,k(t) =

L
∑

l=0

(aI,k;l cos(lω0t) + bI,k;l sin(lω0t))

=

L
∑

l=−L

dI,k;l φl(t) (16)

with ω0 = 2π/T0 being the fundamental frequency
(T0 = fundamental period) and

dI,k;l :=

{

aI,k;l for l = 0, . . . , L
bI,k;|l| for l = −L, . . . ,−1

}

,

φl(t) :=

{

cos(lω0t) for l = 0, . . . , L
sin(|l|ω0t) for l = −L, . . . ,−1

}

.

Introducing the(2L+ 1 = NL) × 1 vectorφL(t) =
(φl(t)) and theNI ×NL matrix

DI;L =









dI,1;−L dI,1;−L+1 . . . dI,1;L

dI,2;−L dI,2;−L+1 . . . dI,2;L

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dI,NI ;−L dI,NI ;−L+1 . . . dI,NI ;L









(17)
of the spatio-temporal coefficientsdI,k;l we obtain

dI(t) = DI;L φL(t) (18)

from Eq. (16). Inserting Eq. (18) into Eq. (11) yields

VI+1(r, t) = φT
I+1(r) DI;L φL(t)

= (φT
L(t) ⊗ φT

I+1(r)) vecDI;L , (19)

wherein the symbol ’⊗’ means the Kronecker prod-
uct (Koch, 1999); in addition the vec−operator or-
ders the columns of a matrix one below the other as a
vector (Koch, 1999). Applying the two-scale relation
(12) recursively we end up with the MRR

VI+1(r, t) = Vi′ (r, t) +

I
∑

i=i′

vi(r, t) (20)

with the level−i′ approximation

Vi′ (r, t) = φT
i′ (r) Hi′ Di′;L φL(t)

= φ
T
i′ (r) Di′−1;L φL(t) (21)

and the level−i detail signals

vi(r, t) = ψT
i (r) Di;L φL(t) (22)

according to the Eqs. (13) to (15). It is worth to be
mentioned again that theNi−1 ×NL matrixDi−1;L

of level−(i−1) spatio-temporal scaling coefficients
di−1,k;l is computed from the corresponding level−i
matrixDi;L via

Di−1;L = HiDi;L . (23)

If we subtract a reference signalV (r, t) from the in-
put signalV (r, t), we rewrite Eq. (5) as

δV (r, t) = Vi ′(r, t) +

I
∑

i=i ′

vi(r, t) + ∆V (r, t) .
(24)

Consequently, in Eq. (24)Vi ′(r, t) means the
level−i′ approximation of the residual signal
δV (r, t) = V (r, t) − V (r, t) and vi(r, t) are the
corresponding level−i detail signals. If the summa-
tion limits in Eq. (24) are chosen appropriately, the
subsignalsVi′ (r, t) and∆V (r, t) can be omitted, i.e.
we defineδVI+1(r, t) =: VI+1(r, t) − V (r, t) and
obtain

δVI+1(r, t) =

I
∑

i=i ′

vi(r, t) . (25)

For the estimation of the unknown parameter matrix
(17) we recall Eq. (19), i.e.

δVI+1(r, t) = (φT
L(t) ⊗ φT

I+1(r)) vecDI;L (26)

as will be explained in subsection 3.2.



3 Four-dimensional Gravity Field of
South America

3.1 GRACE Input Data

We processed GRACE L1B data, i.e. KBR-measure-
ments, accelerometer data and precise orbits, via the
energy balance approach to produceresidual GRACE
geopotential difference observations

∆V1,2(t) = δVI+1(r1(t), t) − δVI+1(r2(t), t)
(27)

(Han et al., 2006). Herein,r1 = r1(t) andr2 =
r2(t) are the trajectories of the two GRACE satel-
lites. Geographically we selected a region in South
America which includes the Amazon Basin (see Fig.
3). We chose a total observation interval between
February 2003 and June 2005 with a sampling rate of
5 seconds. As explained by Han et al. (2006) the ob-
servations (27) are corrected by a priori time-variable
gravitational potentials w.r.t. planetary bodies, Earth
rotation, Earth and ocean tides, (barotropic effect of)
oceans and atmosphere (AOD1B), etc., i.e. they pri-
marily reflect hydrology variations. We assume an
a priori standard deviation of approximately0.003
m2/s2. As can be seen from Fig. 1 the data show
large gaps w.r.t. the time, in particular no data are
given for June 2003 and the second half of 2004. Fur-
thermore, as the reference potentialV (r, t) = V (r),
introduced in Eq. (24), we apply GGM01C.
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Fig. 1: Time series of the observations∆V1,2(t) within the
region of interest related to the observation interval between
February 2003 and June 2005.

3.2 Parameter Estimation

For the derivation of the observation equation we in-
troduce Eq. (26) into Eq. (27) once forr = r1(t)
and once forr = r2(t). Applying the computation
rules for the Kronecker product the observation equa-
tion for a single observation∆V1,2(tp) at timet = tp

with p = 1, . . . , P reads

∆V1,2(tp) + e1,2(tp)

=
(

φT
L(tp) ⊗ ∆φT

I+1(r1, r2)
)

vecDI;L

(28)

with ∆φI+1(r1, r2) = φI+1(r1(t))−φI+1(r2(t)).
Introducing theP × 1 vectorsy = (∆V1,2(tp)) and
e = (e1,2(tp)) of the observations and the mea-
surement errorse1,2, respectively, theP × u coef-
ficient matrixA = (φT

L(tp) ⊗ ∆φT
I+1(r1, r2)) with

u = NI ·NL, theu × 1 vectorβ = vecDI;L of the
unknown spatio-temporal scaling coefficientsdI,k;l

and theP × P covariance matrixD(y) of the obser-
vations, the linear model

y + e = A β with D(y) = σ2
y P

−1
y (29)

is established. Hereinσ2
y andP y are denoted as the

variance factor and the weight matrix, respectively;
see (Koch, 1999). Since the normal equation matrix
ATP yA is usually not of full rank or at least ill-
conditioned due to downward continuation, we in-
troduce prior information for regularization. The ap-
plied procedure explained in detail by Schmidt et al.
(2007), is visualized in the upper part of Fig. 2 (ini-
tial step).
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Fig. 2: Upper part: flowchart of the estimation procedure.
Prior information for the unknown spatio-temporal scalingco-
efficientsdI,k;l is introduced; the regularization is performed
by estimation of variance components; see e.g., Koch and
Kusche (2001). Lower part: flowchart of the MRR following
the Eqs. (21) to (23).

3.3 Results

For the spatial part in Eq. (28) we chose the Black-
man representation with baseb = 2.1 and highest
level I + 1 = 5, i.e. we solved for signal parts until



degreen = 40 according to the definition (9). Fur-
thermore, for the temporal part we setL = 2 within
the Fourier series (22) and, thus, determined the an-
nual and semi-annual oscillations of the scaling coef-
ficientsd4,k(t). In order to interprete these results we
calculated the level−4 amplitudesA4,k;l and phases
ϕ4,k;l, generally defined as

AI,k;l =
√

d2
I,k;l + d2

I,k;−l , (30)

ϕI,k;l = arctan(dI,k;−l/dI,k;l) (31)

for l = 1, . . . , L in each spatial computation point
r4

k ∈ ΩR within the area of investigation. Figure
3 shows the distribution of the annual amplitudes
A4,k;1 and the semi-annual amplitudesA4,k;2. The
highest annual variability is detected along the Ama-
zon, where also the phases change (not shown here).

a) annual amplitudes 

0.00 0.06 0.12 0.18 0.24

b)  semi-annual amplitudes 

0.000 0.025 0.050 0.075 0.100

Fig. 3: Distribution of the (a) annual and (b) semi-annual am-
plitudes of the scaling coefficientsd4,k(t) in the computation
pointsr

4
k
.

Following Farrell (1972) the geopotentialV or the
residual geopotentialδV , respectively, can be trans-
formed into level−(I + 1) height deformations

δhI+1(r, t) =

I
∑

i=i ′

hi(r, t) (32)

at the Earth’s surface w.r.t. the reference model
GGM01C by evaluating the spherical convolutions

hi(r, t) = (k ⋆ vi( · , t))(r) (33)

w.r.t. the detail signalsvi introduced in Eq. (22). In
Eq. (33) the kernelk(r, rk) is defined as

k(r, rk) =
∞
∑

n=0

2n+ 1

4πR2

h′n
g (1 + k′n)

Pn(ξT ξk)

(34)
with k′n and h′n being the static gravitational and
vertical load Love numbers of degreen, respec-
tively; g = gravitational constant. Figure 4 shows
”snap shots ” of the level−5 height deformations

01/02/2003 11/02/2003 21/02/2003 01/03/2003 11/03/2003 21/03/2003

01/04/2003 11/04/2003 21/04/2003 01/05/2003 11/05/2003 21/05/2003

01/06/2003 11/06/2003 21/06/2003 01/07/2003 11/07/2003 21/07/2003

01/08/2003 11/08/2003 21/08/2003 01/09/2003 11/09/2003 21/09/2003

01/10/2003 11/10/2003 21/10/2003 01/11/2003 11/11/2003 21/11/2003

01/12/2003 11/12/2003 21/12/2003 01/01/2004 11/01/2004 21/01/2004

-15.0 -7.5 0.0 7.5 15.0
[ mm ]

Fig. 4: Level−5 height deformationsδh5(r, tj) at times
tj = 01/02/2003 + j · 10 days withj = 0, . . . , 35.

δh5(r, tj), i.e. until degreen = 40, at selected times
t = tj within one year, again considering annual and
semi-annual oscillations for the scaling coefficients.
The results reveal that the height deformations vary
in the Amazon basin of about±10 mm. These results
are in good agreement with other investigations, e.g.,
with Han et al. (2005).

Figure 5 shows the corresponding values of the
level−4 height deformationsδh4(r, tj) considering
signal parts until degreen = 19. Finally, Fig.
6 depicts the level−4 detail signalh4(r, tj) =
δh5(r, tj) − δh4(r, tj) of height deformations com-
puted according to Eq. (33). This signal comprises
signal parts related to the frequency bandB4 =
{n|9 < n < 40} as mentioned in the context of Eq.
(9), i.e. the finest structures within the level−5 height
deformationsδh5(r, tj).

4 Conclusions

We have demonstrated that a spatial multi-resolution
technique can be successfully combined with an ap-
propriate series expansion in the time domain in or-
der to derive a spatio-temporal, i.e. 4-D gravity
field. It is based on a spherical wavelet MRR, us-
ing the Blackman scaling function, w.r.t. space and
a Fourier series considering annual and semi-annual
terms w.r.t. time. The combination is performed by
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Fig. 5: Level−4 height deformationsδh4(r, tj) at times
tj = 01/02/2003 + j · 10 with j = 0, . . . , 35.
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Fig. 6: Level−4 detail signal h4(r, tj) at times
tj = 01/02/2003 + j · 10 with j = 0, . . . , 35.

introducing tensor-product base functions. We com-
puted a regional geopotential model of the northern

part of South America from GRACE-derived data up
to levelI+1 = 5.

As a disadvantage of this approch we mention
that a MRR w.r.t. time is not considered. This
fact can be seen from Eq. (22), because each de-
tail signalvi is modeled by the same matrixφL(t).
This restriction can be overcome by substituting one-
dimensional scaling functions for the Fourier series
expansion, e.g., B-spline functions. This procedure
is a topic for future studies.
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