Harita Dergisi

0

Maraş E E, Hacıefendioğlu K, Birinci F, Uslu G: Tarihi Köprülerin Dokümantasyonu İçin Dijital Fotogrametri ile 3B Modellerinin Oluşturulması ve Dinamik Analizlerinin Yapılması (Tarihi Kurt Köpru Örneği) (Composing 3D Models wiht Digital Photogrammettry for Documentation of Historical Bridges and Making Dynamic Analyzes (Example of Historical Kurt Bridge)) ISSN 1300-5790

Şahin H, Külür M S. GPGPU Yöntemi ile Görüntülerin Gerçek Zamanlı Ortorektifikasyonu (Real Time Orthorectification Of Images By GPGPU Method)

Yiğit C Ö, Özdenir B N, Alçay S, Ceylan A: CSRS-PPP Yazılımının Uzun Dönemli GNSS Zaman Serilerinin Oluşturulmasında ve Nokta Hızlarının Kestirilmeşinde Kullanılabilirliği (Usability of Generating Long Term GNSS Time Şeries Using CSRS-PPP and Site Velocity Estimation)

Teke M, Demirkesen G, Haliloglu O, İmre E: Göktürk-2 Uydusunun Bağıl G Mutlak Çapraz Radyometrik Kalibrasyonu (Relative and Absolute Cross Radiometric Calibration of Göktürk-2 Satellite)

Özgemir S: TUSAGA ve TUSAGA-Aktif İstasyonlarının Hassas Koordigat ve Hızlarının Hesaplanması Üzerine (On the Estimation of Precise Coordinates and Velocities of TNPGN and TNPGN-Active Stations)

HARİTA GENEL KOMUTANLIĞI, ANKARA

HARITA DERGISI Ocak 2016 Yıl : 82 Sayı : 155

ALTI AYDA BİR YAYIMLANIR. HAKEMLİ DERGİDİR. YEREL SÜRELİ YAYINDIR.

<u>Sahibi</u>

Harita Genel Komutanlığı Adına Tümgeneral Burhanettin AKTI

Sorumlu Müdür

Harita Yük.Tek.Ok.K.lığı Adına Dr. Mühendis Albay Mustafa KURT

<u>Editör</u>

Mühendis Yarbay İ.Mert ELMAS Öğretim ve Araştırma Sekreteri

Yönetim Kurulu

Dr.Müh.Alb. Osman ALP Dr.Müh.Alb.Mustafa ATA Dr.Müh.Alb.Mustafa KURT (Bşk.) Doç.Dr.Müh.Alb.Hasan YILDIZ Müh.Yb.İ.Mert ELMAS

Yönetim Yeri Adresi

Harita Genel Komutanlığı Harita Yüksek Teknik Okulu Harita Dergisi Yönetim Kurulu Başkanlığı 06100 Cebeci / ANKARA

> **Tel** : (312) 5952120 **Faks:** (312) 3201495

e-posta: haritadergisi@hgk.msb.gov.tr

Basım Yeri Harita Genel Komutanlığı Matbaası ANKARA

ISSN 1300 - 5790

Bu dergide yayımlanan makaleler, yazarlarının özel fikirlerini yansıtır. Türk Silahlı Kuvvetlerinin resmi görüşünü ifade etmez.

TÜBİTAK-ULAKBİM Mühendislik ve Temel Bilimler Veri Tabanında (TÜBİTAK MTBVT) taranmaktadır.

İÇİNDEKİLER

Tarihi Köprülerin Dokümantasyonu İçin Dijital Fotogrametri ile 3B Modellerinin Oluşturulması ve Dinamik Analizlerinin Yapılması (Tarihi Kurt Köprü Örneği)

(Composing 3D Models wiht Digital Photogrammettry for Documentation of Historical Bridges and Making Dynamic Analyzes (Example of Historical Kurt Bridge))

Erdem Emin MARAŞ Kemal HACIEFENDİOĞLU Fahri BİRİNCİ Gül USLU

1 - 11

GPGPU Yöntemi ile Görüntülerin Gerçek Zamanlı Ortorektifikasyonu

(Real Time Orthorectification Of Images By GPGPU Method)

Hakan ŞAHİN Mehmet Sıtkı KÜLÜR

12 - 22

CSRS-PPP Yazılımının Uzun Dönemli GNSS Zaman Serilerinin Oluşturulmasında ve Nokta Hızlarının Kestirilmesinde Kullanılabilirliği

(Usability of Generating Long Term GNSS Time Series Using CSRS-PPP and Site Velocity Estimation)

Cemal Özer YİĞİT Behlül Numan ÖZDEMİR Salih ALÇAY Ayhan CEYLAN

23 - 31

Göktürk-2 Uydusunun Bağıl ve Mutlak Çapraz Radyometrik Kalibrasyonu

(Relative and Absolute Cross Radiometric Calibration of Göktürk-2 Satellite)

Mustafa TEKE Can DEMİRKESEN Onur HALİLOĞLU Egemen İMRE

32 - 52

TUSAGA ve TUSAGA-Aktif İstasyonlarının Hassas Koordinat ve Hızlarının Hesaplanması Üzerine

(On the Estimation of Precise Coordinates and Velocities of TNPGN and TNPGN-Active Stations)

Soner ÖZDEMİR

53 - 81

<u>Bilim Kurulu</u>

Prof.Dr.Ahmet Tuğrul BAŞOKUR (AÜ) Prof.Dr.Ahmet KAYA (KTÜ) Prof.Dr.Ali KOÇYİĞİT (ODTÜ) Prof.Dr.Ayhan ALKIŞ Prof.Dr.Bahadır AKTUĞ (AÜ) Prof.Dr.Cankut ÖRMECİ (İTÜ) Prof.Dr.Cetin CÖMERT (KTÜ) Prof.Dr.Cevat INAL (SÜ) Prof.Dr.Orhan ALTAN Prof.Dr.Dursun Zafer ŞEKER (İTÜ) Prof.Dr.Fatmagül KILIÇ (YTÜ) Prof.Dr.Ferruh YILDIZ (SÜ) Prof.Dr.Filiz SUNAR (İTÜ) Prof.Dr.Gönül TOZ (İTÜ) Prof.Dr.Haluk ÖZENER (BÜ) Prof.Dr.Hakan Şenol KUTOĞLU Prof.Dr.M.Onur KARSLIOĞLU (ODTÜ) Prof.Dr.Mustafa TÜRKER (HÜ) Prof.Dr.Naci YASTIKLI (YTÜ) Prof.Dr.Nebiye MUSAOĞLU (İTÜ) Prof.Dr.Necla ULUĞTEKİN (İTÜ) Prof.Dr.Öztuğ BİLDİRİCİ (SÜ) Prof.Dr.Rahmi Nurhan ÇELİK(İTÜ) Prof.Dr.Sitki KÜLÜR (İTÜ) Prof.Dr.Semih ERGINTAV (BÜ) Prof.Dr.Şerif HEKİMOĞLU Prof.Dr.Taskin KAVZOĞLU (GTÜ) Prof.Dr.Uğur DOĞAN (YTÜ) Prof.Dr.Zübeyde ALKIŞ (YTÜ) Doç.Dr.Ali KILIÇOĞLU Doc.Dr.Aydın ÜSTÜN (KÜ) Doç.Dr.Cemal Özer YİĞİT (GTÜ) Doç.Dr.Fevzi KARSLI (KTÜ) Doc.Dr.Hande DEMIREL (ITÜ) Doc.Dr.Hakan MARAS (CÜ) Doç.Dr.Melih BAŞARANER (YTÜ) Doc.Dr.Onur LENK Doç.Dr.Uğur ŞANLI (YTÜ) Doç.Dr.Müh.Alb.Hasan YILDIZ (HGK) Yrd.Doç.Dr.Ali ERDİ (SÜ) Yrd.Doç.Dr.Hakan AKÇİN (BEÜ) Dr.Coşkun DEMİR Dr.Müh.Alb.Osman ALP (HGK) Dr.Müh.Alb.Mustafa KURT (HGK) Dr.Müh.Alb.Mustafa ATA (HGK) Dr.Müh.Yb.Oktay EKER (HGK) Dr.Müh.Yb.Mustafa ERDOĞAN (HGK) Dr.Müh.Yb.Yavuz Selim ŞENGÜN (HGK) Dr.Müh.Yb.Altan YILMAZ (HGK)

<u>Bu Sayıda Hakem Olarak Görev Alan</u> <u>Bilim Kurulu Üyeleri</u>

Prof.Dr.Ayhan ALKIŞ Prof.Dr.Cevat İNAL (SÜ) Prof.Dr.Dursun Zafer ŞEKER (İTÜ) Prof.Dr.Fatmagül KILIÇ Prof.Dr.Haluk ÖZENER Prof.Dr.Rahmi Nurhan ÇELİK Prof.Dr.Taşkın KAVZOĞLU (GTÜ) Doç.Dr.Ali KILIÇOĞLU Doç.Dr.Aylın ÜSTÜN Doç.Dr.Onur LENK Dr.Müh.Alb.Oktay EKER (HGK) Dr.Müh.Yb.Mustafa ERDOĞAN (HGK) Dr.Müh.Yb.Altan YILMAZ (HGK)

Harita Dergisinin kapak tasarımı Hrt. Tekns. Kd. Bşçvş. Selim ŞENDİL tarafından yapılmıştır.

Ali Macar Reis ve Atlası, Yunanistan, Adalar Denizi, Anadolu Haritası ¹ ¹Kemal Özdemir, Osmanlı Haritaları, s.106-107

Alí Macar Reís ve Atlası

ALI MACAR REIS ve ATLASI

16'ncı yüzyıl Osmanlı Haritacılığının doruk noktalarından olan Ali Macar Reis Atlası, adından da anlaşılacağı gibi levend reisi bir denizcinin eseridir. Daha açık deyişle Ali Macar, Akdenizi kasıp kavuran Osmanlı korsan reislerinden biridir. Osmanlı ülkesinin en mahir denizcileri korsanlardı. Savaşcılıklarının yanı sıra, deniz bilimlerinde de üstün bilgilere sahiptiler. Osmanlı denizciliği ve kartografyasının öncüsü oldular.

Topkapı Sarayı Müzesi Kütüphanesi Hazine Kitaplığı 644 numarada kayıtlı bulunan Ali Macar Reis Atlası, yedi haritadan oluşur. Atlas, dönemin cildindendir.; cilt kapakları kahverengidir. Ön ve arka kapaklarının ortasında, Osmanlı cilt sanatının süsleme öğesi şemse bulunur. Kapakların kenarı ayrıca altın yaldız zencerek ve cetvelle çerçevelenmiştir. Yılların etkisi ile bu yaldızlar silinmeye yüz tutmuştur. 18 sayfadan oluşan atlasta, haritalar yedi çift sayfa üzerinde 31x43 santimlik alanı kaplar. Deri parşömen üzerine çizilmiştir. Atlasta yer alan ilk altı harita(Karadeniz, Doğu Akdeniz ve Ege Haritası, İtalya Haritası, Batı Akdeniz ve İber Yarımadası, Britanya Adaları ve Avrupanın Atlantik Kıyıları, Ege Deniz-Batı Anadolu ve Yunanistan Haritası), XVI. Yüzyıl Osmanlı deniz haritalarının tipik örneğidir. Sonuncusu bir Dünya haritasıdır.

Atlasta bulunan ilk altı harita, portolonların tipik özelliklerini taşır ve tamamında on yedi adet rüzgârgülü bulunur. Rüzgârgüllerinden ayrılan otuz iki yön çizgisi belli renklerdedir.

Sekiz ana yön siyah ile, ana yönlerin ortaları kırmızı ile, kerte adı verilen ara yönler yeşil renkle çizilmiştir. Bütün haritaların altında mil ölçeği bulunmaktadır. Limanlar abartılı girinti ve çıkıntılarla belirtilmiştir. Karaların denizle birleştiği yerler lacivertle gölgelendirilmiş, böylece kıyıların göze çarpması amaçlanmıştır. Portolanlarda yer alan adalar altın yaldız, sarı, yeşil, pembe, kırmızı gibi göze çarpan renklerle boyanmıştır. Portolanlarda adet olduğu üzere sığlık yerler kırmızı noktalarla, gizli kayalıklar (+) ile gösterilmiştir. Nehirler altın yaldıza boyanmıştır. Bazı büyük nehirlerin deltaları abartılı çizilmiş, göz alıcı şekilde renklendirilmiştir.

Dünya haritası ve ikinci Ege Haritası dışında, önemli kentler ve kaleler, renkli basit minyatürlerle gösterilmiştir. Kentlerin adları siyahla yazılmış ve böylece portolonlarda önemli limanların kırmızı ile yazılması kuralının dışına çıkılmıştır. Haritaların tamamı kuzeye yönlendirilmiş ve siyasi sınırlarla ilgili hiç bir bilgi verilmemiştir.

Kemal Özdemír, Osmanlı Harítaları, s.104-105-108-109

Tarihi Köprülerin Dokümantasyonu İçin Dijital Fotogrametri ile 3B Modellerinin Oluşturulması ve Dinamik Analizlerinin Yapılması (Tarihi Kurt Köprüsü Örneği) (Composing 3D Models with Digital Photogrammetry for Documentation of Historical

Bridges and Making Dynamic Analyzes (Example of Historical Kurt Bridge)

Erdem Emin MARAŞ¹, Kemal HACIEFENDİOĞLU², Fahri BİRİNCİ², Gül USLU¹

¹Ondokuz Mayıs Üniversitesi, Harita Mühendisliği Bölümü, Samsun ²Ondokuz Mayıs Üniversitesi, İnşaat Mühendisliği Bölümü, Samsun

eemaras@omu.edu.tr

ÖZET

Yüzyıllar boyunca birçok medeniyetin gelişimine tanıklık eden Anadolu toprakları; toplumların haberleşme, askeri, ticaret gibi ulaşıma dayalı gereksinimlerinin sağlanması amacıyla bir uçtan bir uca yol ağları ile örülmüştür. Bu süreç içinde, ulaşım sisteminin parçası olan köprüler de; ticari, iktisadi, askeri, sosyal ve kültürel konulara hizmet eden yararlı yapılar olarak, zamanla kültür tarihinin tamamlayıcı bir unsuru haline gelmişlerdir.

Tarihi eserler geçmişten günümüze gelene kadar, doğal ya da doğal olmayan birçok tahribata maruz kalmaktadır. Bu nedenle; kültürel mirasın korunması ve bir sonraki kuşakları, tarih hakkında bilgilendirmek amacı ile yapılan çalışmalar, tüm dünyada gün geçtikçe hızlanmakta ve önemi büyük ölçüde artmaktadır. Artan bu önem, kültürel miras üzerine yapılan bu çalışmaların daha kolay ve daha detaylı olması için teknolojiyi de teşvik etmekte, bu da kullanılan ölçme sistemlerinin gelişmesini sağlamaktadır.

Tarihi yapıların bakım ve onarımı, korunması için altlık olacak verilerin (röleve ve üç boyutlu model) hazırlanmasında fotogrametrik yöntemler uzun yıllardır kullanılmaktadır. Bu çalışma kapsamında; Anadolu'daki köprü mimarlığının önemli örneklerinden biri olan Samsun ili, Vezirköprü ilçesinde, İstavloz Çayı üzerinde bulunan Tarihi Kurt Köprüsü'nün üç boyutlu modellemesi yapılarak dokümantasyonu gerçekleştirilmiştir.

Anahtar Kelimeler: 3B Modelleme, Yersel Fotogrametri, Tarihi Köprüler

ABSTRACT

Anatolia, which witnessed the evolution of very different civilizations for centuries, has been bonded by routes from end to end in order to supply the transportation requirements of societies, such as for communication, military and trade. Also in this period, bridges—which are a part of the transportation system, serving as useful structures for commercial, financial, militaristic, social and cultural issues—have become an integral part of cultural history over time.

Historical artifacts, surviving from the past until today, expose a great deal of destruction, both natural and unnatural. For this reason, studies which are carried out to inform the next generation and protect the cultural heritage are accelerating day by day all over the world, and their importance is growing rapidly. This increasing importance has stimulated the technology to make these studies of cultural heritage easier and more detailed. This also provides opportunities for the development of current measurement systems.

Photogrammetric methods have being used for many years to produce base map data (measured drawings and three-dimensional models) for the maintenance, repair and conservation of historic buildings. In this study, the historical Kurt Bridge, constructed on Istavloz Stream in the Vezirköprü district in Samsun and one of the most important examples of bridge architecture, has been documented through the creation of a 3D model.

Keywords: 3D Modelling, Terrestrial Photogrammetry, Historical Bridges

1. GİRİŞ

Anadolu yüzyıllardır birçok medeniyete ev sahipliği yaptığından tarihi ve kültürel önemi yüksek çok sayıda mimari yapıya sahiptir. Antik çağlardan başlayarak Selçuklu ve Osmanlı dönemlerinden günümüze kadar birçok eser varlığını korumuştur (UNESCO,1972). Fakat bu eserler deprem, sel, erozyon, yangın gibi doğa olayları, beşeri faaliyetler ile tamamen ya da kısmen yok olmuş veya yok olma tehlikesiyle karşı karşıya kalmıştır. 1972 yılındaki Paris Konferansında mimari ve kültürel mirasın korunması ve gelecek kuşaklara aktarılması tüm katılımcı devletlerin güvencesi altına alınmıştır (Durduran,2003).

Tarihi eserlerin gelecek kuşaklara hasara uğramadan aktarılması için ilk olarak dokümantasyonunun yapılması gereklidir. mevcut halleriyle Kültürel varlıkların veya aünümüzdeki durumlarından elde edilecek üretilecek verilerle özgün halleriyle dokümantasyonunu yapmak; oluşmuş ve oluşacak hasarları görmede oldukça önemlidir (Durduran, 2003).

Çalışma kapsamındaki Tarihi Kurt Köprüsü; Roma ve Doğu Roma Döneminde Sinop, Samsun, Amasya gibi önemli merkezlerin ortasında yer almaktadır.

Şekil.1 Çalışma bölgesi

Şekil.2 Tarihi Kurt Köprüsünün onarımdan önce ve sonra görünümü

Tarihi Kurt Köprüsü; Samsun ili Vezirköprü ilçesinde, Kızılırmak Nehri üzerindeki Altınkaya Baraj Gölüne dökülen İstavloz Çayı üzerinde bulunmakta veHavza İlçesi Kayabaşı Köyü ile Vezirköprü ilçesi Tekekıranı Köylerini birbirine bağlamaktadır. 1. Derece deprem kuşağı üzerinde bulunan Tarihi Kurt Köprüsü; 41°06´ Kuzey enlemi ile 35° 36´ Doğu boylamı üzerinde bulunmakta olup, Havza ilçesine 18 km, Vezirköprü'ye ise 15 km uzaklıktadır. (Şekil.1)

Köprü, 95 m uzunluğunda, 4,8 m genişliğindedir. İki büyük, üç adet de küçük kemerden oluşan köprü yakın zamanda bir onarım geçirmiştir. Onarımı esnasında; ana kemer, boşaltma gözleri ve yüzeylerinde meydana gelmiş doku kayıpları giderilmiş, selyaranlar özgün boyutlarına uygun olarak yeniden yapılmış, birkaçı günümüze sağlam olarak gelmiş olan korniş taşları özgün boyutlarda tamamlanmıştır. Tamamen yok olan döşeme ve korkuluklar yeniden yapılmıştır. (Şekil.2)

Kitabesi bulunmayan Tarihi Kurt Köprüsü ile ilgili yapılan kaynak araştırmalarında, köprüye yazılı/görsel iliskin bir bilgi/belgeve rastlanmamıştır. Ancak: köprünün mimari özelliklerinin, köprüye yüklenen işlevlerin iyi incelenmesi ve köprünün bulunduğu tarihi yol güzergâhı ile bu güzergâh üzerindeki tesislerin ayrıntılı incelenmesi sonucunda köprünün, Doğu Romalılar döneminde yapıldığı, Selçuklular döneminde onarımlar geçirdiği ve şimdiki yapısıyla günümüze söylenebilir ulaştığı (Halifeoğlu, 2013).

2. PROBLEMİN TANIMI ve ÇALIŞMANIN AMACI

Fotogrametri, özellikle son yıllarda geliştirilen sayısal değerlendirme sistemleri yardımıyla nesnelerin görüntülerden üç boyutlu (3B) modelinin elde edilmesinde kullanılmaktadır. Bu önemli avantajı vöntemin en nesnelerin. görüntüleme tekniklerine göre daha gerçeğe yakın bir gösterim elde etmesidir. Elde edilen bu modeller tarihi miras, toprak yönetimi ve tıp uyqulamalarında sıklıkla kullanılmaktadır. Kültürel mirasın belgelendirilmesi konusunda da, 3B modeller, görselleştirme için çok önemli araç olmaktadır (El-Hakim, 2001).

Yersel fotogrametri yöntemi, otomatik yöneltme ve ölçme işlemleri, 3B vektör veri, sayısal ortofoto, sayısal yüzey ve arazi modellerinin üretimi gibi birçok imkân sunmaktadır. Elde edilen sonuç ürünlerinin sayısal olması, bu ürünlerin dökümantasyon ve fotogrametrikröleve dışında 3B modelleme, 3B verinin görselleştirilmesi, yönetilmesi ve Coğrafi Bilgi Sistemleri (CBS) ortamında sunulması gibi farklı uygulama alanlarında da kullanılmasına olanak sağlamaktadır (Wolf ve Dewitt, 2000).

Kültürel mirasın değerinin ve değişiminin anlaşılması için gerekli bilginin elde edilmesi, tarihi eserlerin korunması açısından önem arz etmektedir. Kültürel mirasın bakım ve korunmasında, kültürel mirasın fiziksel durumunun, yapımının ve onun tarihi ve kültürel önemini garanti altına almak için çıkarılacak kayıtların;

• Güvenli bir arşivde korunması,

• İlgili mesleki kuruluşlarının ve halkın kolayca ulaşabileceği şekilde olması,

• Kolayca elde edilebilmesi,

• Standart bir formatta oluşturulması ve uygun güncel bilgi teknolojilerinin kullanılması,kültürel mirasın korunması açısından en önemli konulardır (Durduran,2003).

Fotogrametrik yöntem, bilinen ölçme yöntemlerine göre çok fazla miktarda veri elde edilebilir. Diğer ölçme yöntemleriyle nerdeyse yapılması olanaksız olan şekil ve motifler fotogrametrik yöntemle kolaylıkla yapılabilir(Avşar,2006).Tarihi yapılar, insanlığın çeşitli yaşam süreçlerinde değişik amaçlarla inşa ettiği ve bugün tarihi dokular barındırması sebebiyle korunması gereken yapılardır. Özellikle dinamik yükler gibi tekrarlı yüklemeler altında tamamen yıkılabilen veya kısmen hasar gören bu yapıların davranışlarını tespit etmek oldukça önemlidir (Mele v.d., 2003).

Günümüze kadar ulaşabilen bu yapıları daha ileriki kuşaklara sunabilmek adına dış etkilere karşı korumak için doğru analizler yapılması gerekmektedir. Özellikle herhangi bir nedenle hasar görmüş bu yapıların onarım ve güçlendirmeleri gerekmektedir. Bunun için hasar nedenlerinin doğru olarak tespit edilmesi gerekmektedir (Betti ve Vignolli, 2011). Ayrıca çatlak etütleri yapılıp haritalanmalı ve bilgisayar modellenmesi yapılarak çatlak nedeni olan çekme gerilmelerinin büyüklükleri olabildiğince sağlıklı bir şekilde hesaplanmalıbuna bağlı olarak onarım, güçlendirme projesi hazırlanmalıdır (Ural v.d., 2008).

Fotogrametrik olarak 3B modelleme yöntemi, tarihi köprülerin dayanıklılığının tespit edilmesi, onarımı ve güclendirme projelerinin yapılabilmesi icin son dönemlerde insaat mühendisliği alanında önem kazanan ve ayrıca birçok araştırma yapılan bir konu olarak ortaya çıkmıştır (Sevim v.d., 2011; Brencich ve Sabia, 2008). Özellikle kısmi hasarlı olan tarihi köprülerin tekrarlı yüklemeler altındaki davranışlarının tespit edilmesi ve yapının ömrünün ne kadar olduğunun tespit edilebilmesi için ya da oluşan yükleme karşısında yıkılıp yıkılmayacağının tahmini için çok önemli olmaktadır (Senthivel ve Lourenço, 2009; Ozkula ve Kuribayashi, 2007). Diğer taraftan kısmi hasarlı bir köprünün güçlendirme projelerinin yapının hazırlanarak statik ve dinamik davranışları irdelenebilir (Magalhães ve Cunha, 2011).

Tarihi yapıların dış yüklere karşı korunması çeşitli mühendislik yaklaşımları icin kullanılmaktadır (Hacıefendioğlu, 2010; Lucchesi Pintucchi. Bu ve 2007). mühendislik yaklaşımlarının temel amacı yapının dış etkilere, özellikle deprem etkilerine karşı ne kadar dayanıklı olduğudur. Bu dayanıklılık durumunu tahmin edebilmek için öncelikle, yapının çok iyi bir şekilde hazırlanmış analiz modeliyle deprem analizi yapılması gerekmektedir. Bu analiz sonucunda yapının duyarlılığı belirlenmis olacaktır (Verstryngev.d., 2011; Ramosv.d., 2010). Duyarlılığı belirlenen yapının dayanımı ve taşıyıcı elemanlarının özellikle depreme karşı yük taşıma kapasitesi hesaplanabilmektedir.

Ülkemiz coğrafi konumu ve zengin tarihsel geçmişi nedeniyle birçok tarihi eseri içinde barındırmaktadır. Ayrıca topraklarının %95'i deprem bölgesinde bulunan ülkemizde depremin tarihi köprülere verebileceği zarar, hasar görmüş ve tamamen yıkılmış birçok tarihi yapının kalıntılarından anlaşılmaktadır.

Yapıların deprem süresince, göstereceği dinamik davranışlar sistem için beklenmeyen etkilere sebep olabilmektedir (Pelàv.d., 2009; Branco ve Guerreiro, 2011; Betti ve Vignoli, yapıların 2008). Bu nedenle. hizmet kalitesi/hizmet ömrü düşmekte ve aynı zamanda malzeme üzerinde oluşacak olan kusurlar ya da catlamalar önemli hasarlara sebep olabilmektedir. Hasarların ilerlediği durumda ise yapılacak onarım ve güçlendirme mümkün ise çok masraflı olabilmektedir. Bu tip bölgelerde bulunan tarihi köprüler üzerinde yapılacak olan düzenli kontroller bu olumsuzlukları ortadan kaldırabilecektir (Rafieev.d., 2008). Bövlece önemli ölcüde maddi kazanım sağlandığı gibi, kültürel mirasımızı tehdit eden unsurlar da ortadan kaldırılmış olacaktır.

Bu çalışmada örnek olarak bir tarihi köprünün dokümantasyonunun hazırlanması, bir kısmı tahrip olmus yapısının, tahrip olan kısımlarına ait bilgilerin fotogrametrik tekniklerle elde edilmesi ve bu bilgiler kullanılarak oluşturulan modellerin modellere dönüstürülerek cevresel savısal etkilere karsı dayanıklılıkları, davranıslarının incelenmesi amaçlanmıştır. Ayrıca Tarihi yapıların 3B model olarak oluşturulmasının yanı sıra, bu yapıların beklenmedik yüklemelere kalacağı kuvvetler maruz araştırılacaktır.Böylelikle tarihi vapıların dokümantasyonunun önemli bir unsuru olan disiplinler arası çalışma gerçekleştirilmiş olacaktır.

3. UYGULAMA

Fotogrametrik yöntemler ile tarihi Kurt Köprüsünün tamamının3B modelini oluşturulmuştur. Diğer taraftan yan yüzeylerde resimler düşeye çevrilerek 2 boyutlu ölçümler yapılmıştır. Fotogrametrik yöntemlerle elde edilen 3B modeller üzerinden köprünün plan, kesit ve görünüşleri hazırlanmıştır. Elde edilen bu veriler yardımı ve sonlu elemanlar modeli ile yapının deprem analizi yapılmış ve köprü üzerindeki etkileri gösterilmiştir.

a. Köprü Boyutlarının Belirlenmesi

Çalışma başlangıcında, Köprü etrafında 4 adet noktadan oluşan kapalı poligon ağı oluşturulmuştur. Poligon noktalarının koordinatları TOPCON GR5 GPS aleti ile ölçülmüştür. Ölçülenpoligon noktalarının koordinatları Tablo 1'de gösterilmiştir.

Tablo 1. Poligon	Noktalarının	Koordinatları
------------------	--------------	---------------

Nokta	Y (m)	X (m)	Z (m)
No			
P1	467292,08	4552139,01	423,24
P2	467244,36	4552102,26	423,84
P3	467227,96	4552104,00	422,72
P4	467267,38	4552166,30	421,83

Köprünün her iki yüzeyinde toplamda 50 kontrol noktası tesis edilmiş ve nokta ölçümleri yapılmıştır (Şekil.3).Noktalar için yatay doğrultu, düşey açı ve kenar okumaları PENTAX V-227N aleti ile ölçülmüştür.

Şekil.3 Kontrol noktalarının tesisi ve ölçümü

Köprünün her iki yüzeyinin resimlerini çekmek için Pictran D yazılımına uygun olan Nikon D5100 dijital kamera ve 18-55VR Lens seçilmiştir. Kameranın çözünürlüğü 16.2MP'dir. Çekilen resimler 4928*3264 piksel boyutundadır. Kamerada kullanılan lens 18–55 mm odak uzaklığı aralığını kapsar (35 mm eşdeğeri: 27– 82,5 mm). Özellikle Nikon DX biçimli D-SLR sensörleri ile birlikte kullanılmak için tasarlanan bu objektif, keskin fotoğraflar ve videolar üretir. Asferik objektif elemanı, yüksek çözünürlük ve kontrast sağlarken aynı zamanda küresel sapmayı ve diğer dağılma türlerini en aza indirger (URL-1).

Köprünün her iki yüzünün resimleri mümkün olduğunca yüzeye paralel ve bindirmeli olarak yaklaşık 10, 20 ve 30 m mesafeden çekilmiştir. Kullanılan kameranın kalibrasyonu sonucunda x₀: -0,016014mm, y₀: -0,812574mm ve c (kameranın odak uzaklığı): 51,935285mm olarak bulunmuştur. Arazide çekilen fotoğrafların fotogrametrik değerlendirmelerini yapmak için Pictran-D programı kullanılmıştır. Böylelikle köprünün ön ve arka cephesinin ortofoto görüntüleri oluşturulmuştur (Şekil.4 ve Şekil.5)

Köprünün ön cephesi için kontrol noktalarının karesel ortalama hatası \pm 0,0289 m'dir. Köprünün arka cephesi için kontrol noktalarının karesel \pm 0,0246 m'dir.

Ardından ön ve arka cephe için yapılan sayısallaştırma ile köprünün vektör verileri elde

edilmiştir. Ön ve arka cepheye ait bu vektör veriler kullanılarak köprünün 3B modellemesi gerçekleştirilmiştir. Şekil.6 (a), (b), (c)'de köprünün farklı cephelerinin örnekleri verilmektedir.

Köprünün 3B modelinden faydalanarak nokta bulutu çıkarılmıştır (Şekil.7).Gerçekleştirilen tüm çalışmaların ardından köprünün rölevesi oluşturularak dokümantasyon tamamlanmıştır.

Şekil.4 Köprünün ön cephe ortofoto görüntüsü

Şekil.5 Köprünün arka cephe ortofoto görüntüsü

(a)

Şekil.6 Köprünün 3B gösteriminin farklı açılardan görünümü (a,b,c)

Şekil.7 Oluşturulan nokta bulutu

b. Deprem Analizi

Tarihi yapılar, bulundukları deprem bölgesine ve zemin durumuna bağlı olarak, düşey yükleri iyi bir şekilde karşılasalar da, yatay deprem yüklerinde hasara uğrayabilmektedirler. Bu yapılar belirli hasarlara uğrasalar da, yüzlerce binlerce sene ayakta kaldıklarından ve gelecekte de en az bir o kadar süre daha ayakta kalabilmeleri istendiğinden, bu uzun süreler boyunca mutlaka birden çok sayıda depreme maruz kalmaları söz konusu olmaktadır. Tarihi Kurt Köprüsünün Dijital Fotogrametrik yöntem ile hazırlanan3B dinamik analizinin yapılması için ANSYS sonlu elemanlar paket programına atanmıştır.

Analizde deprem verileri olarak 17 Ağustos 1999 Kocaeli Depreminin x, y ve z doğrultusunda zaman bağlı ivme kayıtları, 0.05 viskoz sönüm oranına göre x, y ve z doğrultusunda frekansivme kayıtlarına (Spektrum) dönüştürülüp kullanılmıştır (Tablo 2). Tablo 2'e göre depremin en büyük frekansı y doğrultusunda, en büyük ivmesi ise z doğrultusundadır.

Tablo 2. Depremin x, y ve z doğrultusundaki frekans- ivme kayıtları (Max. ve Min. değerler kırmızı ile belirtilmiştir).

		Х	Y		Z	
	Frekans	lvme (m/sn²)	Frekans	lvme (m/sn²)	Frekans	lvme (m/sn²)
1	0.300	0.073	0.250	0.022	0.290	0.099
2	0.890	0.285	0.810	0.075	0.630	0.333
3	1.610	0.392	1.110	0.166	0.750	0.497
4	1.140	0.575	1.320	0.126	0.960	0.614
5	1.720	0.474	1.790	0.099	1.060	0.718
6	1.520	0.358	2.080	0.079	1.110	0.847
7	1.790	0.550	2.500	0.118	1.250	0.508
8	2.380	0.709	3.850	0.329	1.430	0.428
9	2.940	0.617	3.330	0.267	1.850	0.446
10	3.130	0.580	4.550	0.164	2.080	0.649
11	3.850	0.682	5.560	0.294	2.380	0.517
12	4.550	0.453	6.250	0.266	2.630	0.667
13	5.560	0.357	5.560	0.294	3.130	0.540
14	6.250	0.370	7.140	0.178	3.850	0.370
15	7.140	0.304	8.330	0.194	4.170	0.425
16	8.330	0.288	10.000	0.153	5.560	0.294
17	10.000	0.298	12.500	0.178	7.140	0.267
18	12.500	0.256	16.670	0.155	8.330	0.233
19	16.670	0.258	25.000	0.096	12.500	0.191

Olası deprem senaryoları için aynı yapıya ait bir çok analiz yapmakta ve kritik bölgelerin daha kesin olarak belirlenmesine çalışılmakta fayda vardır. Bununla birlikte bu çalışmada da görüleceği üzere, literatürdeki belli başlı deprem ivmeleri ile analizleri gerçekleştirmek, oluşabilecek her tür deprem altında bu yapıdaki kritik bölgeleri belirlemede yeterli olabilecektir.

c. Köprüye ait Sonlu Elemanlar Modeli

Kurt Köprüsüne ait veriler kullanılarak oluşturulan sonlu elemanlar modeli Şekil 8 de verilmektedir.

Şekil 8. Köprü sonlu elemanlar modeli

ANSYS programıyla analiz sonuclarına göre ise, Tablo 3'den görüleceği üzere, Max. VonMises Gerilmeleri ve Max. Deplasmanlar, beklenildiği üzere, depremin 3 doğrultuda birden etkimesi durumunda gerçekleşmiştir. En büyük 2. Değerler ise, yine beklenileceği üzere, depremin z doğrultusunda etkimesi durumunda ortaya çıkmıştır. Zira Şekil 9'dan görüleceği üzere, sistemin diğer doğrultulara aöre z doğrultusundaki narinliği asırı derecede büyüktür. Örneğin tabliye düzleminde x doğrultusunda eğilme rijitliği bl3/12 ile çok yüksek iken, z doğrultusunda lb3/12 ile çok düşüktür. y doğrultusunda ise bh3/12 ile diğer doğrultulara göre orta büyüklükte bir rijitliğe sahiptir. Elbette her doğrultuda farklı düzlemlerde değişen rijitlikler söz konusudur. İlk bakışta Şekil 10'da gösterilen düzlemler düşük rijitlik ve yüksek kritik narinlik açısından daha olarak görülmektedir. Analiz sonuçları ile daha hassas şekilde kritik bölgeler elde edilebilecektir.

	Deprem Etki Yönü						
	Y X Z XYZ						
VM Ger. (N/m ²)	15964	2641	55573	277501			
X Dep. (m)	0.563.10 ⁻⁴	0.35.10 ⁻⁵	0.461.10 ⁻⁴	0.231.10 ⁻³			
YDep. (m)	0.351.10-4	0.286.10 ⁻⁵	0.101.10 ⁻³	0.502.10 ⁻³			
ZDep (m)	0.872.10 ⁻⁵	0.125.10 ⁻⁴	0.479.10 ⁻³	0.002392			

Tablo 3. Deprem etki yönüne göre VonMises Gerilmeleri ile x, y ve z Deplasmanları

Şekil 9. Yatay yük yönleri ve 3 yöndeki genel ölçüler

Şekil 10. (a) x doğrultusunda (b) y doğrultusunda (c) z doğrultusunda kritik düzlemler

VonMises gerilmelerinin max. olduğu bölgeler şu şekilde açıklanabilir: Şekil 11(a)'dan görüleceği üzere, depremin x doğrultusunda etkimesi durumunda bu doğrultuda en kritik bölge olan orta ayak altında maksimum gerilme yığılmaları oluşmuştur. Şekil 10(a)'da diğer kritik düzlemler de gösterilmiştir. Ancak tüm düzlemler arasında en kritiği, 6 ile gösterilen düzlemdir. Zira sistemin x yönünde ötelenmesi halinde orta mesnet sistemi tutmada en çok zorlanacak mesnet olup bu doğrultuda narinliği en yüksek bölge de burasıdır. Ayrıca bu bölgede orta ayak destek çıkıntısı nedeniyle bir kütle yığılması da

vardır. Bununla birlikte orta ayak destek çıkıntısı orta ayak ön alt bölgesini tutarak destek verdiğinden burada gerilmeler nispeten düşmüştür. Ancak dikkat edilirse orta ayak alt bölgesi arka bölümünde gerilmeler max. değerlere ulaşmıştır. Bunun da nedeni ön bölgede olan tutma etkisinin arka bölgede bulunmamasıdır. Benzer şekilde depremin z doğrultusunda etkimesi durumunda bu doğrultuda en kritik bölge olan orta ayak yığılmaları ortasında maksimum gerilme oluşmuştur. Bu bölge ve diğer kritik düzlemler Şekil 10(c)'de gösterilmiştir. Ancak, sistemin z

yönünde ötelenmesi halinde, yine orta mesnet sistemi tutmada en çok zorlanacak mesnettir. Ayrıca sistemde z doğrultusundaki en büyük rijitlik orta ayak destek çıkıntısı nedeniyle orta ayak alt bölgelerindedir. Ancak destek çıkıntısının bittiği yerde z doğrultusunda ani rijitlik düşüşü gerçekleşmiş ve max. gerilme yığılmaları burada oluşmuştur. Depremin y doğrultusundan etkimesi durumunda ise, yine bu doğrultuda düşük rijitliğe sahip bir bölgede max. gerilme yığılmaları oluşmuştur. Şekil 10(b)'den görüleceği üzere, sistemde y doğrultusunda daha düşük rijitliğe sahip başka düzlemler de vardır ancak, bu düzlemlere oranla, düşey yük değerleri de birikerek söz konusu bölgede max.'a ulaştığından kritik gerilmeler burada oluşmuştur. Depremin xy-z doğrultusunda birlikte etkimesi durumunda ise, yine ani rijitlik değişiminin olduğu orta ayak orta ön bölgesinde max. gerilme değerleri görülmüştür.

Şekil 11. VonMises Gerilme Dağılımları (a) x, (b) y, (c) z, (ç) xyz yönü deprem etkimesi durumları (Max. değer alan bölgeler daire içine alınmıştır)

Şekil 12. x deplasmanı dağılımları (a) x (b) y (c) z (d) xyz yönü deprem etkimesi durumları (Max. değer alan bölgeler daire içine alınmıştır)

Şekil 12'den görüldüğü üzere, depremin x etkimesi durumunda vönünde max. х deplasmanları, ortadaki göz boşluğunun 2 yanlarında oluşmuştur. Zira buralar, Şekil 10(a)'dan da görüleceği üzere, x yönünde en narin düzlemlerdendir. Depremin y doğrultusunda durumunda Şekil etkimesi da 10(b)'den görüleceği üzere, bu sefer y yönündeki en narin düzlemlerden birinde max. x deplasmanları oluşmuştur. Depremin z yönünden etkimesi durumunda da, ayaklar vasıtasıyla stabilitesi sağlanmış bölümlerin arasında kalan bölgelerde

max. x deplasmanları görülmüştür. Aynı durum, depremin x- y ve z doğrultusunda birlikte etkimesi hali için de geçerlidir.

Şekil 13'den görüleceği üzere max. y deplasmanları, yine sistemin y yönünde en narin olan kesitlerinde oluşmuştur. Şekil 14'den görüldüğü üzere, depremin z yönünde etkimesi durumunda sistem tabliyesi, gövde ve ayak bölgelerine göre en narin bölümü oluşturduğu için tüm deplasmanlar tabliyede en büyük değerlere ulaşmıştır.

Şekil 13. y deplasmanı dağılımları(a) x, (b) y,(c) z, (ç) xyzyönü deprem etkimesi durumları (Max. değer alan bölgeler daire içine alınmıştır)

Şekil 14. z Deplasmanı Dağılımları (a) x, (b) y,(c) z, (ç) xyz yönü deprem etkimesi durumları (Max. değer alan bölgeler daire içine alınmıştır)

4. SONUÇ

Tarihi eserlerin dokümantasyonda disiplinler etmektedir. arası çalışma önem arz Gerçekleştirdiğimiz bu çalışmada; tarihi bir köprü (Kurt Köprüsü) modellenmiş ve rölevesi cıkarılmıştır. Bu veriler kullanılarak olası bir deprem esnasında vapının nasıl hareket edeceği ve ne gibi zararlar göreceği gözler önüne serilmistir. Bu açıdan bakıldığında gerçekleştirdiğimiz çalışma, hem tarihi eserlerin dokümantasyonunun hem de disiplinlinler arası çalışmanın önemine vurgu yapmaktadır.

Genel ölçme yöntemlerinin yerine tarihi eser dokümantasyonlarının hazırlanmasında gerçeğe uygun modellerin oluşturulması daha uygundur. Dijital fotogrametri yöntemi sayesinde gerçeğe yakın modellerin oluşturulabilmesi klasik yöntemlere göre daha hızlı ve daha doğru olmanın yanında tekrarlanabilir olması yöntemi çok avantajlı kılmıştır.

Özellikle kompleks yapıların modellenmesi için fotogrametri yöntemiyle ebatlarının belirlenmesi analizde kullanılacak programlara direk bu boyutların atanması çözüm öncesi yapı tanımlama kısmını çok kolay hale getireceğinden bir çok yapıyı analiz etme imkanı doğacaktır.

Bu çalışmada; Tarihi Kurt Köprüsünün dijital fotogrametri tekniği kullanılarak, dokümantasyonu hazırlanmış, çeşitli ölçeklerde rölevesi üretilmiş, görselleştirme teknikleri ile 3B modellemesi yapılmıştır, deprem analizleri için salt model oluşturulmuştur.

Diğer taraftan örneği görüldüğü üzere, yapıların depreme karşı davranışı, fiziksel davranış modellemeleri ile kısmen anlaşılabilip kestirilebileceğinden, özellikle modelleme analizlerinin yapılması çok gerekli olmaktadır. Yani yapıların özellikle deprem etkisi gibi dinamik ve değişken etkilere karşı fiziksel davranışını tahmin etmek, bir modelleme ve analiz yapmadan yanlış yorumlamalara neden olabilir. Ancak analiz sonrası fiziksel yorumlamaların da dikkatli ve ivi bir sekilde vapılması, sadece analiz yapıp kritik bölgeleri belirlemekle kalınmaması gerekmektedir.

Bu tip çalışmalar, ilerde ihtiyaç duyulduğunda tarihi yapıların restorasyonunda yardımcı kaynak olarak kullanılabilir. Dijital fotogrametri yöntemi ile görselleştirilmiş 3B görüntüler tarihi eserin orijinal görüntüsüne ışık tutacaktır. 3B görselleştirilmiş görüntüler diğer taraftan turist bilgi sistemlerine destek olacaktır. Yine bu çalışmalar yeni oluşturulacak CBS (Coğrafi Bilgi Sistemi) tabanlı kültür, turizm ve diğer çalışmalara kaynak oluşturacaktır.

BILGILENDIRME VE TEŞEKKÜR

Bu çalışma Ondokuz Mayıs Üniversitesinin PYO.MUH.1901.13.009 Numaralı 1901-Bilimsel AR-GE Destekleme Programı kapsamındaki 2015 yılının Nisan ayında tamamlanan BAP projesinden üretilmiştir.

Harita Mühendisliği 4. Sınıf öğrencisi Hakan Yıldız'a, Temel Bolver'e fotoğraf çekimi ve ölçümlerde katkılarından dolayı ve Akropol Firması ile Cengiz Erdoğan'a değerlendirme çalışmalarındaki katkılarından dolayı teşekkür ederiz.

KAYNAKLAR

- Avşar E.Ö., (2006), **Tarihi Köprülerin Dijital Fotogrametri Tekniği Yardımıyla Modellenmesi**, Tüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
- Betti M.,Vignoli A., (2008), Modelling And Analysis Of A Romanesque Church Under Earthquake Loading: Assessment Of Seismic Resistance, Engineering Structures, Volume 30, Issue 2, February 2008, Pages 352-367.
- Betti M., Vignoli A., (2011), Numerical Assessment Of The Static And Seismic Behaviour Of The Basilica Of Santa Maria All'impruneta (Italy), Construction and Building Materials, Volume 25, Issue 12, December 2011, Pages 4308-4324.
- Branco M.,Guerreiro L.M., (2011), Seismic Rehabilitation Of Historical Masonry Buildings, Engineering Structures, Volume 33, Issue 5, May 2011, Pages 1626-1634.
- Brencich A., Sabia D., (2008), Experimental **identification Of A Multi-Span Masonry** Bridge: The Tanaro Bridge, Construction and Building Materials, Volume 22, Issue 10, October 2008, Pages 2087-2099.
- Durduran Z. (2003), Tarihi Eserlerin Fotogrametrik Olarak Belgelenmesi ve Coğrafi Bilgi Sistemine Aktarılması, Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul

- El-Hakim, S. F.,(2001), A flexibleapproachto 3D reconstruction from single images, ACM Proceedings of SIGGRAPH '01, Technical Sketches, Los Angeles, California, 12th to 17th August 2001. 280 pages: 186.
- Hacıefendioğlu Seasonally K., (2010), FrozenSoil'sEffect **Stochastic** On Response Minaret-Of Masonry Random SoilInteraction Systems То Seismic Excitation, Cold Regions Science and Technology, Volume 60, Issue 1, January 2010, Pages 66-74.
- Halifeoğlu F.M., (2013), **Tarihi Kurt Köprüsü** (Mihraplı Köprü, Vezirköprü) Restorasyonu Proje ve Uygulama Çalışmaları, METU JFA 2013/2 (30:2) 81-104, DOI:10.4305/METU.JFA.2013.2.6
- İlter F., (1978),**Osmanlılara Kadar Anadolu Türk Köprüleri**, Karayolları Genel Müdürlüğü Yayınları, Ankara.
- Lucchesi M., Pintucchi B., (2007), A Numerical Model For Non-Linear Dynamic Analysis Of Slender Masonry Structures, European Journal of Mechanics - A/Solids, Volume 26, Issue 1, January–February 2007, Pages 88-105.
- Magalhães F., Cunha A., (2011), **Explaining Operational Modal Analysis With Data From An Arch Bridge**, Mechanical Systemsand Signal Processing, Volume 25, Issue 5, July 2011, Pages 1431-1450.
- Mele E., De Luca A., Giordano A., (2003), Modelling And Analysis Of A Basilica Under Earthquake Loading, Journal of Cultural Heritage, Volume 4, Issue 4, October–December, Pages 355-367.
- Ozkula T. A., Kuribayashi E., (2007), Structural Characteristics Of Hagia Sophia: I—A Finite Element Formulation For Static Analysis, Buildingand Environment, Volume 42, Issue 3, March 2007, Pages 1212-1218.
- Pelà L., Aprile A., Benedetti A., (2009), **Seismic** Assessment Of Masonry Arch Bridges, Engineering Structures, Volume 31, Issue 8, August 2009, Pages 1777-1788.
- Rafiee A., Vinches M., Bohatier C., (2008), Application Of TheNSCD Method To Analyse The Dynamic Behaviour Of Stone Arched Structures, International Journal of Solids and Structures, Volume 45, Issues 25– 26, 15 December 2008, Pages 6269-6283.

- Ramos L.F., Marques L., Lourenco P.B., De Roeck G., Campos-Costa A., Roque J., (2010), Monitoring Historical Masonry Structures With Operational Modal Analysis: TwoCase Studies, Mechanical Systems and Signal Processing, Volume 24, Issue 5, July 2010, Pages 1291-1305.
- Senthivel R., Lourenco P.B., (2009), Finite Element Modelling Of Deformation Characteristics Of Historical Stone Masonry Shear Walls, Engineering Structures, Volume 31, Issue 9, September 2009, Pages 1930-1943.
- Sevim B., Bayraktar A., Altunişik A.C, Atamtürktür S., Birinci F., (2011), Finite Element Model Calibration Effects On The Earthquake Response Of Masonry Arch Bridges, Finite Elements in Analysis and Design, Volume 47, Issue 7, July 2011, Pages 621-634.
- UNESCO, (1972), Convention Concerning The Protection Of The World Cultural And Natural Heritage, 16th November 1972, Paris
- Ural A., Oruç Ş., Doğangün A., Tuluk Ö., (2008), Turkish Historical Arch Bridges And Their Deteriorations And Failures", Engineering Failure Analysis, Volume 15, Issues 1–2, January–March 2008, Pages 43-53.
- Verstrynge E., Schueremans L., Gemert D., Hendriks M.A.N., (2011), **Modelling and analysis of time-dependent behaviour of historical masonry under high stress levels**, Engineering Structures, Volume 33, Issue 1, January 2011, Pages 210-217.
- Wolf, P. R., Dewitt, B. A. (2000), **Elements of Photogrammetry with Applications in GIS**, Third Edition, McGraw-HillCompanies

URL-1:

https://www.nikon.com.tr/tr_TR/product/nikkor -lenses/auto-focus-lenses/dx/single-focallength/af-s-dx-nikkor-18–55mm-f-3-5–5-6g-vrii,[Erişim 21 Kasım 2015].

GPGPU Yöntemi ile Görüntülerin Gerçek Zamanlı Ortorektifikasyonu (Real Time Orthorectification Of Images By GPGPU Method)

Hakan ŞAHİN¹, Mehmet Sıtkı KÜLÜR²

¹ Harita Genel Komutanlığı, 06100 Dikimevi, Ankara,
² İTÜ, İnşaat Fakültesi Geomatik Mühendisliği Bölümü, 34469 Maslak, İstanbul hakan.sahin@hgk.msb.gov.tr

ÖZET

Bilgisayarların grafik kartları üzerindeki grafik islemci birimleri (Graphic Processing Units – GPU) on sene öncesine göre, özellikle performans ve yeteneklerinin artışı doğrultusunda büyük gelişme göstermiştir. Modern GPU'lar sadece çok güçlü grafik motoru olmaktan çıkarak, bilgisayar işlemcilerine (Central Processing Unit-CPU) göre aritmetik işlem vapabilme hızı ve hafıza band genişliği hızı cok daha yüksek olan ve üst seviyede paralel programlanabilir işlemciler halini almışlardır. **GPU'ların** programlanabilirliğindeki ve yeteneklerindeki hızlı gelisme, yüksek seviyede hesap yapma ihtiyacı olan karmaşık problemlerle uğraşan araştırmacıların ilgisini çekmiştir. Bu ilgi "grafik işlemci birimi üzerinde genel amaçlı hesaplama (General Purpose Computation on Graphic Processing Units - GPGPU)" ve "akış işleme (stream processing)" kavramlarını ortaya çıkarmıştır. Grafik islemcilerin bilgisayar islemcilerine bir alternatif olarak gündeme gelmesinin asıl nedeni ise; çok güçlü ve bunun yanında ucuz temin edilebilir donanım sabit uygulama olmalarıdır. Bu grafik çipler, donanımları olmaktan çıkarak günümüzde modern, programlanabilir güçlü ve genel ihtiyaçları karşılayabilecek işlemcilere dönüşmüşlerdir.

Yapılan çalışma içerisinde, çeşitli fotogrametrik uygulamalar ve özellikle ortorektifikasyon işlemi GPGPU yöntemi ile CUDA (Compute Unified Device Architecture-Birleşik Hesaplama Aygıt Mimarisi) programlama dili kullanılarak yeniden programlanmıştır. Böylelikle daha kısa sürede ve daha ucuz maliyetli donanımlarla ortorektifiye edilmiş görüntülerin nasıl elde edilebileceği ortaya konulmaya çalışılmıştır.

Bu amaca yönelik olarak yapılan uygulamalarda elde edilen sonuçlar değerlendirildiğinde, yöntemin fotogrametrinin görüntü işlemeyi gerektirdiği ve aynı işlem adımlarının her bir piksel için tekrarlandığı durumlarda ve ayrıca hesap yoğun işlem adımlarında çok etkili ve hızlı sonuçlar verdiği görülmüştür. Özellikle ortorektifikasyon amacıyla yapılan uygulamalarda aynı donanımla CPU'ya oranla 7 kat hız farklarına ulaşılmıştır.

Anahtar Kelimeler: GPGPU, CUDA, akış işleme, programlama, ortorektifikasyon, doğrudan yöneltme, görüş analizi, görüntü filtreleme.

ABSTRACT

The graphic processing units (GPU) on the graphic cards integral parts of computers are really developed today according to the last ten years. The development was the increase of the GPUs performance and

capabilities. The modern GPUs are not only became powerful graphic engines and also they are high level parallel programmable processors with very fast computing capabilities and high memory bandwidth speed compared to central processing units (CPU). The rapid development of GPUs programmability and capabilities attracted the researchers dealing with complex problems which need highly level calculation. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern. powerful and programmable processors to meet the overall needs.

In this study, some photogrammetric applictions and especially orthorectification process were coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. So we can orthorectify images with cheaper hardware in a short time.

The results obtained are evaluated; the method is really suitable for image processing and photogrammetry especially if we do the same calculations to per image pixels. Also it is suitable for intensive calculation procedures. Especially with orthorectification procedure with GPU is 7 times faster than CPU implementation and speedup is 7 times.

Keywords: GPGPU, CUDA, stream processing, programming, orthorectification, direct georeferencing, viewshed analysis, image filtering,

1. GİRİŞ

Grafik işlemci birimleri (Graphical Processing Unit-GPU) olarak bilinen ve bilgisayarlar ile ekran arayüzüne olan bircok elektronik sahip donanımın ayrılmaz bir parçası olarak kullanılmaktadır. Bilgisayar ve elektronik yıllarda yaşanan dünyasında son hızlı gelişmelerden grafik kartları da son derece etkilenmişlerdir. Bu gelişme GPU'ların hızlarının, yeteneklerinin ve performanslarının artısı doğrultusunda olumlu olmustur. yönde Bilgisayarlarda kullanılan modern GPU'lar sadece çok güçlü grafik motoru olmaktan çıkarak bilgisayar işlemcilerine (Central Processing Unit-CPU) göre aritmetik işlem yapabilme hızı ve hafıza band genişliği çok daha yüksek olan ve üst

seviyede paralel programlanabilir işlemciler halini almışlardır. GPU'ların paralel programlanabilir üzerlerinde hale gelmesi, çalışabilecek uygulamaların geliştirilmesi ve yeteneklerindeki hızlı gelişme, yüksek seviyede hesap yapma ihtiyacı olan karmaşık problemlerle uğraşan arastırmacıların voğun ilgisini cekmistir. Bu ilgi "grafik islemci birimi üzerinde genel amaclı hesaplama (General Purpose Computation on Graphic Processing Units - GPGPU)" ve "akıs işleme (stream processing)" kavramlarını ortava cıkarmıstır. Grafik islemcilerin bilgisavar işlemcilerine bir alternatif olarak gündeme gelmesinin asıl nedeni ise; çok güçlü ve bunun vanında ucuz temin edilebilir donanım olmalarıdır. Bu grafik çipler, sabit uygulama çıkarak donanımları olmaktan qünümüzde modern. güçlü ve programlanabilir genel ihtivacları karşılayabilecek işlemcilere dönüşmüşlerdir.

Çeşitli platformlardan elde edilen görüntüler özellikle harita üretiminde, görüntülerin değerlendirme sonuçlarının hızla elde edilmesi ve karar vericilere aktarılmasının gerektiği felaketlerde, orman yangınları ve depremler gibi doğal afetlerde yaşanan kriz durumlarında, askeri acidan hedef istihbaratı ve hedef konumunun hızlıca tespitinde sıklıkla kullanılmaktadırlar. Fakat bu görüntülerin anlamlı hale gelmesi ve belirtilen uvgulamalarda kullanılabilmesi icin öncelikli olarak yapılması gereken işlem adımı; bu görüntülerin ortorektifikasyonudur. Özellikle son zamanlarda yaygınlaşarak çeşitli kurum ve kuruluslar tarafından bircok uvqulamada kullanılmava baslanan insansız hava aracları (İHA) yardımıyla elde edilen görüntüler üzerinden çok hızlı karar vermek, çıkarımlar yapmak ve çeşitli hedef tespiti yaparak bu hedefleri de doğru koordinatlarla tarifleyebilmek için elde edilen görüntülerin yöneltilmesi yani ortorektifive edilmesi ihtiyacı bulunmaktadır.

Sayısal hava kameraları ve insansız hava araçları gibi çeşitli sensör ve platformlardan elde edilen görüntülerin dosya boyutları oldukça yüksektir. Haliyle bu görüntülerin ortorektifikasyonu için çok güçlü bilgisayarlara ihtiyaç vardır. Thomas ve diğ. (2008) tarafından yapılan bir çalışma incelendiğinde görüntülerin anlık ortorektifikasyonu için toplam beş adet çok güçlü donanıma sahip bilgisayarın kullanıldığı görülmektedir. Böyle bir sistemin normal ucak platformları için oluşturulabileceği, maliyet göz önüne alınmazsa mümkün olabilir. Fakat insansız gibi yapı itibariyle normal hava aracları uçaklardan çok daha küçük olan ve görüntü alımı gerçekleştirerek çok hızlı ve doğru sonuç elde

edilmesi gereken platformlarda ise böyle çoklu bilgisayar sistemlerinin kurulabilmesi pek olanaklı değildir. Aynı zamanda bu sistemlerde platform üzerindeki kamera, navigasyon sistemi gibi faydalı yük olarak ifade edilen donanımın hafif olması da son derece önemli bir faktördür. İnsansız hava araçları üzerine eklenen her bir parça sisteme ağırlık olarak etki etmekte ve bu da sistemi olumsuz yönde etkilemektedir.

calısmalara İlk denevsel Ohio State Üniversitesi'nde 1980'li villarin sonunda baslanarak. verde hareket halindeki arac üzerinde bulunan algılama sistemi yardımıyla doărudan görüntü elde edilmesi üzerinde calısmalar vapılmıştır. Ardından 1990'lı vılların basında Calgary Üniversitesi Coğrafi Bilgi Sistemi uygulamaları için karada hareketli ölçme sistemi VISAT (Video cameras, an Inertial System, and SATellite GPS receivers) 'i geliştirmiştir. Bu deneysel çalışmalarla birlikte doğrudan yöneltme yaklaşımı, hareket halindeki algılayıcının konum ve dönüklük verilerinde oluşan dış yöneltme elemanlarının belirlenmesi üzerine voğunlaşmıştır (Schwarz ve diğ, 1993; Schwarz 1993). Günümüze kadar yapılan deneysel calışmalar ve test projeleri, GPS/IMU verilerinin sinyal işleme teknikleri kullanılarak iyileştirilmesi ve bu verilerin Kalman Filtreleme yöntemi ile birleştirilmesi, klasik fotogrametrik kameralar kullanılarak doğrudan vöneltme vaklasımı, sayısal kameralar kullanılarak doğrudan yöneltme yaklaşımı ve uçakta kullanılan tarayıcı sistemler ile doğrudan yöneltme yaklaşımı konularında yapılmıştır (Yastıklı, 2003).

Amerika Birleşik Devletlerinde 11 Eylül 2001 yılında meydana gelen terörist saldırı sonrası, arama-kurtarma çalışmalarını yönlendirmek amacıyla hızlıca bölgenin haritalarının üretimi için bu yöntemden faydalanılmıştır (Yastıklı, 2003). Yapılan bu çalışma; özellikle hızlı ve acil müdahalelerin gerektiği afet durumunda, afet bölgesi ile ilgili hızlıca yorum yapabilmek ve karar verme sürecini hızlandırmak amacıyla, farklı sensör ve platformlardan elde edilen veri ve görüntülerin hiç yer kontrol noktası olmadan verileriyle doğrudan yöneltilerek GPS/IMU kullanılması ve böylelikle yöntemin geçerliliği açısından çok iyi bir örnek teşkil etmektedir.

GPU'lar aynı hesaplama işlem adımının birçok veri elemanına, özellikle yüksek aritmetik doğrulukla uygulanmasının gerektiği durumlarda çok etkili ve hızlı sonuçlar ortaya koymaktadırlar. Böylelikle yapılan hesaplama işleminin daha hızlı ve doğru olması sağlanmaktadır. Bilgisayar CPU'ları bir akış kontrolü içerisinde ve belli bir sıra ile her seferinde sadece tek bir hesaplama yaptıkları için GPU'lar ile kıyaslandığında daha yavaş işlem yapmaktadırlar. Bu yapı bilgisayar teknolojisinin kullanıldığı çok çeşitli uygulamalar için değerlendirilebilmektedir. Görüntü işleme, matris hesaplamaları gibi GPU tabanlı grafik olmayan hesaplamalar paralel veri işlemeye çok uygun yapıdadırlar.

Bu çalışma kapsamında; GPU'ların genel amaçlı paralel programlama ve hesaplama gücünü kullanarak GPGPU yöntemiyle sayısal hava kameraları, insansız hava araçları gibi çok çeşitli platformlardan elde edilebilecek görüntülerin hızlı bir şekilde gerçek zamanlı ortorektifikasyonunun yapılabilmesi için yöntem detaylı bir şekilde incelenerek, bir program algoritması ortaya çıkarılmış ve uygulanabilirliği değerlendirilmiştir.

2. GPGPU VE AKIŞ İŞLEME

GPU'lar basit OpenGL ve DirectX desteği olan arafik donanımları olmalarından cok açısından programlanabilir olmaları bircok araştırmacının ilaisini çekmiştir. GPU hesaplamanın ilk zamanlarındaki genel yaklaşım olağanüstü karmaşıktır. Çünkü OpenGL ve DirectX gibi API'ler (uygulama programlama arayüzü - application programming interface) halen GPU üzerinde hesaplama yapabilmek için kullanılabilecek, çeşitli kısıtlamaları olan ve aslında grafik programlama için tasarlanan araclardır. Bu nedenle de arastırmacılar problemlerini çözmek için genel amaçlı hesaplamaları grafik API'nin anlayacağı şekilde grafik aeleneksel işleme problemi olan renderlama işlemine benzetmenin yöntemlerini aramıslardır.

Aslında, 2000'lerin başındaki GPU'lar, piksel gölgelendirici (piksel shader) olarak bilinen programlanabilir aritmetik birimleri kullanarak ekran üzerindeki her bir pikselin rengini üretmek icin tasarlanmışlardır. Genel olarak bir piksel gölgelendirici pikselin ekran üzerindeki (x, y) konumunu ve ek bazı bilgileri girdi olarak birleştirip hesap yaparak pikselin sonuc rengini üretmektedir. Bahsedilen ek bilgiler; girdi renkleri, doku (texture) koordinatları veya çalıştırıldığında gölgelendirmeye etki edecek diğer özellikler olabilmektedir. Fakat girdi renkleri ve dokularda aritmetik uvgulanan tümüvle programci tarafından kontrol edilebilmektedir. Bu noktada araştırmacılar "girdi renklerinin" aslında herhangi bir "veri" olabileceğini keşfetmişlerdir. Gelişme bu şekilde başlayarak devam etmiştir.

Böylelikle girdiler renkten farklı olarak sayısal bir veri olarak nitelendirildiğinden, programcılar

piksel gölgelendiricileri bu veri üzerinde istenilen hesaplamaları yapmayı programlayabilmişlerdir. Elde edilen sonuçlar aynı sonuç piksel renkleri gibi GPU'ya geri dönmüş ve böylelikle bu renkler basitçe programcının girdilerini vererek GPU'ya yaptırdığı hesaplama işleminin sonucları olmuslardır. Bu veri arastırmacılar tarafından geri okunabilmiştir. Özünde GPU, bilgişayarda cizilen ham modelin vazılım vardımıvla resime açıklanan dönüstürülmesi islemi olarak renderlama islemi dısındaki hesaplama işlemlerini de sanki renderlama işlemiymiş gibi değerlendirerek, bu işlemi yapıyormuş gibi vapmıstır.

Buradaki en büvük problem, grafik islemci birimlerinin mevcut programlama yöntemlerinden farklı bir programlama modelini kullanıvor olmasıdır. Bu nedenle etkili bir GPU programlama, mevcut program algoritmasının, donanımın yapısını ve sınırlamalarını da dikkate alan grafik terimlerini kullanarak tekrardan gerektirmektedir. Mevcut vazılmasını cift çekirdekli işlemcilerin programlanabilmesi, geleneksel programlama vöntemlerivle gerçekleştirilememekte ve tipik olay yordamlı programlama yönteminin birden fazla çekirdekli işlemcilerin programlanması icin kullanılması mümkün olamamaktadır.

GPGPU için uygulanacak programlama modeli akış hesaplama (stream computingprocessing) terimiyle değişmiştir. Bu model içerisinde, akış içerisindeki her bir elemana uygulanan yoğun hesaplama işlemlerini (kernel functions-çekirdek fonksiyonları) tanımlamak için girdi verileri ve çıktı verileri birer akış olarak nitelendirilmektedir. Grafik kartları üzerinde ise bu akışları hesaplayan ve işleyen çok sayıda işlemci bulunmaktadır. Örneğin günümüzde kullanılan grafik kartlarından birisi olan Nvidia GTX780 serisi grafik kartı üzerinde 2304 adet akış işlemcisi bulunmaktadır. Bu da yan yana sıralanmış, birlikte işlem yapabilme kapasitesi olan 2304 adet tek çekirdekli işlemcisi olan bilgisayarlar kümesi gibi düşünülebilir. Bu akış işlemcileri sayesinde grafik kartları aynı anda birden fazla yoğun işlemi yapabilmektedirler.

GPU'lar CPU'lara göre çok daha fazla paralel hesap yapabilmektedirler. Bu durum Şekil 1'de bir grafikle gösterilmektedir. Burada işlemci hızını "flop" kavramı belirlemektedir. Flop; "saniye başına kayan nokta işlemi" anlamına gelmektedir. Grafik incelendiğinde Nvidia firmasının grafik işlemcilerinin, Intel firmasının bilgisayar işlemcilerine oranla 2014 yılındaki değerlere göre ortalama on kat daha hızlı olduğu görülmektedir.

Şekil 1. CPU ve GPU'nun saniyede kayan nokta işlem miktarı yıllara göre gelişimi (Nvidia, 2015).

Şekil 2. GPU ve CPU'ların band genişlikleri (Nvidia, 2015).

Hafıza band genişliği kavramı, ekran kartının islemcisi ile hafızası arasında saniyede aktarılabilen toplam veri miktarı boyutu anlamına gelmektedir. Hafıza veriyolu genişliğinin byte cinsinden değeri ile efektif frekansın çarpılmış hali olarak ifade edilir. Bellekle grafik işlemcisinin haberleşmesinin hızlı olması da grafik kartının performansını artıran bir etkendir. Saniye başına kayan nokta işlem kapasitesinin yıllar dikkate alındığında artış göstermesi paralelinde, hafıza band genişliğinde de bir gelişme olmuştur. Şekil 2 GPU'larin incelendiğinde, hafıza band genişliklerinin, CPU'lara oranla 4 kat daha fazla bir orana ulaştıkları görülmektedir.

CPU ve GPU'ların kayan nokta işlem kapasiteleri arasındaki farklılığın arkasında yatan asıl neden, GPU'ların yüksek kapasitede hassas

paralel hesap yapma ihtiyacı olan grafik renderlama (doku kaplama) işi için özel olarak tasarlanmış olmalarıdır.

Tasarımdaki bu fark Şekil 3'de gösterilmeye çalışılmıştır. Bu şekil incelendiğinde, GPU'ların CPU'lardan farklı olarak; veriyi önbellekte tutmak ve bir akış kontrolü yapmaktan çok sadece veriyi işlemek için tasarlanmış daha fazla sayıda transistöre sahip olduğu görülmektedir.

Böylelikle GPU'ların CPU'lardan farklı olarak birçok aritmetik işlemlerle dolu paralel hesaplamaları yapmak için tasarlandığı anlaşılmaktadır. GPU'lar veri dizinlerini, akış kontrolü yerine, çeşitli sıralı hesaplama iş parçaları şeklinde işlerler.

Şekil 3. CPU ve GPU'ların genel yapısı ve transistör sayısındaki farklılık (Nvidia, 2015).

3. CUDA TEKNOLOJISI

Yapılacak bir hesaplamada, tekrarlanan hesaplama işlem adımının birçok veri elemanına, yüksek aritmetik doğrulukla uygulanmasının gerektiği hallerde GPU'lar çok etkili sonuçlar vermektedir. Bunun en önemli nedeni aynı programın her bir veri elemanı için çalıştırılması ve akış kontrolüne çok az ihtiyaç duyulmasıdır.

Cok sayıdaki islemci, yani transistörlerin yardımıyla küçük veri kümelerinin her biri için program calıştırılarak hesap yapılmakta, sonucta da daha yüksek aritmetik doğruluk elde edilerek çok büyük verinin önbellekte tutulmasının önüne geçilip, hafızaya ulaşmadaki gecikmeler de önlenerek işlem süresinden kazanılmaktadır. Verinin paralel işlenmesinde, veri elemanları paralel iş parçalarına ayrılır. Birçok uygulama için bu yöntem işlem ve hesaplama hızını artırmak icin kullanılabilir. Örneğin üç boyutlu (3B) renderlama işleminde, çok büyük boyutlardaki pikseller ve verteksler birer paralel iş parçası haline getirilir ve bu şekilde GPU'lar tarafından hesaplanır ve işlenirler (Yılmaz, 2010). Benzer şekilde görüntü ölçekleme, stereo görüş ve görüntüden şekil tanıma gibi renderlanmış görüntülerin ve videoların işlenmesinde görüntü bloklar ve pikseller seklinde is parcaları haline getirilebilirler. Aslında görüntü işleme dışında sinyal işlemeden fiziksel simülasyona, finansal hesaplamadan biyolojik hesaplamalara kadar birçok algoritma paralel programlama ve paralel işlemeyi kullanarak hızlanmışlardır.

zaman önce geliştiriciler paralel Uzun icin GPU'ları kullanmayı hesaplama isleri başlardaki denemişlerdir. bu kullanım İlk girişimleri (rasterizing ve Z-buffering gibi) çok ilkeldir ve donanım fonksiyonlarını tam anlamıyla için sınırlı kalmıştır. kullanabilmek Fakat gölgelendirme işlemleri matris hesaplamalarını hızlandırmıştır.

2003 yapılan SIGGRAPH yılında konferansında hemen hemen hiç katılım olmadan gecen ve "GPU computing" için ayrılmış "GPGPU" adında bir oturum olmuştur. Burada en iyi bilinen başlık "BrookGPU" adıyla anılan akış programlama dili olmuştur. Bu programlama dilinin vavınlanmasından önce popüler olan iki vazılım geliştirme uygulaması vardır; Direct3D ve OpenGL. Fakat bunlarla sınırlı savıda GPU uygulamaları geliştirilebilmektedir. Sonrasında Brook projesi ile GPU'ların paralel işleyiciler olarak kullanılabilmelerini ve С dilivle programlanabilmelerini olanaklı kılmıştır. Stanford Üniversitesi tarafından geliştirilen bu proje, iki farklı grafik kartı tasarımcısı ve üreticisi olan NVIDIA ve ATI firmalarının dikkatlerini cekmiştir. Sonrasında ise Brook'u geliştiren bazı insanlar firmasına katılmıslar NVIDIA ve paralel hesaplama stratejisini yeni bir pazarlama birimi olarak sunmaya başlamışlardır. Böylelikle grafik donanımı doğrudan kullanabilen bir yapı ortaya çıkmıştır ve adına NVIDIA CUDA (Birleşik Hesaplama Aygıt Mimarisi - Compute Unified Device Architecture) denilmiştir.

2006 vilinin Kasım avında NVIDIA, endüstrideki ilk DirectX10 destekli GPU'su GeForce8800 GTX'i duvurdu. Bu ekran kartı avnı zamanda NVIDIA CUDA teknolojisine sahip ilk ekran kartı idi. Fakat duyuruları daha önceden olmasına rağmen NVIDIA, vapılmıs yeni teknolojisi CUDA'yı ancak 2007 yılının Şubat ayında kamuoyuna açıklayarak tanıtmıştır. Bu bir kullanıcı teknoloji genis kitlesinin gereksinimlerini karşılamak için geliştirilmiştir. En önemli ihtiyaç GPU'ların kolayca programlanabilirliğinin sağlanmasıdır. Basitlik ve paralel sadelik. GPU ile programlamanın kolaylığını ve daha fazla disiplin içerisinde gerekli kullanılabilirliğini sağlamak icin görülmüştür. CUDA'dan önce, GPU paralel programlama grafik **API**(Application Programming Interface-Uygulama Programlama Arayüzü)'lerinin gölgelendirme modelleri ile sınırlıydı. Böylelikle sadece vertex ve parça gölgelendirmesinin doğasına uvgun olan problemler GPU paralel programlama vöntemi hesaplanabilmistir. kullanılarak Avrica. dokulandırma ve GPU gereken 3B islemler için sadece kayan noktalı sayıların kullanılması GPU popülaritesini konusunun hesaplama sınırlandırmıştır. NVIDIA firması GPU paralel programlamayı kolay ve pratik hale getirebilmek için "C" programlama dilinin minimum eklentileri ile kullanımını önermiştir.

Diğer önemli bir konu ise CPU ve GPU kaynaklarının birarada kullanılabilirliğini sağlayan heterojen bir hesaplama modelinin ortaya konulması olmuştur. CUDA, programcıların kod alt parçalara bölmesine ve veriyi olanak CPU/GPU tanıyarak, mimarisi ve ilgili programlama tekniklerine uygun hale getirebilmesini sağlamıştır. Böyle bir ayrım aslında GPU ve CPU'nun her ikisinin de kendi hafizasına sahip olmasından kaynaklanmaktadır. Ru anlamda avnı zamanda mevcut tanımlamaların CPU'dan GPU'ya aktarımı mümkün olabilmektedir (Yılmaz, 2010). Kısaca CUDA teknolojisi C programlama diline dayanan, paralel hesap yapabilmek için GPU komutlarını ve video hafizavi kontrol edebilen, NVIDIA tarafından gelistirilen vazılım-donanım hesaplama mimarisidir. CUDA GPU ile programlama, daha önceki GPGPU çözümlerine göre oldukça esnek ve kolaydır.

CUDA mimarisi, NVIDIA GeForce 8x serisi ve GeForce, Quadro, Tesla gibi daha yeni model tüm grafik kartlarında kullanılabilmektedir. Veriparalel ve iş parçası-paralel mimari ölçeklenebilir bir yapıya sahiptir. Yeniden fazladan bir çaba sarfetmeden mevcut çözümü GPU üzerinde daha fazla iş parçacığı işleme kapasitesiyle uygulamak ve çalıştırmak mümkündür. Başka bir ifadeyle NVIDIA 8 serisi için yazılan bir kod, başka bir kodlamaya gerek duymadan NVIDIA Quadro için de çalışabilecek ve olduğu gibi kullanılarak daha hızlı sonuç alınabilecektir.

İyi veri paralelleştirmesi ve iş parçacığı paralelleştirmesi için NVIDIA tarafından üç özet çıkarım yapılmıştır. CUDA programlama dilini kullanarak kod yazan programcıların hayatını kolaylaştıran bu çıkarımların listesi aşağıdaki gibi verilebilir:

• İş Parçası Grup Hiyerarşisi (Thread Group Hierarchy): İş parçaları bloklar halinde paketlenir ve bu paketlenen bloklar da tek bir grid olarak paketlenir.

• Paylaşılan Hafızalar (Shared Memories): CUDA iş parçalarının çok farklı ihtiyaçları görmek için tasarlanmış altı farklı hafızayı kullanmasına olanak tanır.

• Bariyer Senkronizasyonu (Barrier Synchronization): İş parçalarının küçük bir blok halinde eşitlenmesini ve ilgili hesaplamanın diğer parçalarının daha ileriye gitmeden bitmesini bekleyen bir iş parçacığı olmasını sağlamaktadır.

CUDA için C programlama dili, GPU üzerinde çalışabilen fonksiyonların C dilini kullanarak yazılabilmesini sağlamaktadır. Bu fonksiyonlar "çekirdekler-kernels" olarak ifade edilmektedir ve bu kerneller her bir iş parçacığı için paralel olarak yeniden üretilerek işleme alınmaktadırlar. Bu vönüvle bir defa calısan geleneksel seri programlama fonksiyonlarından farklıdırlar. Bunu acıklavan bir örnek Sekil 4'de NxN bovutunda A ve B matrisinin çarpımını yapıp sonuçları C parçası matrisine vazan bir kod ile gösterilmektedir. Şekil 4'de de görüldüğü üzere iş parçacıkları için bloklar oluşturulmuştur. Bu bloklar bir, da üc boyutlu iki ya tanımlanabilmektedir.

CUDA mimarisi aşağıdaki gibi baştan sona bir iş parçacığı hiyerarşisi içerisinde çalışmaktadır:

• Grid: Bir grid bir veya iki boyutlu blokları içermektedir.

• Bloklar: Bir blok bir, iki veya üç boyutlu iş parçalarını içermektedir. Mevcut GPU'lar bir blokta 1024 iş parçasını içerebilmektedirler. Bloklar bağımsız yürütülmekte ve ölçeklenebilir bir şekilde uygun olan işlemcilere yönlendirilebilmektedir.

• İş Parçası (Thread): Bir iş parçası temel uygulama elemanıdır.

11 1	(ernel definition
g]	Lobal void MatAdd(float A[N][N], float B[N][N], float C[N][N])
{	
	<pre>int i = threadIdx.x:</pre>
	int i = threadIdx.v:
	C[i][i] = A[i][i] + B[i][i];
3	
int {	main()
	<pre>// Kernel invocation with one block of N * N * 1 threads int numBlocks = 1; dim3 threadsPerBlock(N, N); MatAdd<<<numblocks, threadsperblock="">>>(A, B, C);</numblocks,></pre>
}	
1	

Şekil 4. Kernel iş parçacığının tanımlanması.

Yukarıda bahsedilen bu hiyerarşi ve yapısı Sekil 5'de gösterilmistir. Örneğin 1048576 pikselden oluşan bir görüntü, birbirinden bağımsız paralel olarak 512 blok boyutunda, 2048 grid ile islenebilmektedir. Her bir bloktaki is parçacığı sayısı ve her bir griddeki blok sayısı <<<...>>> yazım şekli ve int ya da dim3 tipinde tanımlanabilmektedir. İki boyutlu bloklar veya gridlere örnek Şekil 4'de yer alan matris toplamı örneğinde olduğu gibi verilebilir. Gridde yer alan her bir blok, bir, iki ya da üç boyutlu olacak şekilde tanımlanabilir ve blockldx değişkeni ile kernelden bu indeks değerine erişilebilir. İş parçacığı bloğunun boyutuna da blockDim değişkeni ile kernelden ulaşılabilir.

Şekil 5. CUDA iş parçacığı hiyerarşisi (Nvidia, 2015).

Bir önceki matris toplamı işlemini çoklu bloklara ayırdığımızda kodlama ifadesi Şekil 6'da gösterildiği gibi olacaktır.

CUDA işlemcisine sahip GPU'lar, birçok çoklu iş parçacığı akış çoklu işlemcisine (streaming multiprocessors-SM) sahiptir. Bir SM'nin yapısı Şekil 7'de verilmektedir. Örneğin GTX295 GPU'su üzerinde 60 adet SM barındırmaktadır. Her bir SM de sekiz skaler işlemciye (Scalar Processors-SP) sahiptir. Şekil 7 incelenecek olursa SM'in aynı zamanda iki özel fonksiyon birimine sahip olduğu görülür: bir çoklu işlem tanımlama birimi ve çip üzerinde paylaşım hafızası.

Şekil 7. Akış çoklu işlemcisi (Streaming Multiprocessor).

Her bir SP, 32 adet iş parçacığını içeren tekil sarmal paketi eş zamanlı çalıştırabilir. Burada yer alan SFU (Special Functions Unit-Özel Fonksiyonlar Birimi) içerisinde sin, cosine, karekök ve ters alma gibi fonksiyonları içermekte ve bu fonksiyonları yerine getirmektedir.

Şekil 8. Tek komutlu çoklu iş parçacığı mimarisi.

SIMT (Single Instruction Multiple Thread -Tek Komutlu Çoklu İş Parçacığı) mimarisi eş zamanlı çok sayıda iş parçacığını yönetebilmektedir. Her bir tekil sarmal içindeki her türlü konuyu işleyen SIMT birimi, bütün SM'lerin herbiri için ayrı ayrı mevcuttur. SIMT'nin açıklamalı bir gösterimi Şekil 8'de verilmiştir. Her seferinde genel komut her bir adımda aktif iş parçacığına uygulanmaktadır. Böylelikle, her iş parçacığı aynı uygulama yolunu takip ederek performansın artmasını sağlamaktadır. Fakat dallanma nedeniyle sarmal içerisindeki iş parçacıkları genel komut gelene kadar beklemektedir, bu da bir miktar gecikmeye sebep olmaktadır. Bunun önüne geçmek ve iyi performansı en yakalayabilmek için, benzer paralel iş parçacıkları sıralı olarak düzenlenmelidir. Bu da ancak algoritmanın ve programın tasarım asamasında vapılmalıdır.

Bu aşamadan sonra karşımıza diğer bir etken olarak GPU hafızası çıkmaktadır. GPU paralel programlamanın ne kadar etkin olduğu, GPU hafızasının ne kadar iyi kullanıldığına bağlıdır.

Yukarıdaki anlatımlar ışığında genel olarak CUDA işlem akışı dört adımdan oluşmaktadır ve şu şekilde özetlenebilir: • Veri ana hafizadan GPU hafizasına kopyalanır.

• CPU yapılacak işlemi GPU ya aktarır.

• GPU her bir çekirdek için paralel işlemi yürütür.

• Sonuçlar GPU hafızasından ana hafızaya kopyalanır.

Bu adımlar bütün uygulamalar için geçerlidir. Bu adımların nasıl işlediği Şekil 9'da gösterilmeye çalışılmıştır.

Şekil 9. CUDA işlem akışı.

4. CUDA İLE PROJEKTİF REKTİFİKASYON

Ortorektifikasyon amacıyla kullanılabilecek rektifikasyon yöntemlerinden biri olan projektif dönüşüm yöntemi, çalışma içerisinde örnek bir uygulama için kullanılmıştır. Projektif dönüşümün uygulanabilmesi için resim düzlemi ile izdüşüm düzlemi arasındaki geometrik dönüşüme ihtiyaç vardır. Projektif dönüşüm denklemindeki sekiz bilinmeyenin çözülebilmesi için obje düzleminde koordinatları bilinen en az dört kontrol noktası gereklidir. Projektif dönüşüm daha çok, özellikle arazi yüzeyinin düz olduğu alanlar, bina cepheleri gibi detayların yer aldığı hava resimlerinin yöneltilmesi için uygulanabilirdir ve rölyef etkisini ortadan kaldırmamaktadır (Novak, 1992).

Yapılan bu örnek uygulamada bir düzlem alanda çekilen 4096x4096 piksellik bir örnek görüntü değerlendirilmiştir. Bu uygulama içerisinde kodlanacak program için işlem adımları aşağıdaki gibi özetlenebilir:

• Görüntü Koordinatları ve Obje Koordinatları girdi olarak kullanılır.

• Matris yapıda denklem sistemi yazılır ve bu denklem sistemi çözülerek katsayılar hesaplanır.

• Katsayıları hesaplanan denklemler ile bilinmeyen obje koordinatları, görüntü üzerindeki her bir pikselin görüntü koordinatlarından hesaplanır.

• Hesaplanan obje koordinatları bir dosyaya yazdırılır.

• Üçüncü ve dördüncü sıradaki işlem adımları her bir piksel için tekrarlanır.

Yukarıda verilen işlem adımları da dikkate alınarak örnek görüntü üzerinde obje ve resim koordinatları bilinen dört adet nokta secilmistir. Bu noktalar yardımı ile denklem sistemi çözülmüş ve denklem katsavıları hesaplanmıştır. Bu asamanın ardından katsayıları belirlenen denklem yardımı ile görüntü üzerindeki her bir uzayındaki koordinatları pikselin obie hesaplanmıştır. Bu yapılan islemler icin geliştirilen algoritma CUDA programlama dili kullanılarak kodlanmış ve programın hem CPU, hem de GPU'yu kullanarak aynı işlemleri yapması sağlanarak, işlem süreleri arasındaki farklar karsılaştırılmıştır. Kodlanan program calıştırıldığında elde edilen ekran görüntüsü Sekil 10'daki gibidir.

Yapılan çalışmada uygulanan projektif dönüşüm ile ortorektifikasyon yöntemi, görüntüyü oluşturan her bir piksel için tekrarlanmaktadır. Böyle bir durumda CUDA programlama dili kullanılarak problem iş parçalarına bölünüp dağıtık bir şekilde, birçok grafik işlemciye aynı anda verilip, hesaplama sonuçları elde edilmektedir.

🛯 c:Documents and SettingsVAII UsersVapplication DataWVIDIA CorporationWVI	- 🗆 X
CUDA Process: Orthorectifying an image 4096 by 4096	
CUDH Process average time: 175.593 ms CPU Process: Orthorectifying an image 4096 by 4096	
CPU Ortho Rectification time: 790.991 ms	
Object Coordinates: hobjectcoords[0 0] x=1821.069 v=2479.221	
Object Coordinates: hobjectcoords[0 1] x=-29824.645 y=4809.306	
Object Coordinates: hobjectcoordsL 0 2 J x=-10760.963 y=3405.640 Object Coordinates: hobjectcoordsL 0 3 J x=-8656 944 u=3250 721	
Object Coordinates: hobjectcoords[0 4] x=-7848.456 y=3191.191	
Object Coordinates: hobjectcoords[05]x=-7420.601 y=3159.688	
Object Coordinates: hobjectcoords[0 6 J x=7155.776 y=3140.171 Object Coordinates: hobjectcoords[0 7] x=-6975.755 y=3126.934	

Şekil 10. Projektif rektifikasyon programı.

Sonuçta program hem CUDA mimarisini kullanarak grafik kartı üzerindeki işlemcileri kullanarak işlem yapmakta, hem de mevcut CPU'yu kullanarak aynı işlemi tekrarlamaktadır. Her iki farklı yöntem için de işlem süresi Şekil 10'da görülmektedir.

Proiektif dönüsüm ile ortorektifikasyon hesaplama sonucları uygulamasının incelendiğinde, yapılan hesaplamanın GPU süresi 175,593 milisaniye iken, aynı işlem CPU 790,991 yapıldığında üzerinde milisanive olmaktadır. Aradaki bu fark hesaplandığında, GPU ile vapılan islemin CPU ile vapılan isleme göre vaklasık 4,5 kat hızlı olduğu görülmektedir. Bu vapılan uvgulama icerisinde kullanılan 4096x4096 boyutunda bir görüntü yerine daha kücük boyutlarda görüntülere avni islem uygulandığında CPU'nun performansının iyileştiği Tablo 1'de görülmektedir. Bu da çok yoğun ve tekrarlı hesap gerektiren problemlerde GPU'nun daha hızlı sonuçlar ürettiğini ortaya koymaktadır. Aynı uygulama icerisinde 14430 x 9420 boyutundaki örnek bir görüntü de uygulamaya sokulmuş ve Tablo 1'de gösterilen hız farkına ulaşılmıştır.

Tablo 1. GPU ve CPU ile yapılan uygulamanın hız testi sonuçları.

Görüntü Boyutu (piksel)	GPU Zamanı (milisaniye)	CPU Zamanı (milisaniye)	CPU / GPU (oran)
1024 x 1024	14,090	48,917	3,47
2048 x 2048	75,994	190,626	2,51
4096 x 4096	175,593	790,991	4,50
14430 x 9420	414,238	2823,654	6,82

5. CUDA İLE DİFERANSİYEL ORTOREKTİFİKASYON

Diferansiyel ortorektifikasyon, kavnak görüntünün ortogonal bir projeksiyonla piksel bazında referans düzlemine izdüşümü olarak kısaca ifade edilebilir. Bu noktada gerçek zamanlı ortorektifikasyona ihtiyaç duyulan çalışmalarda, görüntülerin doğrudan ortorektifikasvonu diferansivel ortorektifikasvonun asamasında kullanılabileceği değerlendirilerek, calisma içerisinde diferansiyel ortorektifikasyon yöntemi de kullanılmıştır.

Uygulama, projektif rektifikasyonda olduğu gibi, görüntüyü oluşturan her bir piksel için tekrarlanmaktadır. Böylelikle de CUDA programlama dili kullanılarak problem iş parçalarına bölünüp dağıtık bir şekilde, birçok grafik işlemciye aynı anda verilip, hesaplama sonuçları elde edilebilecek yapıdadır.

Bu noktadan hareketle, diferansiyel ortorektifikasyon için ortaya konulan algoritma, CUDA programlama dili ile kodlanmış ve diferansiyel ortorektifikasyonu gerçekleştiren bir uygulama ortaya çıkarılmıştır. Uygulama ile diferansiyel ortorektifikasyon hem grafik kartı üzerindeki işlemciler kullanılarak yapılabilmekte, hem de mevcut CPU kullanılarak yapılabilmektedir. Her iki farklı yöntem için de işlem süreleri Tablo 2'de verilmiştir.

Şekil 11. Diferansiyel ortorektifikasyon iş akışı (Karslıoğlu vd., 2005).

Tablo 2. GPU ve CPU ile yapılan uygulamanın hız testi sonuçları.

Görüntü Boyutu (piksel)	GPU Zamanı (milisaniye)	CPU Zamanı (milisaniye)	CPU / GPU (oran)
1024 x 1024	84675	324563	3,83
2048 x 2048	342634	934547	2,73
4096 x 4096	1328234	6827282	5,14
14430 x 9420	3824302	28129128	7,35

6. SONUÇ VE ÖNERİLER

Yapılan bu çalışmada grafik kartlarının yani GPU'ların GPGPU yönteminin genel amaçlı paralel programlama ve hesaplama gücünün fotogrametrik çalışmalar amacıyla ve özellikle ortorektifikasyon uygulamalarında nasıl kullanılabildiği üzerinde durulmuş, uygulamalar yapılmış ve çeşitli sonuçlar elde edilmiştir.

Çalışma içerisinde yapılan uygulamalardan da görüleceği gibi, etkili bir GPU programlama, mevcut program algoritmasının, donanımın yapısını ve sınırlamalarını da dikkate alan grafik terimlerini kullanarak tekrardan yazılmasını gerektirmektedir. Halen çok çekirdekli işlemcilerin programlanabilmesi, geleneksel programlama yöntemleriyle gerçekleştirilememektedir. Tipik olay yordamlı programlama yönteminin birden fazla çekirdekli işlemcilerin programlanması için kullanılması mümkün olamamaktadır.

Yapılan uygulamalarda elde edilen sonuçlar değerlendirildiğinde, yöntemin fotogrametrinin görüntü işlemeyi gerektirdiği ve aynı işlem adımlarının her bir piksel için tekrarlandığı durumlarda ve ayrıca hesap yoğun işlem adımlarında çok etkili ve hızlı sonuçlar verdiği görülmektedir. Özellikle ortorektifikasyon amacıyla yapılan uygulamalarda aynı donanımla CPU'ya oranla 7 kat hız farklarına ulaşılmıştır.

Sonuçlar biraz daha detaylı incelendiğinde görüntü boyutu büyüdükçe CPU'nun performansının düştüğü, GPU'nun ve GPGPU yönteminin performansının arttığı görülmektedir. Yapılan bu uygulamaların sayısı ve çeşitliliği arttırılabilir. Hızın ve hızlı karar verme sürecinin etkili olduğu, hesaplama işleminin çok yoğun olarak kullanıldığı problemler için benzer yöntemlerin uygulanabilir olduğu görülmektedir.

Günümüzde harita üretiminde. özellikle görüntüler üzerinden değerlendirme sonuclarının vericilere elde edilmesi ve karar hızla aktarılmasının gerektiği felaket senaryolarında, orman yangınları ve depremler gibi yaşanan doğal afetlerde ve kriz durumlarında, özellikle askeri acıdan hedef istihbaratı ve hedef konumunun hızlıca tespitinde cok cesitli platformlardan elde edilen görüntüler sıklıkla kullanılmaktadırlar. Bu görüntülerin anlamlı hale uygulamalarda aelmesi ve belirtilen kullanılabilmesi için öncelikli olarak yapılması gereken islem adımı; bu görüntülerin ortorektifikasyonudur.

Özellikle son zamanlarda yaygınlaşarak çeşitli tarafından kurum ve kuruluşlar birçok uygulamada kullanılmaya başlanan İHA'lar vardımıyla elde edilen görüntüler üzerinden cok hızlı karar vermek, çıkarımlar yapmak ve çeşitli hedef tespiti yaparak bu hedefleri de doğru koordinatlarla tarifleyebilmek icin elde edilen yöneltilmesi aörüntülerin vani ortorektifive edilmesi ihtiyacı bulunmaktadır. Bu amaca yönelik olarak çekilen görüntüler bir depolama ünitesinde depolanmakta ve ardından elde edilen görüntüler İHA yere indirildikten sonra yerdeki istasyonlarda yer alan güçlü işlemcilere ve donanıma sahip bilgisayarlar yardımıyla ortorektifikasyon islemine tutularak tabi koordinatlandırılmakta ve bu aşamadan sonra da

koordinatlı olarak kullanılabilir hale gelmektedir. Bu kapsamda uygulama içerisinde ortaya konulan yöntemle; GPU'ların genel amaçlı paralel programlama ve hesaplama gücünü kullanarak GPGPU yöntemiyle sayısal hava kameraları ile elde edilen görüntülerin, insansız hava araçları gibi çok çeşitli platformlardan elde edilebilecek görüntülerin hızlı bir şekilde gerçek zamanlı ortorektifikasyonunun yapılabileceği değerlendirilmektedir.

Çalışma kapsamında yapılan ve ortaya konulan uygulamalarda yazılan CUDA kodu içerisinde herhangi bir optimizasyon çalışması Literatür incelendiăinde yapılmamıştır. GPGPU'nun uygulandığı başka uygulamalarda CUDA kodunun optimize edilmesivle görülmüştür. performansin arttığı Calisma kapsamındaki uygulama içerisinde de şayet bu gerçekleştirilmiş optimizasvon olsavdı, uygulamaların performansının artması kaçınılmaz olacaktır. İlerleyen çalışmalarda bu optimizasyonun da yapılarak, uygulamaların performans değerlerinin artırılabileceği değerlendirilmektedir.

Yapılan bu calısmavla, daha önce cesitli platformlardan edilen görüntülerin elde ortorektifikasyonu icin kullanılmamıs olan bir yöntem ile donanım altyapısı kullanılmış ve programlama algoritması uygulanmıştır. Çalışma gerçekleştirilen uygulamalar icerisinde ile GPGPU yöntemi kullanılarak görüntülerin çok hızlı ve donanım olarak çok daha ekonomik bir ortorektifikasyonunun yapılabileceği sekilde değerlendirilmektedir. Böylece, bu çalışmayla halen anlık karar verme ve hedef tespiti için çok önemli bir unsur olan zaman faktörünün en aza indirilmesi için bir yöntem ortaya konulmuş ve bu yöntemin geliştirilmesi için de bir başlangıç yapılmıştır.

KAYNAKLAR

- Bettemir O.H., (2006), Sensitivity and Error Analysis of a Differential Rectification Method for CCD Frame Cameras and Pushbroom Scanners, Master Thesis, METU, Ankara.
- Biesemans, J and Everaerts, J., (2006), **Image Processing Workflow for the Pegasus HALE UAV Payload**, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Antwerp, Belgium.

- Gruen, A. and Beyer, H., (2001), Calibration and Orientation of Cameras in Computer Vision, Springer Series in Information Sciences. Vol. 34, Springer-Verlag Berlin Heidelberg.
- Jacobsen, K., (2002), Calibration aspects in direct georeferencing of frame imagery, In: Int. Archives PhRS (34), 1 I, pp. 82-89, Denver.
- Karslioglu, M.O., Friedrich J., (2005), A New Differential Geometric Method to Rectify Digital Images of the Earth's Surface Using Isothermal Coordinates, IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, March.
- Kiracı, A.C., (2008), Direct Georeferencing and Orthorectification of Airborne Digital Images, Master Thesis, METU, Ankara.
- Kraus, K., (2007), Fotogrametri Cilt 1 Fotoğraflardan ve Lazer Tarama Verilerinden Geometrik Bilgiler, Istanbul Technical University, Nobel Yayın Dağıtım, 1.Basım.
- Mercedes Marqu'es, Gregorio Quintana-Ort'ı, Enrique S. Quintana-Ort'ı, Robert van de Geijn, (2009), Using graphics processors to accelerate the solution of out-of-core linear systems, 8th IEEE International Symposium on Parallel and Distributed Computing, Lisbon.
- Novak, K., (1992), **Rectification of Digital Imagery**, Photogrammetric Engineering and Remote Sensing, 339-344.
- Nvidia, (2011a), **OpenCL Programming Guide for the CUDA Architecture**, Nvidia Corp., California, USA.
- Nvidia, (2011b), **CUDA C Programming Guide**, Nvidia Corp. California, USA.
- Nvidia, (2015), **CUDA** Architecture, Introduction and Overview, Nvidia Corp., California, USA.
- Schwarz, K., P. (1993), IntegratedAirborne Navigation System for Photogrammetry, Photogrammetric Week'95, Wichmann, Germany.

- Schwarz, K., P., Chapman, M., E., Cannon, E., Gong, P. (1993), An Integrated INS/GPS Approach to the Georeferencing of Remotely Sensed Data, Photogrammetric Engineering & Remote Sensing, 59(11), (pp.1667-1674).
- Skaloud, J. (2002), Direct Georeferencing in Aerial Photogrammetric Mapping, Photogrammetric Engineering & Remote Sensing, 68(3), (pp.207-210).
- Şahin, H. & Külür, M., S. (2011), GPGPU Yöntemi İle Fotogrametrik Uygulamalar, Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği VI. Teknik Sembozyumu TUFUAB, Antalya, Türkiye; Şubat 21-25.
- Sahin. Η. & Külür. M.. S. (2012).Orthorectification By Using GPGPU of the Method, International Archives Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4. Melbourne, Australia; August 25-September 01.
- U. Thomas, F. Kurz, D. Rosenbaum, R. Mueller, Reinartz. (2008). GPU-based Ρ. of Digital Airborne Orthorectification Camera Images in Real Time. The International Archives Of The Photogrammetry, Remote Sensing And **ISPRS** Spatial Information Sciences, Congress Beijing, Volume XXXVII Part B1 Commission I.
- White, S. and M Aslaksen, (2006), **Use of Direct Georeferencing to Support Emergency Response**,. NOAA's PERS Direct Georeferencing Column.
- Yastıklı, N., (2003), GPS/IMU Verilerini Kullanarak Hava Fotoğraflarının Doğrudan Yöneltilmesi ve Birleştirilmiş Blok Dengeleme Olanakları, Doktora Tezi, Yıldız Teknik Üniversitesi, İstanbul.
- Yilmaz, E., (2010), Massive Crowd Simulation with Parallel Processing, PhD Thesis, Information Systems Department, METU, Ankara.

CSRS-PPP Yazılımının Uzun Dönemli GNSS Zaman Serilerinin Oluşturulmasında ve Nokta Hızlarının Kestirilmesinde Kullanılabilirliği

(Usability of Generating Long Term GNSS Time Series Using CSRS-PPP and Site Velocity Estimation)

Cemal Özer YİĞİT¹, Behlül Numan ÖZDEMİR², Salih ALÇAY³, Ayhan CEYLAN²

¹ Gebze Teknik Üniversitesi Mühendislik Fakültesi Jeodezi ve Fotogrametri Mühendisliği ² Selçuk Üniversitesi Mühendislik Fakültesi Harita Mühendisliği ³ Necmettin Erbakan Üniversitesi Mühendislik ve Mimarlık Fakültesi Harita Mühendisliği cyigit@gtu.edu.tr

ÖZET

Son yıllarda PPP (Precise Point Positioning) yöntemiyle konum belirleme doğruluğunun artması yönteme olan ilginin artmasına ve vöntemin daha yaygın kullanılır hale gelmesine neden olmuştur. CSRS-PPP (The Canadian Spatial Reference System-PPP), APPS (Automatic Precise Positioning Service) v.b. gibi Web-Tabanlı PPP yazılımlarla tek nokta GNSS verileri herhangi bir ücret ödemeksizin statik ya da kinematik yöntemlerden biri ile kolaylıkla değerlendirilebilmektedir. Bu yazılımların temel prensibi gözlem verilerinin RINEX (The Receiver Independent Exchange Format) formatinda Web ara yüzleri kullanılarak sunuculara gönderilmesi ve sunucu tarafından hesaplama sonuçlarının web den doğrudan ya da e-posta yolu ile gönderilen linkten indirilmesi işlemine dayanır.

Bu çalışmada, CSRS-PPP yazılımının uzun dönemli zaman serilerinin üretilmesinde ve bu zaman serilerinden nokta hızlarının kestirilmesindeki performansı değerlendirilmiştir. Bu amaçla, IGS (International GNSS Service) ağından seçilen 3 noktanın uzun dönemli zaman serileri günlük PPP çözümleri ile elde edilmiştir. CSRS-PPP yazılımı kullanılarak elde edilen zaman serilerinden nokta hızları robust regresyon yöntemi ile kestirilmiş ve JPL (Jet Propulsion Laboratory) zaman serileri kullanılarak kestirilen nokta hızlarıyla karşılaştırılması yapılmıştır.

Anahtar Kelimeler : PPP, CSRS-PPP, IGS, JPL, GNSS Zaman Serisi

ABSTRACT

Recently, the improvement in the accuracy of positioning with PPP (Precise Point Positioning) method has caused an increase in interest and to become more widely used. Using the web-based PPP softwares such as CSRS-PPP (The Canadian Spatial Reference System-PPP), APPS (Automatic Precise Positioning Service), etc., stand-alone GNSS data can be easily processed in both static and kinematic mode without any payment. The basic principle of these software is to send observation data in RINEX (The Receiver Independent Exchange Format) format from web interface and to download results via a link received by e-mail.

In this study, performance of the CSRS-PPP software was evaluated in terms of generating long-

term time series and estimating station velocity. For this purpose, time series of three stations from IGS (International GNSS Service) network is generated by daily PPP solutions. The velocities of these stations based on time series generated from CSRS-PPP were estimated by means of robust regression methods and they were compared with the velocities estimated from JPL (Jet Propulsion Laboratory) time series.

Keywords: PPP, CSRS-PPP, IGS, JPL, GNSS Time Series

1. GİRİŞ

PPP kavramı 1970'lerde ortaya çıkmış olup matematik temelleri Zumberge v.d. (1997) tarafından verilmiştir (Huber, v.d., 2010). Yöntem, tek bir alıcı ile yüksek doğrulukta nokta konum bilgisine erişmeyi amaçlamaktadır. Sıfır fark vönteminin özel bir durumu olan PPP tekniği ile belirlemede konum anlamlı ivilesmeler sağlanmış, özellikle internet tabanlı değerlendirme olanakları sayesinde kullanımı oldukça yaygınlaşmıştır (Kouba ve Héroux, 2001; Cai, v.d., 2007; Alkan, 2009; Şanlı ve Tekiç, 2010; Martin, v.d., 2011; Ocalan ve Alkan, 2012; Yigit, v.d., 2014). Popülerlik yöntemin kullanım kolaylığı sağlaması, giderek artan konum doğruluğu sunması ve ikinci bir alıcıya, yani herhangi bir sabit noktaya, ihtiyaç duymamasından kaynaklanmaktadır.

PPP vöntemi: kara (Anguela, v.d., 2013), hava (Gao, v.d., 2005) ve denizde (Geng, v.d., 2010; Alkan, v.d., 2015) sevir halinde bulunan objelerin izlenmesi gibi kinematik uygulamalarda, ver kabuğu hareketlerinin izlenmesinde (Savage, v.d., 2004), GPS sismolojisinde (Kouba, 2003), yer yakın uydu yörüngelerinin tespitinde (Bock, 2003), Jeodezik konum belirleme v.d., uygulamalarında (Ebner ve Featherstone, 2008; Bahadur ve Üstün, 2014) yapı sağlığının izlenmesinde (Yigit, 2016) v.b. uygulamalarda etkin bir şekilde kullanılmıştır.

PPP yöntemiyle statik veya kinematik modda kestirimi yapılan parametreler, 3 boyutlu konum koordinatları, alıcı saat hatası, lokal troposferik zenith gecikmeleri ve taşıyıcı faz belirsizlikleridir. En iyi konum doğrulukları, GNSS çift frekanslı alıcı, IGS hassas uydu yörünge ve saat hata ürünleri kullanılarak elde edilmektedir (Kouba ve Héroux, 2001). Diğer etkenlerin yanı sıra, yüksek doğruluk ve tekrar edilebilirlik GNSS verisinin uzunluğuyla doğrudan ilişkilidir. Toplanan GNSS verisinin uzunluğu arttıkça konum doğruluğu ve tekrar edilebilirliği artmaktadır. Yöntemle elde edilen koordinatların doğrulukları ve tekrar edilebilirlikleri cm ile dm arasında değişmektedir. Özellikle günlük (24 saatlik) verilerle yatayda 1 cm ve düşeyde 2 cm altında doğrulukla konum bilgileri elde edilebilmektedir (Yiğit v.d., 2014).

GNSS verilerinin islenmesi ve koordinat bilgilerinin üretilmesi icin günümüzde bircok ticari ve bilimsel yazılım mevcuttur. Ancak bu yazılımların kullanılabilmesi belirli bir uzmanlık seviyesi ve deneyimli personel gerektirmektedir. Bu yüzden günümüzde, kullanıcı dostu ve basit arayüzlü, yüksek doğrulukta nokta konumu belirleyebilen Web-Tabanlı online servisler geliştirilmiştir. PPP tabanlı bu yazılımlara CSRS-PPP (URL-1), JPL-APPS (URL-2) ve MagicGNSS (URL-3) örnek olarak verilebilir.

CSRS-PPP ve APPS gibi web-tabanlı PPP servisleri, bir üvelik sistemiyle calışırlar. Herhangi bir e-posta adresi ile kavıt olunan ve hesap servisler. değerlendirme olusturulan bu sonuçlarını bu e-posta adresine gönderirler. CSRS-PPP ve APPS servislerinde Web arayüzünden değerlendirme türü secilerek gözlem dosyaları sisteme yüklenir. Bu makalenin yazıldığı tarih itibariyle; JPL-APPS her bir RINEX vükleme asamasında en fazla 10 MB dosya boyutu ile kullanıcıyı sınırlandırırken, CSRS PPP ve MagicGNSS için böyle bir sınırlama söz konusu değildir. MagicGNSS in ücretli olması ve JPL-APPS nin veri sınırlaması sebebiyle, makalede CSRS-PPP yazılımı kullanılmış ve değerlendirilmiştir.

Bu çalışmada, CSRS-PPP yazılımının uzun dönemli zaman serilerinin otomatik ve hızlı bir sekilde olusturulması ve nokta hızlarının kestirilmesinde kullanılabilirliği arastırılmıştır. Bu amacla, IGS ağından secilen 3 noktanın uzun dönemli yer değiştirmeleri CSRS-PPP yazılımı günlük çözümlerine bağlı olarak üretilmiş ve nokta hızları kestirilmiştir. CSRS-PPP ye dayalı olarak kestirilen hızlar JPL zaman serilerine bağlı olarak kestirilen hızlarla karşılaştırılmıştır. Çalışmada ayrıca, GNSS verilerinin CSRS-PPP yazılımı kullanılarak otomatik değerlendirilmesi ve GNSS zaman serilerinin oluşturulması problemine hızlı çözüm sağlaması için yazarlar tarafından geliştirilmiş "Quick-PPP" yardımcı yazılımı kısaca tanıtılmıştır.

2. CSRS-PPP YAZILIMI

CSRS-PPP servisi 2003 yılında sürüm 1.0 olarak genel kullanıma açılmıştır. Günümüze kadar birçok güncelleme yapılan bu servise en son güncelleme Eylül 2014 de yapılmıştır. Programın web arayüzü Şekil 1 de görülebilir.

Precise Point Positioning	Account settings Sign out
Help for CSRS PPP (Updated 2014-09-04)	
Email for results (required)	
cyigit@gtu.edu.tr	
Processing mode	
🖲 Static 🔘 Kinematic	
NAD83 ITRF	
 The epoch will be the same as the GPS data. A UTM zone will be calculated from the longitude. 	
Vertical datum	
CGDV28(HT2_C ·	
 More options 	
RINEX observation file (required) (.zip, .gzip, .gz, .Z, .770)	
Choose File ankr0010.10o	
Submit to PPP	

Şekil 1. CSRS-PPP Web arayüzü

Yazılım şu anda post-process olarak hem statik hem de kinematik modda tek ya da çift frekanslı sabit ya da hareketli platformda toplanmış GNSS (GPS ve GLONASS) verilerini değerlendirebilmektedir. Yazılım GLONASS verilerini 1650 inci GPS haftasından itibaren deăerlendirebilmektedir. Sonuçlar ITRF ya da NAD83 referans cercevesinde üretilebilmektedir. CSRS-PPP verileri değerlendirdikten sonra, sonuçları görsel çıktılar ve genişletilmiş analiz raporlari ile birlikte kullanıcıya e-posta yoluyla göndermektedir. Sonuçlar içerisinde hem kısa hem de detaylı özet raporları mevcuttur. Özellikle ".sum" uzantılı dosvada girdiler. veri değerlendirmede kullanılan parametreler ve cıktı sonuçları detaylı bir şekilde özetlenmektedir. Bu ".sum" uzantılı dosyada özetle aşağıdaki bilgiler verilmektedir:

• İlk bölüm, değerlendirme sırasında kullanılan giriş, çıkış ve iç dosya adlarını belirten bir dosya özetidir.

 İkinci bölüm, değerlendirmede kullanılan veriler ve parametreler hakkındaki bilgileri içerir.
 Bunlar, (a) faz sıçraması, (b) uydu anten faz merkezi kayıklıkları, (c) kullanıcı anteni faz merkezi kayıklığı, (ç) ITRF ve NAD83 arasında dönüşüm parametreleri, (d) okyanus yüklemesi katsayıları ve (e) meteorolojik veriler bulunur.

• Üçüncü bölümde, (a) değerlendirme seçenekleri (b) oturum bilgileri (c) koordinat tahminleri (ç) koordinat farkları (d) alıcı saat tahminleri ve (e) gözlem kalıntıları raporlanır. CSRS-PPP yazılımına ilişkin daha fazla bilgiye ilgili web sayfasından ulaşılabilir (URL-1).

3. QUİCK-PPP YAZILIMININ ARAYÜZÜ VE ÖZELLİKLERİ

"Quick-PPP" yazılımı, Web tabanlı PPP uyqulamaları icin. veri isleme adımlarını hızlandırmakta ve otomatik hale dönüstürmektedir. Yazılım .Net Framework 4.5 kullanılarak programlanmıştır. Programın temel çalışma prensibi, belirlenen sunuculardan bir ya da birden fazla noktanın RINEX verilerinin bilgisayara indirilmesi, bu verilerin düzenlenerek CSRS-PPP sunucusuna gönderilmesi, değerlendirme işleminden sonra e-posta yoluyla gelen sonuc dosvalarının ve her bir zaman etiketine ait nokta koordinat ve KOH (Karesel Ortalama Hata) deăerlerinin ilaili sonuc dosyasından cekilerek bir ".txt" dosyasına sıralı olarak kaydedilmesidir. Programın genel akış şeması Şekil 2'de verilmektedir.

Şekil 2. "Quick-PPP" Program Akış Şeması

Program ilk çalıştırıldığında ana ekran açılır (Şekil 3). Ana ekranda; "Process", "Help" ve "Go To" olmak üzere üç ana menü seçeneği bulunur. Bu ana menüler alt menülere ayrılmakta ve kullanıcıya farklı olanaklar sunmaktadır. Mevcut sürümünde üç farklı değerlendirme seçeneği bulunmaktadır. Yardım menüsü (Help) içerisinde program hakkında bilgiler, kullanıcı için teknik açıklamalar ve örnek veri ile işlem yapabilme seçenekleri vardır. "Go To" menüsünde programda kullanılan Web tabanlı sistemlere doğrudan ulaşım sunan link'ler mevcuttur.

(a)

(b)

Şekil 3. (a), (b), (c) Ana Ekran Grafik Arayüzü

4. "QUICK-PPP" YAZILIMI İLE UZUN DÖNEMLİ ZAMAN SERİLERİNİN OTOMATİK OLUŞTURULMASI

Bu çalışma kapsamında seçilen, 3 IGS noktasına ilişkin bilgiler Tablo 1 de verilmiştir.

Bu noktaların, 1 Ocak 2004 - 31 Aralık 2013 tarihleri arasındaki (10 yıl) günlük CSRS-PPP çözümleri "Quick-PPP" yardımcı yazılımı aracılığı ile yaptırılmıştır.

Nokta Adı	Ülke	Enlem (Derece)	Boylam (Derece)	Yükseklik (m)	Alıcı Tipi	Anten Tipi	Uydu Sistemi
ANKR	Türkiye	39.8875	32.7583	974.8	TPS E_GGD	TPSCR3_GGD	GPS+GLO
MAR6	İsveç	60.5950	17.2583	75.4	JAVAD TRE_G3TH DELTA	AOAD/M_T OSOD	GPS+GLO
MAW1	Antartika	-67.6047	62.8706	59.184	LEICA GRX1200GGPRO	AOAD/M_T	GPS+GLO

Tablo 1. IGS Nokta yer, alıcı, anten, uydu sistemleri ile ilgili bilgiler

"Quick-PPP" yazılımı bu noktaları aşağıda belirtilen sırada değerlendirilmesi yapılmak üzere CSRS-PPP yazılımına göndermiş ve gelen sonuçları düzenlemiştir.

• Yazılım ilk olarak belirtilen nokta ve tarih aralığındaki RINEX verileri IGS arşivinin bulunduğu ftp alanından tek tek sırayla bilgisayarın belirtilen sürücü ve klasörüne indirir.

• İndirilen günlük RINEX dosyaları ilgili klasörde 20'li paketler halinde otomatik olarak ".zip" formatında sıkıştırır ve CSRS-PPP yazılımına sırayla yükler.

• Sonuçların gönderileceği e-posta hesabını her 10 dakikada bir kontrol eder ve CSRS-PPP den gelen bir e-posta varsa hemen ilgili linkten sonuçları bilgisayara indirir.

• İndirilen sonuç dosyaları sıkıştırılmış formattadır. Bu dosyaları otomatik olarak açar ve ".sum" uzantılı dosyadan koordinatları ve KOH değerlerini zaman etiketleriyle birlikte sırasıyla ".txt" uzantılı dosyaya kaydeder.

• Yukarıda anlatılan her bir işlem noktaya ilişkin tüm veri seti bitene kadar tekrar eder.

5. CSRS-PPP VE JPL ZAMAN SERİLERİNDEN NOKTA HIZLARININ KESTİRİLMESİ VE KARŞILAŞTIRILMASI

Noktalara ilişkin uzun dönemli zaman serileri, nokta hızlarının kestirilmesi, zamana bağlı nokta ver değiştirme davranışlarının incelenmesi va da yer bilimleri açısından bölgesel deformasyon ya da fayların izlenmesi v.b. amaclar icin kullanılabilir. "Quick-PPP" yazılımının şuan ki sürümü henüz zaman serisi analizini icermediği olusturulan dosvaların zaman serileri icin yazılımı yardımıyla MATLAB incelenmistir. CSRS-PPP günlük koordinat çözümü ile oluşturulmuş zaman serilerinden nokta hızları kestirilmiştir. CSRS-PPP ile elde edilen zaman serilerinin ve bu zaman serilerinden kestirilen hızların karşılaştırılması amacıyla, CSRS-PPP ile aynı zaman aralığına karşılık gelen JPL zaman

serileri (URL-4) ilgili web alanından indirilmiş ve nokta hızları kestirilmiştir.

JPL 1995 yılından bu yana dünya üzerindeki birçok sürekli GPS noktanın günlük çözümlere dayalı üretilen zaman serilerini ve nokta hızlarını JPL ilaililerle paylaşmaktadır. koordinat cözümleri, GIPSY-OASIS yazılımı kullanılarak PPP yöntemiyle elde edilmektedir. JPL zaman serileri IGS08 datumundadır. CSRS-PPP yazılımı ile üretilen koordinatlar, 17 Nisan 2011 öncesi bu datumunda, tarihten sonra IGS05 değerlendirme sonucları IGS08 datumundadır. CSRS-PPP zaman serilerinden hız kestirimi vapılabilmesi icin kendi icerisindeki datum farklılığının giderilmesi gereklidir. Bu çalışmada, IGS05 koordinatlarından IGS08 koordinatlarına dönüşüm, Rebischung v.d. (2012)'de açıklanan işlem adımları ve 14 parametreli Helmert dönüşüm parametreleri kullanılarak yapılmıştır. Daha sonra noktaların yatay yöndeki ve düşey yöndeki hareketlerini ayrı ayrı değerlendirilmesi ve hızlarının hesaplanması amacıyla yer merkezli kartezyen (X, Y, Z) koordinatları toposentrik dik (e, n, u) koordinatlarına dönüştürülmüş. 31 Aralık 2013 günü koordinatlarına göre bağıl koordinat değişimleri hem CSRS-PPP hem de JPL zaman serisi için elde edilmiştir. Her iki zaman serisinde her bir bilesene ait hızlar ve hızlara ilişkin KOH değerleri doğrusal modelin cözümü ile elde **ČSRS-PPP** çözümlerinde edilmistir. bazı günlerde sıçramalar olduğu için doğrusal modelin bilinmeyen parametreleri klasik EKK (En Küçük Kareler) yerine Robust yöntemle MATLAB fonksiyonu olan "robustfit" kullanılarak kestirilmistir. Robust regresvon vönteminde ağırlık fonksiyonu "Bisquare" seçilmiştir.

Şekil 4, Şekil 5 ve Şekil 6 da sırasıyla ANKR, MAR6 ve MAW1 isimli IGS noktalarının sırasıyla doğu-batı (e), kuzey-güney (n), yukarı (u) bileşenlerinin zaman serisi grafikleri görülebilir. CSRS-PPP zaman serilerinde bazı zaman aralıklarında veri boşlukları mevcuttur. Bu boşluklar günlük verinin %90 doluluk oranı şartını sağlayamaması ya da o güne ait RINEX verisinin ilgili sunucuda olmamasından kaynaklanmaktadır. MAW1 noktası verileri 10

yıllık çözülmesine rağmen 2004 yılından 2007 yılının ortalarına kadar fazla veri kesiklikleri olduğu için hız kestirimleri 6.5 yıllık (2007.5 -2014) zaman dilimine göre yapılmıştır. Zaman serilerinden görüldüğü üzere her iki çözümden üretilen zaman serileri benzer yapıları göstermektedir. Ancak Şekil 4 ve Şekil 7'ye dikkat edilirse ANKR noktasında, CSRS-PPP çözümleriyle oluşturulan zaman serilerinde 2004 yılından 2008 yılına kadar ortalamadan 10 cm ve ulaşan sapmalar gözlenmektedir. Bu durum ANKR noktasında görülürken MAR6 ve MAW1 noktalarında görülmemektedir. Bu, ANKR noktasındaki alıcıdan ya da CSRS-PPP nin 2008 yılına kadar kullandığı algoritma içerisindeki bazı

hata modellerinin ANKR noktasının bulunduğu bölgeyi belirli günlerde tam olarak temsil edememesinden kaynaklanabilir(URL-5). IGS noktalarında belirli zamanlarda anten ve alıcı değişimleri yapılmaktadır. ANKR noktasının IGS de yayınlanan "log" dosyasına göre, 24 Kasım 2000 - 6 Mayıs 2008 tarihleri arasında Tablo 1 de belirtilenden farklı bir GNSS anten ve alıcısı kullanılmıştır.

Şekil 4. ANKR noktasına ait 10 yıllık zaman serisi (günlük çözüm)

Şekil 6. MAW1 noktasına ait 6.5 yıllık zaman serisi (günlük çözüm)

Noktalar		CSRS-PPP			GIPSY-OASIS (JPL)		
		V (mm/yıl)	m _∨ (mm/yıl)	m₀ (mm)	V (mm/yıl)	m _∨ (mm/yıl)	m₀ (mm)
	е	1.10	± 0.01	± 2.5	1.02	± 0.01	± 2.1
ANKR	n	11.77	± 0.02	± 3.4	11.77	± 0.02	± 3.0
	u	-1.83	± 0.05	± 9.0	-1.04	± 0.05	± 7.4
	е	17.60	± 0.02	± 3.1	17.75	± 0.01	± 1.6
MAR6	n	14.05	± 0.01	± 2.1	14.05	± 0.01	± 1.4
	u	8.86	± 0.05	± 7.6	7.69	± 0.04	± 6.4
	е	-3.98	± 0.03	± 2.4	-4.05	± 0.02	± 1.6
MAW1	n	-1.93	± 0.03	± 2.5	-1.93	± 0.02	± 1.9
	u	-3.36	± 0.06	± 6.6	-0.97	± 0.06	± 5.7

Tablo 2. Nokta Hızları ve KOH Değerleri

CSRS-PPP ve JPL zaman serilerinden elde edilen nokta hızları (V), KOH (m_v) değerleri ve birim ağırlıklı ölçünün KOH (m_o) değerleri Tablo 2 de verilmiştir. Tablo 2' deki hız değerleri incelendiğinde CSRS-PPP ile elde edilen nokta hızlarının yatay bileşenler açısından JPL ile elde edilen hızlarla uyumlu olduğu görülebilir. n (kuzey) bileşenine ait hızlar üç nokta içinde birebir aynı iken, e (doğu) bileşeninde ANKR noktasında 0.08 mm/yıl, MAR6 noktasında 0.15 mm/yıl ve MAW1 noktasında 0.07 mm/yıl hız farki mevcuttur. ANKR ve MAW1 noktalarında düsey yöndeki yıllık hız cok olmamakla birlikte iki vöntem arasında sırasıyla 0.79 ve 2.39 mm/yıl düzeylerinde farklar görülmektedir. Diğer iki noktaya göre MAR6 noktasında düsey yöndeki yıllık hız miktarı daha büyük çıkmıştır ve yine iki arasındaki fark vöntem 1.17 mm/vil seviyesindedir. Birim ağırlıklı ölçünün standart yöntem acısından her iki sapmaları değerlendirildiğinde, JPL çözümlerin KOH değerlerinin CSRS-PPP ye göre daha düşük olduğu hem yatay hem de düşey bileşende

görülebilir. Bu durum, kullanılan algoritma, düzeltme modelleri, hassas uydu yörünge ve uydu saat bilgileri v.b. gibi farklılıklardan kaynaklanmaktadır.

yöntemin İki birbirivle daha fazla karşılaştırabilmesi amacıyla kestirime ait düzeltmeler; hem zaman serileri hem de histoğram olarak çizdirilmiştir (Şekil 7, Şekil 8, Şekil 9). Düzeltmelerin zaman serilerinden ve histoğramlarından da görüldüğü üzere JPL verilerinin hata dağılımları CSRS-PPP ye göre sıfır etrafında daha fazla yoğunlaşmıştır. Bu sonuçlarının koordinat tekrar durum JPL edilebilirliklerinin CSRS-PPP ye göre daha iyi olduğuna işaret etmektedir. Yatay bileşenle düşey karşılaştırıldığında, bilesen her iki yöntemde de yatay bileşenin tekrar edilebilirliği düşey bileşenden daha iyi çıkmıştır.

Şekil 7. ANKR noktası hata değerleri ve frekansları

Şekil 8. MAR6 noktası hata değerleri ve frekansları

Şekil 9. MAW1 noktası hata değerleri ve frekansları

Şekil 10. ANKR noktasına ait 10 yıllık yatay yer değiştirme (günlük çözüm)

Şekil 11. MAR6 noktasına ait 10 yıllık yatay yer değiştirme (günlük çözüm)

Şekil 12. MAW1 noktasına ait 6.5 yıllık yatay yer değiştirme (günlük çözüm)

Şekil 10, Şekil 11 ve Şekil 12'de noktaların yatay yer değiştirmeleri ve hareket yönleri görülebilir. Şekillerden de görüldüğü üzere noktaların zamana bağlı yatay yer değiştirmeleri hem büyüklük hem de yönü açısından benzerlikler göstermektedir.

6. SONUÇLAR

yazılımı CSRS-PPP Bu calismada. kullanılarak uzun dönemli zaman serileri üretilmiş ve bu zaman serileri kullanılarak nokta hızları kestirilmiştir. CSRS-PPP yazılımı ile günlük verilere bağlı olarak üretilen zaman serileri kullanılarak kestirilen nokta hızları ve KOH değerleri. JPL zaman serileri ve bu zaman serileri kullanılarak kestirilmiş nokta hızları ve KOH değerleriyle karşılaştırılmıştır. CSRS-PPP ve JPL zaman serilerine bağlı olarak kestirilen nokta hızlarının yatay bileşenler açısından benzer olduğu fakat kestirilen hızların KOH değerleri açısından bir karşılaştırma yapıldığında, CSRS-JPL sonuçlarına göre biraz daha PPP nin yüksek KOH ürettiği görülmüştür. Bu JPL nin tekrar edilebilirliğinin CSRS-PPP ve göre daha ivi göstermektedir. Düsev olduăunu bilesenler acısından iki yöntem arasında, yatay bilesene göre, farklar daha vüksek cikmistir. Uvgulama yazılımının CSRS-PPP sonucları. zaman serilerinin oluşturulmasında ve nokta hızlarının kestirilmesinde etkin bir şekilde kullanılabileceğini göstermiştir.

Uzun dönemli GNSS verilerinin değerlendirmesine kolaylık sağlaması ve sonuçlara hızlı bir şekilde ulaşılması amacıyla yazarlar tarafından geliştirilen "Quick-PPP" yazılımının kullanıcıya büyük kolaylıklar getirdiği yapılan uygulama ile ortaya konulmuştur. Yazılımın, mevcut sürümü GNSS verilerinin belirli bir sunucudan indirilmesini, değerlendirilmek üzere CSRS-PPP programına yüklenmesini, sonuçların listeler halinde bir dosyaya yazdırılmasını sağlayan bir araç niteliğindedir. Geliştirilme süreci devam eden "Quick-PPP" yazılımının; (a) zaman serilerinden hız kestirimi, (b) ani koordinat deăisimlerinin tespiti ve nokta hız bilgisinin güncellenmesi, (c) ver kabuğundaki deăisimlerin izlenmesi v.b. proielerde etkin bir sekilde kullanılabilecek bir program haline Ayrıca dönüstürülmesi hedeflenmektedir. vazılımın sadece CSRS-PPP ile değil APPS v.b. gibi web tabanlı PPP yazılımlarla da çalışabilir hale getirilmesi diğer amaçlardan biridir.

KAYNAKLAR

- Alkan. R.M.. 2009. "PPP Yönteminin Performans Analizi ve Ölcme Kullanılabilirliğinin Uygulamalarda Araştırılması". Harita ve Kadastro Mühendisleri Odası, Mühendislik Ölçmeleri STB Komisyonu, 4. Mühendislik Ölçmeleri Sempozyumu, 14-16 Ekim, KTÜ-Trabzon
- Alkan R.M., Ozulu İ.M., İlçi V., 2015, "Deniz Uygulamalarında Hassas Nokta Konumlama Tekniğinin (PPP) Kullanılabilirliği Üzerine Bir Araştırma", Harita Dergisi 154(2), 1-8
- Anquela A.B., Martín A., Berné J.L., Padín J., 2013, "GPS+GLONASS Static and Kinematic PPP Results:A Case Study" Journal of Surveying Engineering, 139(1), 47–58.
- Bahadur B., Üstün A., 2014, "İnternet Tabanlı GNSS Veri Değerlendirme Servisleri" Harita Dergisi, 152(2), 40–50.
- Bock H., Hugentobler U., Beutler G., 2003, "Kinematic and dynamic determination of trajectories for low Earth satellites using GPS" In: Reigber C., Luhr H., Schwintzer P., Editors, "First CHAMP mission results for gravity magnetic and atmospheric studies", Springer.
- Cai, C., Gao, Y., 2007, "Precise Point Positioning using combined GPS and GLONASS observations", Journal of Global Positioning Systems, 1,13-22
- Ebner, R., ve Featherstone, W. E., 2008, "How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?", Journal of Applied Geodesy, 2(3), 149–157.

- Gao Y., Wojciechowski A., Chen K., 2005. "Airborne kinematic positioning using precise point positioning methodology",Geomatica, 59, 275–282.
- Geng J., Teferle FN., Meng X., Dodson AH., 2010, "Kinematic precise point positioning at remote marine platforms", GPS Solutions, 14, 343-350.
- Huber, K., Heuberger, F., Abart, C., Karabatıc, A., Weber R., Berglez P., 2010, "PPP:
 Precise point positioning—Constraints and opportunities." Proc., Federation Internationale des Geometres (FIG) Congress 2010, International Federation of Surveyors, Copenhagen, Denmark, 1-6.
- Kouba, J., Héroux, P., 2001, "Precise point positioning using IGS orbit and clock products", GPS Solutions, 5(2), 12–28
- Kouba J., 2003, "Measuring seismic waves induced by large earthquakes with GPS", Stud Geophys Geod, 47, 741–755.
- Martin, A., Anquela, A.B., Capilla, R., Berne, J.L, 2011, "PPP technique analysis based on time convergence, repeatability, igs products, different software processing, and GPS+GLONASS constellation", Journal of Surveying Engineering, 137(3), 99-108
- Ocalan T. ve Alkan R.M., 2012, "Performance Analysis of Web-Based Online Precise Point Positioning (PPP) Services for Marine Applications", The 14th IAIN Congress 2012
- Rebischung P., Griffiths J., Roy J., Schmid R., Collileux X., Goroyt B., 2012, "IGS08: the IGS realization of ITRF2008" GPS Solution 16:483–494.
- Savage JC., Gan W., Prescott WH., Svarc JL., 2004, "Strain accumulation across the coast ranges at the latitude of San Francisco 1994–2000", Journal of Geophysical Research, 109(B03413), 1-11.
- Şanlı U. ve Tekic S., 2010, "Accuracy of GPS Precise Point Positioning: A Tool for GPS Accuracy Prediction", 60 pg., LAP Lambert Academic Publishing.

- Yigit C.O, Gikas V., Alcay S., Ceylan A., 2014, "Performance evaluation of short to long term GPS, GLONASS and ,GPS/GLONASS post-processed PPP", Survey Review, 46(3), 155-166.
- Yigit C.O., 2016, "Experimental assessment of post-processed Precise Point Positioning for Structural Health Monitoring", Geomatics, Natural Hazards and Risk, 7(1), 360-383.
- Zumberge J.F., Heflin M.B., Jefferson D.C., Watkins M.M., Webb F.H., 1997, "Precise Point Poistioning for the Efficient and Robust Analysis of GPS Data from Large Networks", J. Geophys. Res., 102(B3), 50055017.

URL-1

- http://webapp.geod.nrcan.gc.ca/geod/toolsoutils/ppp.php (Erişim 24 Kasım 2015)
- URL-2 <u>http://apps.gdgps.net/</u> (Erişim 24 <u>Kasım</u> 2015)
- URL-3 <u>http://magicgnss.gmv.com/ppp/</u> (Erişim 24 Kasım 2015)

URL-4

http://sideshow.jpl.nasa.gov/post/series.html (Erişim 24 Kasım 2015)

URL-5

http://webapp.geod.nrcan.gc.ca/geod/toolsoutils/ppp-update.php (Erişim 24 Kasım 2015)
Göktürk-2 Uydusunun Bağıl ve Mutlak Çapraz Radyometrik Kalibrasyonu (Relative and Absolute Cross Radiometric Calibration of Göktürk-2 Satellite)

Mustafa TEKE¹, Can DEMİRKESEN¹, Onur HALİLOĞLU, Egemen İMRE¹ ¹TÜBİTAK Uzay Teknolojileri Araştırma Enstitüsü, Ankara, Türkiye mustafa.teke@tubitak.gov.tr

ÖZET

Radyometrik ve geometrik doğruluk tüm uzaktan alqılama uygulamalarında cok önemlidir. Geometrik konumsal hassasiyetle doăruluk ölçülürken, radyometrik doğruluk hedeften gelen gerçek ışınımın değerinin görüntüdeki benek (piksel) yeğinlik (intensity) değerleri kullanılarak ne kadar hassas bulunduğu ile ölçülür. Görüntünün kullanım alanına bağlı olarak radyometrik (örn. Tarım uygulamaları) veya geometrik (örn. Şehir ve planlama) doğruluk önem kazanmaktadır. Dolayısıyla, radyometrik ve geometrik kalibrasyon çalışmaları uydu üretimi ve işletmesi sürecinin vazgeçilmez bir parçasıdır.

Uydu devreye alındığında, uzay şartlarının etkisiyle (radyasyon, titreşim, elektronik gürültü vb.) ve fırlatma esnasındaki fiziksel şartlardan dolayı kalibrasyon bozulabilmektedir. Ayrıca uydunun yörüngede geçirdiği zamana bağlı olarak, sensör karakteristiği de değişmektedir. Dolayısıyla radyometrik kalibrasyon düzenli olarak gerçekleştirilmelidir.

Bu çalışma kapsamında, Türkiye'nin ilk milli yüksek cözünürlüklü ver gözlem uvdusu Göktürk-2'nin bağıl ve çapraz radyometrik kalibrasyonu yapılmış ve elde kalibrasyon parametreleriyle görüntülerin edilen radyometrik düzeltmesi gerçekleştirilmiştir. Bağıl kalibrasyon, Sahra Çölü gibi değişmez kabul edilen kalibrasyon alanlarından alınan veriler ile benek değerleri eşitlenerek bantlanma ve şeritlenmenin giderilmesidir. Bağıl kalibrasyon görüntüleri 90°derece sapma açısıyla çekilmektedir. Kalibrasyon parametreleri her benek için hesaplanır. Göktürk-2'nin çapraz radyometrik kalibrasyonunda, 2014 yılında gerceklestirilen kalibrasyon kampanyası kapsamında çekilen Tuz Gölü Landsat-8 görüntüleri kullanılmıştır. Aynı gün içerisinde kısa zaman aralıkları ile çekilen Landsat-8 ve Göktürk-2 görüntüleri çakıştırılmış, ofset değerleri farklı hesaplanan kazanç ve görüntülerle test edilmistir.

Bağıl radyometrik kalibrasyon sonuçları görsel muayene ile doğrulanmıştır. Nicel başarım metriği olarak benek ortalama ve değişintisi kullanılmıştır. Homojen bir bölgeden alınan bir görüntünün ortalama parlaklık değeri korunurken değişinti değerinin azalması sağlanmaktadır. Çapraz kalibrasyon başarımı Landsat-8 uydusuna göre %2.2 oranında hata ile kazanç ve ofset değerleri hesaplanmıştır.

Anahtar Kelime: Bağıl mutlak radyometrik kalibrasyon, Göktürk-2, Landsat-8.

ABSTRACT

Radiometric and geometric accuracies are crucial in any remote sensing application. Geometric accuracy is related to geolocation accuracy while radiometric accuracy translates in how close can the radiance coming from a target can be calculated from pixel intensities. Depending on the remote sensing application, radiometric (e.g. agriculture) or geometric (e.g. city planning) accuracy may be more crucial. Therefore, radiometric and geometric calibrations and corrections are indispensable operations in satellite image processing and remote sensing.

Due to the radiation and mechanical perturbations that affect the sensor and the spatial arrangement of the imaging system, not to mention the gradual change in sensor characteristics throughout the mission, sensor calibration has to be repeated after launch and regularly throughout the lifetime of the satellite regardless of the prelaunch calibration.

In this study, relative and cross radiometric calibration of Turkey's first national high resolution earth observation satellite, Göktürk-2, is described. Relative radiometric calibration includes pixel response equalization by using images of pseudo-invariant calibration sites in the Sahara. Relative calibration images are acquired at approximately 90° yaw angle and relative radiometric calibration parameters are computed for each pixel. Cross calibration of Göktürk-2 satellite is performed with Landsat 8 imagery acquired at 2014 Tuz Gölü (Salt Lake) cal/val campaign. As the Salt Lake has uniform BRDF values, both images are registered and samples are collected from Göktürk-2 and Landsat-8. Computed gain and offset values are validated in the same image as well as other images by Göktürk-2 and Landsat-8.

Results of relative radiometric calibrations are verified by visual inspection. As a quantitative performance metric pixel mean and variance values are used. Mean value of an image taken from a uniform area is preserved, variance of the same region is decreased. Performance of cross calibration is measured against Landsat-8. 2.2% error is committed with respect to gain and offset values.

Keywords: Relative radiometric calibration, absolute cross radiometric calibration, Göktürk-2, Landsat 8

1. GİRİŞ

a. Göktürk-2 ve RASAT Uyduları

Göktürk-2, TÜBİTAK UZAY ve TUSAŞ isbirliği ile Türk Hava Kuvvetleri için yerli imkânlarla tasarlanmış bir yüksek çözünürlüklü görüntüleme uydusudur. Türkiye'de geliştirilmiş ilk ver gözlem uydusu olan RASAT'a oranla daha yüksek görüntü cözünürlük depolama/iletim ve kapasitesine sahiptir. RASAT'ta 7,5 metre olan pankromatik bant yer örneklem mesafesi çıkartılmıştır. Göktürk-2'de 2,5 metreye RASAT'taki kırmızı-yeşil-mavi bantlara ek olarak yakın kızılötesi bandı da eklenmiştir. Bu iki uyduyla ilgili genel bilgiler Tablo 1'de verilmiştir.

Tablo 1. Göktürk-2 ve RASAT genel özellikleri

	RASAT	Göktürk-2		
Yörünge	685 km irtifa Güneş'e eşzamanlı (Alçalan Nokta Yerel Zamanı 10:30)	685 km irtifa Güneş'e eşzamanlı (Yükselen Nokta Yerel Zamanı 10:30)		
Görüntüleme Bantları	Pankromatik, Kırmızı, Yeşil, Mavi	Pankromatik, Kırmızı, Yeşil, Mavi, Yakın Kızılötesi		
Pan çözünürlük	7,5 m	2,5 m		
Diğer bantlar çözünürlük	15 m	5 m		
Görüntü genişliği	30 km	20 km		
Azami şerit uzunluğu	960 km	640 km		

RASAT uydusu TÜBİTAK UZAY tarafından işletilmekte ve görüntüleri sivil amaçlı olarak paylaşılmaktadır. Göktürk-2 uydusu ise Türk Hava Kuvvetleri tarafından işletilmekte ve görüntüleri sivil ve askeri/kamu kurumları tarafından kullanılmaktadır.

b. Uydu Görüntülerinin Kalibrasyonu

Yeryüzünün sıcaklık, nem ve yansıma gibi fiziksel özeliklerini uydu görüntülerinden kestirebilmek için uydu üzerindeki sensörlerin radyometrik kalibrasyonunun yapılması şarttır. Sensörlerin ölçtüğü sayısal veriyi yeryüzünden gelen ışıma değerine dönüştürmek için gereken sabit katsayılar radyometrik kalibrasyon işlemi sonucunda elde edilir.

lşıma hedeften gelen ışımanın ölçüsüdür. Yansıma ise yüzeyin fiziksel özelliğidir. Işıma yüzeyin aydınlanmasıyla doğru orantılıdır. Yansıma ise aydınlanmadan bağımsız sabit bir özelliktir. Yüzeyden gelen ışımayı (radyans/radiance) hesaplamak için sensörde okunan sayısal değerin ışımaya dönüşümü, yüzeyi aydınlatan ışık miktarı (gelen enerji) ve atmosferin soğurduğu ve yansıttığı enerji miktarlarını bilmek gerekmektedir.

Ham değerlerden (digital number) ışıma ve yansıma (reflektans/reflectance) değerlerine dönüşüm için bağıl radyometrik düzeltme ve mutlak kalibrasyon işleminden elde edilecek kazanç ve ofset değerlerinin kullanılması gereklidir (1).

Radyans = SayısalDeğer * Kazanç + Ofset(1)

Kalibrasyon sonucu elde edilen parametreler ile radyometrik düzeltme işlemi gerçekleştirilebilir. Göktürk-2 uydusu görüntü işleme iş akışında radyometrik kalibrasyon, ham görüntüden temel seviyede görüntü üretimi faaliyetlerinde gerçekleştirilir (Teke M. , 2016). TÜBİTAK UZAY bünyesinde radyometrik ve geometrik kalibrasyon ile ilgili araştırma faaliyetleri Kalkınma Bakanlığı destekli GEOPORTAL projesi kapsamında gerçekleştirilmektedir (Teke, vd., 2015).

2. BAĞIL RADYOMETRİK KALİBRASYON

Bağıl radyometrik kalibrasyon (Pixel Response Non Uniformity correction) süpürçek (pushbroom) tarayıcının her beneği için yanıt (response) ve ofset (offset) değerlerini elde edilme işlemidir. Doğru bir bağıl radyometrik kalibrasyon için algılayıcı özelliklerinin bilinmesi gereklidir.

Digital Globe firması WorldView-2 uydusunda aercekleştirdiği radvometrik kalibrasvon işlemlerini anlatan detaylı bir teknik rapor yayınlamıştır (Digital Globe, 2010). (Gil, Romo, Moclán, & Pirondini, 2015) tarafından yapılan benzer bir calışmada da Deimos-2 uydusunun fırlatmadan sonra bağıl ve mutlak radyometrik faaliyetleri anlatılmıştır. kalibrasvon Bağıl radyometrik kalibrasyon yöntemlerine alternatif olarak serit ve bantlanma düzeltme vöntemleri de kullanılabilir Scheffler ve Karrasch, (2014) tarafından EO-1 uydusu Hyperion hiperspektral algılayıcısı için farklı şerit düzeltme algoritmaları karşılaştırılmış ve dalgacık (wavelet) temelli yöntemini (Pande-Chhetri ve Abd-WFAF Elrahman, 2011) en başarılı yöntem olarak belirlenmiştir. Ayrıca frekans uzayında filtreleme ile şeritler yüksek frekanslı gürültü olarak azaltılabilir (Gonzalez ve Woods, 2002).

uydusunun radyometrik Landsat 8 bağıl kalibrasyonu yersel ve algılayıcıda yer alan düzeltilmesinin kalibrasyon cihazı ile karşılaştırılması (Pesta, Helder, ve Ulmer, 2015) tarafından gerçekleştirilmiş, farklı bantlar ve algılayıcılar için yöntemler önerilmiştir. Yersel bağıl radvometrik düzeltmenin sensörden bulunan düzeltme sisteminden benzer veva daha ivi sonuclar verdiği görülmüstür. (Atak vd., 2015) tarafından yapılan çalışmada Göktürk-2 görüntü testleri detaylı olarak anlatılmış, bu makalede açıklanan düzeltmeler uygulanmamış görüntüler için yapılan analizlerde bağıl radyometrik kalibrasyonun istenilen düzevde olmadığı belirtilmiştir.

Bu bölümde; Göktürk-2 sensör modeli, gürültü kaynakları, kalibrasyon sahaları, radyometrik eşitleme yöntemleri, bağıl radyometrik kalibrasyon yöntemleri ve bağıl radyometrik kalibrasyon için gerekli uydu yönelimi hakkında bilgi verilmiştir.

a. Göktürk-2 Sensör Modeli

Göktürk-2 Ana Kamerasında 2 adet ana ve iki adet yedek olmak üzere toplam dört adet Detektör kullanılmıştır. Bu ana detektörlerden ilki kırmızı, yeşil, mavi ve pankromatik algılayıcı olarak ikincisi ise yakın kızılötesi algılayıcı olarak kullanılmıştır. Yakın kızılötesi algılayıcı için ikinci detektörün pankromatik sensörü sadece yakın kızılötesi ışığı geçirecek şekilde kaplanarak ve her iki benek birleştirilerek (x2 binning) kullanılmaktadır. Dolayısıyla ikinci ana detektörün kırmızı, yeşil, mavi sensörleri kullanılmamaktadır

Göktürk-2 Ana Kamerasında kullanılan doğrusal sensör dedektör çipinde kırmızı, yeşil, mavi ve pankromatik olmak üzere toplam dört adet algılayıcı bulunmaktadır. Kırmızı, yeşil ve mavi sensörler 10 µm benek boyutuna sahip 4134'er adet benekten (pikselden) oluşur. Pankromatik sensör ise 5 µm benek boyutuna sahip 8292 adet benekten oluşur. Detektörün icinde bulunan senörlerin yukarıdan asağı doğru dizilimi pankromatik, mavi, kırmızı, vesil şeklindedir. NIR algılayıcı farklı bir dedektör cipinde bulunmaktadır. Pankromatik ile mavi sensörün arasındaki mesafe 122.5um. renk sensörleri arasındaki mesafe ise 90µm'dir.

Renk sensörlerinde bulunan 4134 beneğin 4128 beneği efektif benektir. Geri kalan benekler boş benektir. 4128 efektif beneğin ise 4080 beneği aktif ışık alan benektir ve 48 benek koyu benek olarak adlandırılan ışık almayan beneklerdir. Pankromatik sensörde bulunan 8292 beneğin 8276 beneği efektif benektir. Geri kalan benekler boş benektir. 8276 efektif beneğin ise 8160 beneği aktif ışık alan benektir ve 116 benek koyu benek olarak adlandırılan ışık almayan beneklerdir. Boş ve koyu benekler sensörlerin başlarında ve sonlarında yer alır. Boş beneklerin tamamı ve koyu beneklerin bazıları detektörün dâhili test ve kontrol mekanizması için kullanılırken koyu beneklerin çoğu "dark noise" olarak adlandırılan detektörün ışık almadığı durumda çeşitli nedenlerle oluşan gürültüyü elemek için kullanılır.

Renk sensörleri tek çıkış kanalından okunurlar. Pankromatik sensörde ise sensörler sağ-sol ve tek-çift olmak üzere dört ayrı kanaldan okunur. Bu nedenle pankromatik sensörün her bir okuma kanalının okuma devresi gürültüsü farklıdır. Gürültü eleme yöntemleri kullanılırken bu hususun dikkate alınması gerekmektedir.

b. Gürültü Kaynakları

Görüntüleme sisteminde oluşan gürültü kaynaklarını temel olarak üç ana gruba ayırmak mümkündür. Bu gürültü kaynakları; foton gürültüsü, kara akım gürültüsü ve termal gürültü olarak adlandırılır (Fiete & Tantalo, 2001) (Holst & Lomheim, 2007).

Foton gürültüsü (photon shot noise), ışık algılayıcı sistemler üzerinde doğanın temel limitidir ve fotonların detektöre rasgele ulaşmasından kaynaklanır. Fotonların detektöre rasgele erişim zamanları Poisson dağılımı ile modellenmektedir. Bu nedenle foton gürültüsü detektöre ulaşan ve elektrona dönüşen fotonların kareköküne eşittir. Genelde en baskın gürültü kaynağı foton gürültüsüdür.

Kara akım gürültüsü (dark current noise), detektörün hiç ışık almadığı durumda oluşan gürültülerin tamamını kapsamaktadır. Dolayısıyla sensörlerin okuma devrelerinden kaynaklanan gürültüler, görüntüleme sistemi içinde yer alan diğer elektronik devrelerden ve sayısallaştırıcı devrelerden kaynaklanan gürültüler kara akım gürültüsü icinde kabul edilebilir. Kara akım gürültüsünü ölcmek ve elemek icin detektör üzerinde ver alan kovu beneklerden faydalanılabilir veya kameranın ışık alması tamamen engellenerek okunan görüntüler kara akım referansı olarak kullanılabilir.

Termal gürültü ise, genellikle optik elemanların bir kara cisim (black body) gibi davranarak radyasyon oluşturması ve bu radyasyonun detektörde elektron üretimine neden olmasıyla oluşur. Bu gürültü tipi kızılötesi bantta çalışan kameralar için çok daha önemli iken 400-1000nm tayfında çalışan kameralar için etkisi genellikle ihmal edilir.

c. Kalibrasyon Sahaları

Mutlak radyometrik kalibrasyon amacıyla kullanılacak test sahalarının seçimi için tanımlanan birçok kriter önerilmiştir (Gürbüz, vd., 2012). Bu kriterler özetle şöyle sıralanabilir:

- Yüksek mekânsal homojenlik,
- %30'dan büyük yüzey yansıtırlığı,
- Düz spektrum,

• Yüzeyin zamana bağlı değişiminin az olması,

• Yüzeyin yatay ve Lambert yansıtırlık özelliği göstermesi,

• Okyanus, yerleşim yeri ve endüstriyel alanlardan uzak olması,

- Yüksek rakım,
- Aerosol miktarı ve bulutluluğun az olması.

Bu kriterler "Committee on Earth Observation Satellites" (CEOS) "Working Group on Calibration and Validation (WGCV) Infrared and Visible Optical Sensors Group (IVOS)" tarafından kabul edilmiştir. Bu kriterlere uygun sahalar USGS tarafından "USGS Test Site Catalog"'da toplanmıştır. Bu sahaların arasından seçilen ve ölçüm cihazlarıyla düzenli olarak yer ölçümleri gerçekleştirilen sahalar belirlenmiş bu sahalar LANDNET sahaları olarak adlandırılmıştır. Bu şekilde LANDNET sahaları (Şekil 1) CEOS'un standart test sahaları olarak kabul görmüştür.

Şekil 1. CEOS standart test sahaları (CEOS, 2014)

Bu grupta yer alan Tuz Gölü bölgesi, ülkemizde yer alan tek radyometrik kalibrasyon sahasıdır (Gürol, vd., 2008; Gürol, vd, 2010). ESA desteği ile gerçekleştirilen CONTROLS 2010 projesinde Tuz Gölü'nde çeşitli uyduların kalibrasyonu gerçekleştirilmiştir (Özen,vd., 2011). Tuz Gölü'nün mekânsal ve zamansal radyometrik özellikleri (Odongo, vd., 2014) tarafından analiz edilmiştir

ç. Homojen Bölgelerden 0 Derece Sapma ile Bağıl Radyometrik Kalibrasyon ve Düzeltme

Bağıl radyometrik kalibrasyon için ilk çalışılan yöntemlerden birisi de çöl görüntülerinden gündüz ve gece görüntüleri çekilerek kalibrasyon yapılmasıdır. Çöllerde yapay ışık kaynağı olmadığı için ofset hesaplama için kullanılabilir. Homojen bölgelerden, örneğin kalibrasyon sahaları alınan görüntülerden ise her beneğin yanıt (response) değeri hesaplanabilir. Bu işlemin her kazanç modu için tekrarlanması gerekir.

Bu kapsamda algoritma adımları aşağıdaki gibi sıralanabilir:

• Gece görüntüsünden ofset değeri hesaplanır ve gündüz görüntüsünden çıkarılır.

- Gündüz görüntüsünden seçilen homojen bölgenin her sütununun ortalaması alınır.
- Sütun ortalamaları görüntü ortalamasına bölünerek sütun yanıt değerleri bulunur.

d. Nadirden Yaklaşık 90 Derece Sapma Açısı ile Görüntüleme

Bağıl radyometrik kalibrasyon için ideal olarak tüm beneklere aynı miktar fotonun düşmesi gerekmektedir. Bu durumda, beklenen ideal görüntüde tüm benekler aynı değerlere sahip olacak ve gerçekleşen görüntüde her bir benekteki farklı değerler kalibrasyon için gerekli girdiyi oluşturacaktır. Ancak örneğin 30x30 km genişliğinde bir sahadan homojen dağılımlı bir yansıma elde etmek pratikte imkânsızdır.

Öte yandan, doğrusal algılayıcılar için, algılayıcıdaki her bir beneğin aynı noktayı ardışık satırlarda görüntüleyebilmesi mümkündür. Bunun için uydunun nadir yönünde görüntü alırken yaklaşık 90 derecelik bir sapma açısına sahip olması gerekmektedir. Bu durumda sensörün yerdeki izdüşümü uydunun yerde takip ettiği yolu izleyecek ve aynı nokta ardışık satırlarda her bir benek tarafından görüntülenmiş olacaktır. Aynı aydınlanma ve yansıma miktarına sahip olması beklenen bu noktanın görüntüde karşılık geldiği noktalarda ise bir miktar değişen değerler elde edilecektir. Örneğin bir ortalama değere göre elde edilen bu sapmalar bağıl kalibrasyon dizisini oluşturur. Her bir beneğin ortalamadan farkını içeren bu kalibrasyon dizisi görüntünün her bir satırına uygulanarak benekler arası farklar qiderilir.

Bu durum Şekil 2 ile dört benekten oluşan bir lineer sensör için gösterilmektedir. 90 derecelik sapma açısı ile görüntüleme yapılırken çarpı işareti ile gösterilen nokta t_0 , t_1 , t_2 , t_3 anlarında ardışık satırlarda kaydedilmektedir. Oluşan görüntüde ise bu nokta 45 derece açıdaki bir çizgi şeklinde görülmektedir. Bu çizgi boyunca beneklerin değerleri kalibrasyon için kullanılmaktadır.

dönüşü olmasaydı Dünya'nın yukarıda açıklanan mekanizma uydunun sapma açısını tam olarak 90 dereceye ayarlayarak herhangi bir konumdaki bir kalibrasyon sahasında uygulanabilirdi. Ancak Dünya'nın dönüşü görüntüleme boyunca hedef noktanın uydunun izlediği yola belli bir açıyla hareket etmesine yol açmaktadır. Bu hareket enleme göre değişen Dünya'nın çizgisel hızına karşılık gelmektedir, açıktır ki bu hız tam kutup noktasında sıfırken ekvatorda 465m/s civarındadır.

Bu durumda uydu görüntü alırken sensörün yerdeki izdüşümünün uydunun yerdeki izdüşümünün hız vektörü ile aynı doğrultuda olması gerekmektedir. Bunu sağlayabilmek için uydunun yöneliminde sapma yönünde Dünya'nın görüntünün çekildiği enlemdeki çizgisel hızı ve uydunun yer izdüşüm hızının bileşkesine bağlı bir düzeltme gerçekleştirilir. Şekil 2'de verilen dört beneklik sensör için sapma açısında düzeltme yapılmadığı durumda oluşan görüntü Şekil 3 ile verilmektedir. Buna göre aynı noktanın ardışık benekler tarafından görüntülenmesi sağlanamamaktadır. Bunun için sensörü yer izdüşüm hızı ile yer çizgisel hızının bileşkesine hizalayacak bir sapma açı düzeltmesi yapılması gerekmektedir.

Bu düzeltme açısının büyüklüğü uydunun yer izdüşüm hızına (diğer bir deyişle irtifasına) ve görüntüleme enlemine bağlıdır. Bu durum, Göktürk-2 uydusu için ekvatorda 3,9 derece civarında bir düzeltme gerektirmektedir.

e. Dinamik Ofset Hesaplama

Göktürk-2 sensör modelini kullanarak her satır için dinamik ofset hesaplamak mümkündür.

Göktürk-2 Algılayıcıları Pan ve MS (multispektral) olarak iki ayrı bileşenden oluşur. MS kendi içerisinde dört farklı sensör bulundurmaktadır. Pan bandı ise sağ ve sol benekler ile tek ve çift benekler için 4 adet ayrı okuyucuya sahiptir.

Pan sensörü için sağ ve sol kapalı beneklerin değeri ilgili taraf için o satırın ofset değerinin hesaplanmasında kullanılır. Yarı kapalı benekler ise hesaplamaya dâhil edilmez. Tek ve çift benekler için ayrı ayrı ofset parametreleri hesaplanır.

Tablo 2 ile Sevive-0 (L0) ham görüntünün pankromatik bandının sol tarafı için kapalı, yarı kapalı ve acık benek sayısal değerleri görülmektedir. Tek ve çift benekler arasındaki değer farkları görülebilmektedir. Tablo 3 ile radyometrik olarak düzeltilmiş görüntünün sayısal değerleri verilmektedir. Ofset değerlerinin dinamik olarak hesaplanması bağıl radyometrik kalibrasyon işleminde önemli bir adımdır.

	Kapalı Benekler								Y.Kapalı			Açık Benekler											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
30	23	29	23	29	25	28	24	30	25	31	25	29	37	62	202	796	895	918	916	911	893	917	920
28	23	30	23	29	23	29	22	28	23	29	21	37	35	63	200	790	892	916	907	918	919	910	928
28	24	30	21	30	21	31	22	30	22	28	23	30	35	63	203	775	897	903	910	910	903	916	923
30	24	30	26	29	26	30	20	31	24	28	26	36	33	61	199	781	888	892	929	916	895	910	923
29	25	31	24	22	24	31	19	30	22	28	25	31	35	60	207	781	900	910	917	924	918	918	924
30	24	31	26	29	23	29	22	29	25	29	26	31	35	68	203	781	898	916	910	918	907	900	918
31	25	31	24	31	24	28	26	28	25	31	25	30	37	62	198	783	895	909	914	919	912	934	926
30	25	29	25	29	27	31	25	31	25	31	25	36	34	62	196	780	897	895	914	916	919	916	916
31	25	29	19	30	26	30	27	31	24	31	26	30	37	63	197	782	885	910	913	925	914	925	933
30	26	31	22	28	25	28	25	28	29	28	27	30	37	63	200	782	889	892	920	935	915	925	933
28	26	30	25	29	24	30	27	31	24	31	26	31	36	63	203	789	901	910	928	917	914	917	934
31	27	29	22	31	22	29	22	31	26	28	27	30	33	69	205	782	887	908	910	916	914	925	927
30	25	30	25	31	25	31	22	31	25	28	24	29	37	62	206	790	895	911	920	927	933	917	927
28	26	29	26	30	24	31	25	30	27	28	24	31	36	70	207	789	907	917	927	940	932	940	933

Tablo 2. L0 Görüntü Pan Bandı Kapalı, Yarı Kapalı ve Açık Benekler
--

Tablo 3. L1 Görüntü Pan Bandı Kapalı, Yarı Kapalı ve Açık Benekle

	Kapalı Benekler										Y.Kapalı					Açık Benekler							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0	0	0	0	0	0	0	1	0	2	0	0	10	33	175	767	868	889	889	882	866	888	893
0	0	0	0	0	0	0	0	0	0	0	0	7	10	33	175	760	867	886	882	888	894	880	903
0	0	0	0	0	0	1	0	0	0	0	0	0	10	33	178	745	872	873	885	880	878	886	898
0	0	0	0	0	0	0	0	0	0	0	0	5	7	30	173	750	862	861	903	885	869	879	897
1	0	3	0	0	0	3	0	2	0	0	0	3	10	32	182	753	875	882	892	896	893	890	899
1	0	2	0	0	0	0	0	0	0	0	0	2	9	39	177	752	872	887	884	889	881	871	892
1	0	1	0	1	0	0	0	0	0	1	0	0	10	32	171	753	868	879	887	889	885	904	899
0	0	0	0	0	0	0	0	0	0	0	0	4	7	30	169	748	870	863	887	884	892	884	889
1	0	0	0	0	0	0	0	1	0	1	0	0	9	33	169	752	857	880	885	895	886	895	905
2	0	3	0	0	0	0	0	0	0	0	0	2	8	35	171	754	860	864	891	907	886	897	904
0	0	0	0	0	0	0	0	1	0	1	0	1	9	33	176	759	874	880	901	887	887	887	907
1	1	0	0	1	0	0	0	1	0	0	1	0	7	39	179	752	861	878	884	886	888	895	901
0	0	0	0	1	0	1	0	1	0	0	0	0	10	32	179	760	868	881	893	897	906	887	900
0	0	0	0	0	0	1	0	0	0	0	0	1	9	40	180	759	880	887	900	910	905	910	906

Dinamik ofset hesaplama işlemi yapılmadığı zaman Pan bandında tek ve çift benekler ile görüntünün sağı ve solu arasında fark oluşacaktır.

f. Nadirden 90 derece sapma açısındaki veriler ile Bağıl Radyometrik Kalibrasyon ve Düzeltme

Bağıl Radyometrik kalibrasyon işleminin topoğrafyadan en az etkilenmesi için en uygun yöntem sensörün nadirden sapma açısının yaklaşık 90 derece çevrilerek (side-tethering) görüntü alınması yöntemi uygulanmalıdır. Bu şekilde alınmış pankromatik ve renkli görüntüler sırası ile Şekil 4. ve Şekil 5. ile gösterilmektedir.

Şekil 4. 90 derece sapma açısı ile alınmış pankromatik görüntü

Şekil 5. 90 derece sapma açısı ile alınmış renkli görüntü

Bu yöntemde her benek, yeryüzündeki aynı noktadan geçer. Dolayısı ile uydu yörünge ve yönelimi buna sağlayacak şekilde yüksek bir doğrulukta kontrol edilmelidir. Sensörün dikeyde yaklaşık 90 dereceye karşılık gelecek doğru yönelimde görüntü çekmesi bu yöntemin başarısı için çok önemlidir.

Bağıl kalibrasyon için en uygun görüntüler radyometrik kalibrasyon sahalarından alınabilmektedir. Testler için kullanılan görüntü koordinatları Cezayir'de bulunan 31.02° K, 2.23° D koordinatındaki bölgeden seçilmiştir. Bu kapsamda algoritma adımları aşağıdaki gibi sıralanabilir:

(1) Görüntünün ofset değerleri hesaplanarak görüntüden çıkarılır.

(2) 90 derece sapma açısı ile alınmış görüntüden çalışılmak istenilen bozulma olmayan bölge seçilir. Doğruluğun yüksek olması için 100'ün üzerinde satır seçilmesi uygundur.

(3) Kapalı ve geçiş benekleri arasında kalan görüntü sağ üst köşeden başlayarak, sol alt köşeye doğru 45 derece açı ile yeni görüntü oluşturulur.

(4) Her satırdaki benekler o satırın ortalamasına bölünür.

(5) Her sütun kendi içerisinde ortalama alınarak o satırın yanıt (response) değeri hesaplanır.

(6) Kapalı ve yarı kapalı beneklerin yanıt değeri 1 olarak atanır.

Veri işleme adımları görsel olarak Şekil 6. ile gösterilmektedir. Pankromatik bandın hesaplanan yanıt değerleri Şekil 7. ile grafiksel olarak gösterilmektedir. Tek ve çift pikseller zikzak şeklinde görülmekte iken görüntünün sağ ve sol tarafı arasında farklı yanıt değerleri oranlarının olduğu görülmektedir.

Şekil 6. Veri İşleme Adımları: (a) 90° sapma açısı ile çekilmiş görüntü, (b) 45 derece çevrilmiş görüntü (c) oluşturulmuş kalibrasyon görüntüsü.

Şekil 7. Pan bant benek yanıt Değeri

3. MUTLAK RADYOMETRIK KALIBRASYON

Spektral bilgi gerektiren herhangi bir bilimsel çalışma için mutlak radyometrik kalibrasyon işlemi gerçekleştirilmelidir. Mutlak kalibrasyon için izlenen adımlar Şekil 8. ile gösterilmiştir. Yer ölçümleri özetle; meteorolojik verileri (sıcaklık, basınç, nem), atmosferdeki aerosol miktarı ve karakteristiğini (metreküpteki aerosol kütlesi ve aerosollerin geometrik şekillerini tarif eden dağılım fonksiyonlarının parametre kestirimi), hedef sahanın spektral özelliklerini (dalga boylarına göre yansıtırlık eğrisi) kapsamaktadır. Ölçümler sonucunda elde edilen veriler 6S ışınım transfer benzetimine (Vermote, vd., 1997) girdi olarak kullanılır. Benzetime girdi olan bir diğer husus uydunun hedefi gözlemleme geometrisidir. Bu geometri toplam dört açı değeriyle tarif edilir. Bunlar uydunun ve güneşin azimut ve zenit açılarından ibarettir. Benzetim sonucunda atmosferin üstündeki ışıma değeri kestirilmiş olur. Uyduda bulunan elektro-optik sensörün ölçmesi gereken ışıma değeri bu değerdir. Buna göre sahanın görüntüsünden gelen benek değerlerini (DN) ısımaya dönüstürmek icin gerekli katsayılar (kazanç ve ofset) hesaplanır. Mutlak kalibrasyon işlemi sonucunda elde edilen iki değer kazanç ve ofset değeridir. Bu değerler tüm algılayıcılar için geçerlidir. Algılayıcıların aralarındaki fiziksel farklılıklar ise bağıl kalibrasyon işlemi ile hesaplanır.

Şekil 8. Mutlak kalibrasyon için izlenen akış seması

(Slater, vd., 1987) "Coastal Zone Color Scanner" ve Landsat 4 platformu üzerinde bulunan "Thematic Mapper" (TM) sensörünün yörüngede kalibrasyon değerlerindeki değişim incelemis ve rapor etmistir, Landsat 5 üzerindeki TM sensörünün yörüngede kalibrasyon adımları tarif edilmiştir. Bu çalışmada ayrıca beş farklı mutlak radyometrik kalibrasyon sonucu, firlatma öncesi değerler ve sensörün dahili kalibrasvon ürettiăi değerlerle kıvaslanmıs. cihazının White Sands kalibrasyon sahasında tekrarlanan 16 farklı mutlak radyometrik kalibrasyon sonucu elde edilen kazanç değerlerinin ±2.8% oranında benzerlik gösterdiği belirtilmiş ve belirsizlik değeri bu şekilde nicelenmiştir.

(Thome, 2001)'de, dolaylı (vicarious) mutlak radyometrik kalibrasyon yöntemlerinden biri olan yansıtırlık tabanlı yöntem ile Landsat 7 platformunun üzerinde bulunan "Enhanced Thematic Mapper Plus" (ETM+) sensörünün kalibrasyonu tarif edilmiş, dört farklı tarihte çekilen görüntülerle bulunan kazanç değerleri kendi içlerinde en fazla %5 farklılık gösterirken, öncesi laboratuvar ortamında fırlatma hesaplanan kazanc değerlerinde en fazla %7 farklılık gösterdiği rapor edilmiştir. Yazar, bulunan kazanç değerlerinin bazı bantlar için fırlatma öncesi değerlerinde yüksek olurken diğer bantlar için daha düşük olduğunu rapor etmiştir. Bu sonuç varsayılan ışınım (irradyans/irradiance) değerindeki belirsizlik ve atmosferik aerosol miktarının ölçümünde yapılan hatalara bağlanmaktadır.

(Chander, vd., 2009) Landsat "Multispectral Scanner" (MSS), TM, ETM+, ve EO-1 platformu üzerindeki "Advanced Land Imager" (ALI) sensörlerinin kalibre edilmiş DN değerlerinden, sensör seviyesi spektral ışıma, atmosfer-üstü yansıtırlık ve sensör seviyesi parlaklık sıcaklığı gibi değerlerin hesaplanabilmesi için gerekli denklemleri ve kalibrasyon değerlerini özetlenmişti.

Çapraz radvometrik mutlak kalibrasvon işleminde, kalibrasyonu yapılmış bir uydu ile radyometrik kalibrasyon gerçekleştirilir. Landsat 8 uydusu yer gözlem çalışmalarının (Roy, vd., 2014) yanı sıra, uydu görüntülerinin kalibrasyonu için kullanılmaktadır (Chander, vd., 2004) Landsat 7 ETM ve EO-1 ALI sensörlerinin capraz kalibrasyonunu gerceklestirmislerdir. (Chander, vd., 2009) vaptıkları calısma Landsat 5, 7 ve EO-1 uvdularının kazanc ve ofset değerlerini tespit etmislerdir. (Finn, vd., 2012) vaptıkları calısmada Landsat 5, Landsat7, EO-1 ve ASTER uvduları için ışıma ve yansıma(reflectance) hesaplama yöntemlerinden bahsetmişlerdir. Landsat 8'in radyometrik kalibrasyon tutarlılığı (Markham, vd., 2014) tarafından sunulmuştur. (Shin, vd., 2015) ve diğerleri tarafından Kompsat-3 uydusunun capraz mutlak kalibrasyonu Landsat 8 uydusu kullanılarak gercekleştirilmiştir. GF-1 uyduşunun radyometrik kalibrasyonu Landsat 8 ve ZY-3 uyduları kullanılarak gerçekleştirilmiştir (Yang, vd., 2015).

Göktürk-2 uydu görüntülerinin çapraz radyometrik kalibrasyonu için Landsat 8 uydusundan faydalanılmıştır. Landsat-8 yüksek bir radyometrik kalibrasyon doğruluğuna sahip olmakla birlikte 30 metrelik, cok yüksek olmayan örnekleme mesafesine sahiptir. bir ver Kalibrasvon amacıvla Göktürk-2 ve Landsat 8 uyduları ile 29 Ağustos 2014 tarihinde Tuz gölü üzerinden görüntü almıştır. Göktürk-2 görüntüleri Landsat 8 görüntüsü ile en yakın komşu yineleme eslenmistir. Çapraz vöntemi kullanılarak kalibrasyon icin kullanılan Göktürk-2 ve Landsat 8 uydu görüntülerinin özellikleri Tablo 4 ile gösterilmektedir. Şekil 9. ile 185x185 km²'lik Landsat çerçevesi ve Göktürk-2'nin aynı gün cekilmiş görüntüsü gösterilmektedir. Bölgenin detay görüntüsü Şekil 10. ile gösterilmektedir.

Tablo 4.	Çap	oraz	kalik	oras	syon	için	kullanılan
Göktürk-2	ve	Land	dsat	8	uydu	gör	üntülerinin
ozeilikien							

Uydu	Tarih	Zaman	Roll Açısı	Güneş Zenith	Güneş Azimuth	
Landsat 8	29.08.2014	10:27	0	34.65	142.61	
Göktürk-2	29.08.2014	10:58	-3.71	38.38	132.87	

Şekil 9. Landsat 8 çerçevesi (185x185km²) ve Göktürk-2 görüntüsü

Şekil 10 Landsat 8 ve Göktürk-2 29 Ağustos 2014 tarihinde alınmış görüntüleri

Çapraz Mutlak radyometrik kalibrasyon için gereken Atmosfer Üstü Yansıma (ToA Reflectance) aşağıdaki eşitlik ile bulunur. (2)

$$\rho = \frac{\pi * L * d^2}{E_{SUN} * \cos \theta} \tag{2}$$

ρ: Atmosferin Üstündeki Yansıma

L: Spektral Işıma

d: Dünya-Güneş uzaklığının Astronomik Birim cinsinden değeri

 E_{SUN} : Güneşten gelen aydınlanma/ışınım (irradiance)

 θ : Güneşin dikey ile yaptığı açı (zenith = 90 – elevation)

Tuz gölünün yansıması görüş açısından bağımsız olduğu için (BRDF – Bi-directional Reflectance Distribution Function etkileri) aşağıdaki eşitlik elde edilir. (3)

$$\frac{L_{L8}}{E_{SUN_{L8}} * \cos \theta_{L8}} = \frac{L_{GK2}}{E_{SUN_{GK2}} * \cos \theta_{GK2}}$$
(3)

Göktürk-2 uydusunun her bandı için ışıma değeri (4) eşitliğinden bulunur.

$$L_{GK2} = L_{L8} * \frac{\cos \theta_{GK2}}{\cos \theta_{L8}} * \frac{E_{SUN_{GK2}}}{E_{SUN_{L8}}}$$
(4)

Tuz Gölü'nün homojen bölgelerinden örnekleme yapılarak Landsat 8 ışıma ve Göktürk-2 sayısal değerleri (3) eşitliğini çözmek için kullanılmıştır. Eşitlikte ofset değeri 0 alındığında sayısal değerlerin aşağıdaki formda olduğu görülmüştür. (5)

$$Radyans = SayısalDeğer * Kazanç$$
 (5)

Hesaplanan kazanç ve ofset değerlerini doğrulamak için ToA Yansıma (Reflectance) eşitliği her bandın orta dalga boyunun atmosfer dışı radyasyon (ETR, extraterrestrial radiation) değerleri E_{SUN} olarak kullanılarak hesaplanır. Göktürk-2 spektral özellikleri Tablo 5. ile verilmektedir ve Landsat 8'de yer alan aynı bantların spektral özellikleri ise Tablo 6. ile verilmektedir.

Tablo 5. Göktürk-2 Uydusunun Spektral Özellikleri

Bant	Daygaboyu Merkez (nm) Dalgaboyu		FWHM (nm)	E _{SUN}	
Mavi	0.450 - 0.520	485	74.7	1979	
Yeşil	0.520 - 0.600	560	73.5	1857	
Kırmızı	0.630 - 0.690	660	133.2	1558	
NIR	0.760 - 0.900	830	117.1	1056.3	
Pan	0.450 - 0.900	675	300	1499	

Tablo 6. Landsat 8 Uydusunun Spektral Özellikleri

Bant	Daygaboyu (nm)	Merkez Dalgaboyu	FWHM (nm)	E _{SUN}
Mavi	450 - 515	482.6	60	2043.50
Yeşil	525 - 600	561.3	57	1863.30
Kırmızı	630 - 680	654.6	37	1543.80
NIR	845 - 885	864.6	28	980.15
Pan	500 - 680	592	180	1794.30

Göktürk-2 uydusu DubaiSat-1 ve RazakSat ile aynı kamera sistemini kullanmaktadır (Gunter's Space Page, 2015). Göktürk-2 uydusunun Kırmızı ve NIR bantları daha geniş aralıktan ışık Landsat rağmen toplamaktadır, buna 8 uvdusunda bantların aralıkları avnı Göktürk-2'deki eş bantların 4'te biri kadardır. Şekil 11. ile Göktürk-2 uydusunun spektral özellikleri verilmektedir. Bu farklılık özellikle bitkilerin analizinde kullanılan bitki indeksinin hesaplanmasında farklılıklara sebep olacaktır. sağlıklı bitkiler NIR bandındaki radyasyonun büyük kısmını yansıtmaktadırlar.

Şekil 11. Göktürk-2/DubaiSat-1Spektral Özellikleri (Choi, Harmoul, Kang, Al Dhafri, & Kim, 2009)

Landsat uydusu 8 adet multispektral banda sahiptir. Göktürk-2 ile aynı olan bantların spektral özellikleri Şekil 12. ile gösterilmektedir.

Şekil 12. Landsat 8 Spektral Özellikleri

Göktürk-2'nin en düşük kazanç modu ayarında hesaplanan kazanç ve Ofset değerleri Tablo 7. ile verilmektedir.

	Pan	Kırmızı	Yeşil	Mavi	NIR
Kazanç	0.2772	0.2153	0.3671	0.2538	0.1643
Ofset	-4.9899	-21.9798	-13.202	8.235354	1.1333

Kırmızı ve NIR bantların kazanç değerleri bant aralıkları daha geniş olduğu için daha düşük değerlere sahiptir.

4. RADYOMETRİK DÜZELTME

Radyometrik düzeltme, radyometrik kalibrasyon ile tespit edilmiş kalibrasyon parametrelerinin uygulanması sonucu elde edilir. Bu bölümde Bölüm 2 ve Bölüm 3'te bahsedilen vöntemlerle elde edilen radyometrik kalibrasyon parametrelerinin uvgulanması sonucu gerçekleştirilen radyometrik düzeltme işlemlerinden bahsedilmektedir.

a. Radyometrik Eşitleme

Görüntülerde gözlemlenen şeritlerin giderilmesi radyometrik eşitleme olarak da adlandırılır. Radyometrik eşitleme için literatürde öne çıkan yöntemler değerlendirilmiş ve bu çalışmada önerilen yaklaşımla karşılaştırma ve analiz yapılmıştır. Şeritlenmenin giderilmesinde şu iki temel yaklaşım dikkate alınmıştır:

- (1) Frekans uzayında filtreleme,
- (2) Görüntü tabanlı istatistiksel yöntemler.

Fourier uzayında süzgeçleme görüntü işleme alanında kullanılan basit ama etkin bir yöntemdir. Bilindiği üzere bir spektrumun bileşenleri görüntüyü oluşturan sinüs dalgalarının genliğini belirler. DFT (Discrete Fourier Transform) spektrumundaki herhangi bir frekansta yüksek genlik değeri o frekanstaki bir sinüs dalgasının görüntüde baskın olduğunu gösterir.

Şekil 13. Frekans filtreleme akış şeması

Periyodik şeritlenme gürültüsü ya da satranç örüntü gürültüsü görüntünün tahtası spektrumunda yüksek bir tepe olarak gözlemlenir. Bu frekansı bastıracak bir süzgecin frekans uzayında uygulanması gürültünün görüntüden kaldırılmasını sağlamaktadır.

İdeal alçak geçiren süzgeçleme (Şekil 14. birinci satır) uygulandığında görüntüde 'ringing' olarak bilinen bir bozulma göze carpmaktadır. Kuvvetli kenarların etrafında dalgalanma olarak gözlemlenen bu bozulmayı önlemek için süzgeç ile gösterildiği denklem (6) ve (7) gibi tasarlanmıstır (Şekil 14. ikinci satır). Denklemlerde H filtrenin kendisi, u ve v ise uzamsal değişkenlerdir. Şeritlenme yalnızca dikey eksende gözlemlenmektedir. Bu yapı Fourier spektrumunda yatay eksendeki bileşenlere karşılık geldiğinden süzgeç dikey bir yapıda tasarlanmıştır. Böylece dikeydeki yüksek frekanslar bastırılırken görüntüde yatay öznitelikler ve kenarlar yumuşatılmamış olur. Örnek sonuçlar Şekil 15'te gösterilmiştir.

$$H(u,v) = \frac{1}{1 + (\sqrt{2} - 1) \left[\frac{D(u,v)}{D_0} \right]^{2n}}$$
(6)

$$D(u,v) = \sqrt{u^2 + v^2} \tag{7}$$

Şekil 14. Birinci satır: ideal alçak geçiren süzgeç; ikinci satır Butterworth süzgeci

Şekil 15. Orijinal, ideal alçak geçiren, Butterworth

b. Bağıl Radyometrik Kalibrasyon

radyometrik Bağıl kalibrasyonda temel prensip, bütün dedektörlerin aynı hedefe bakması durumunda hepsinin avnı DN değerini üretmesidir. Eğer homoien bir hedef bulunur ve aörüntülenirse tüm dedektörlerin üretmesi gereken değer sahnenin ortalama parlaklık değeri olacaktır.

Örneğin aranan kazanç değerleri g_i olsun. Görüntüde i'nci dedektörün ürettiği her bir benek değeri şu şekilde yazılabilir (8):

$$c_i = g_i \times s \tag{8}$$

Homojen bir bölgede tüm benek değerlerinin eşit olması gerektiğinden bu değer de sahnenin ortalama parlaklık değerine eşit olacağından değerleri aşağıdaki gibi hesaplanır (9):

$$g_i = \frac{c_i}{\mu} \tag{9}$$

Formülde μ bölgenin ortalama parlaklık değeridir.

Şekil 17. ile farklı bağıl radyometrik kalibrasyon karşılaştırılması vöntemlerinin görsel verilmektedir. laboratuvar Yerde yapılan kalibrasyonu daha sonuçları da cizgilendirmektedir. Frekans filtreleme ve WFAF şeritlenmeyi azaltmakla vöntemleri birlikte bantlanmava vol acmaktadır. Sapma acısı 0 derece ile cöllerden gerceklestirilen kalibrasvon sonucu seritlenmeler temizlenmektedir fakat vapay bantlanmalar ortaya cıkmaktadır. Yaklasık

90 derece sapma açısı ile gerçekleştirilen bağıl radyometrik düzelme ise görsel olarak en iyi sonucu vermektedir. Tablo 8. ile gösterilen Arabistan

yarımadasından çekilmiş homojen çöl bölgesinin ham görüntü ve farklı yöntemler ile işlenmiş seviye 1 görüntülerin ortalama ve standart sapma sonuçları gösterilmektedir. Frekans filtreleme (FF) ve WFAF L0 görüntünün ortalama değerlerini korumakla birlikte statik ofsetli Sapma 0° ve dinamik ofsetli Sapma 90° görüntülerde ofset değerleri çıkarıldığı için ortalama düşmektedir. Dinamik ofsetli Sapma 90° en düşük standart sapma değerine sahip görüntü üretmektedir. Dinamik ofsetli sapma 90° yönteminin sonucu Şekil 16 ile gösterilmektedir. Şekil 18. ile L0, 0 derece düzeltilmiş, 90 derece ile düzeltilmiş görüntülerin seçilen homojen bir satırının tepki değerleri gösterilmektedir. L0 satırının sağ ve sol tarafları arasında oran farkı görülmektedir. 0 ve 90 derece sapma ile düzeltilmiş satırlarda ise daha homojen tepki değerleri görülmektedir. 0 ve 90 satır benek değerleri karşılaştırıldığında ise 0 derece satır değerlerinde bölgesel dalgalanma olmakla birlikte 90 derece satırda bu etki görülmemektedir.

Yapılan karşılaştırmalar sonucu dinamik ofset ile düzeltilmiş 90 derece sapma bağıl radyometrik düzeltmenin en iyi sonucu verdiği görülmektedir. Göktürk-2 uydu görüntülerinin bağıl radyometrik kalibrasyonu icin bu yöntemin kullanılmasının en basarılı sonucları üreteceği sonucuna varılmıştır. 2014 yılı görüntülerinden elde edilmiş bağıl radyometrik kalibrasyon parametrelerinin 2014 ve 2015 yılına ait Tuz Gölü görüntülerinin pan bantlarını herhangi bir şeritlenme veya bantlanma üretmeden düzeltebildiği 19. Şekil ile gösterilmektedir.

Şekil 16. Arabistan'a ait (a) L0 görüntüler (b) düzeltilmiş görüntüler

Şekil 17. Farklı Bağıl Radyometrik Düzeltme yöntemlerinin görsel karşılaştırılması

M.TEKE vd.

Şekil 18. Aynı satırda L0 Görüntü, 0° Sapma ve 90° Sapma ile düzeltilmiş görüntülerin benek değerleri

46

Şekil 20. Bağıl radyometrik kalibrasyonun farklı pan keskinleştirme yöntemlerine etkisi, (a) Optimized HPF yöntemi, (b) HCS yöntemi

Son olarak bağıl radyometrik düzeltmenin pan keskinleştirme yöntemlerinin görsel kalitesine etkisi

Şekil 20 ile gösterilmektedir. Yüksek Geçirgen Süzgeçleme (YGS, Optimized HPF (Gangkofner, vd., 2008)) ile Hiperküre Renk Uzayı dönüşümü (HCS (Padwick, vd., 2010)) yöntemleri karşılaştırılmıştır. Optimized HPF yönteminde bağıl kalibrasyonun etkileri Seviye 0 (L0) ve Seviye 1 (L1) görüntüler karşılaştırıldığında görülebilmektedir. HCS yönteminde ise bağıl radyometrik kalibrasyonun etkisi daha kısıtlıdır.

Tablo 8. Arabistan L0 görüntü test sonuçları

Görüntü	L0	FF	WFAF	Sapma 0°	Sapma 90°
Ort.	762.42	764.59	764.60	750.00	755.22
Std. Sapma	26.78	25.81	26.40	23.11	21.46

c. Mutlak Radyometrik Kalibrasyon

Tuz Gölü'nden Göktürk-2 uydusunun Landsat gerçekleştirilen çapraz radvometrik 8 ile kalibrasyonu farklı özelliklere sahip alanlarda test edilmiştir. Farklı bölgelerden 4'er adet örnek seçilerek gerçekleştirilen testlerin bantlara göre ortalama sonuçlar Tablo 9 ve ortalama hataları Tablo 10 ile gösterilmektedir. En yüksek hata oranı NIR bandında görülmektedir. Elde edilen radyometrik hata değerleri Landsat 8'in kalibrasyon belirsizliklerini de içermektedir. En doğru radyometrik kalibrasyon parametreleri yersel ölçümler (spektral, meteorolojik ve atmosferik) kullanılarak gerçekleştirilen mutlak kalibrasyon ile elde edilebilir.

Tablo 9. Göktürk-2 Çapraz Mutlak Kalibrasyon Sonuçlarının farklı bantlara göre doğrulanması

i		Landsat-8	Göktürk-2	Hata	
ölü	Kırmızı	0.5383	0.5218	0.0165	
ы В	Yeşil	0.4482	0.4466	0.0039	
Τu	Mavi	0.4047	0.4032	0.0053	
	NIR	0.5758	0.5675	0.0108	
		Landsat-8	Göktürk-2	Hata	
i	Kırmızı	0.1291	0.1118	0.0173	
3 it k	Yeşil	0.1444	0.1414	0.0057	
ш	Mavi	0.1679	0.1347	0.0332	
	NIR	0.5071	0.5389	0.0319	
		Landsat-8	Göktürk-2	Hata	
ak	Kırmızı	0.2615	0.2665	0.0050	
pr	Yeşil	0.2079	0.2124	0.0045	
Τc	Mavi	0.2050	0.1858	0.0192	
	NIR	0.3569	0.3639	0.0075	

Tablo	10	Göktürk-2	Çapraz	Mutlak		
Kalibrasyon ortalama doğrulukları						

Bölge Tuz Gölü		Bitki	Toprak	
Hata	%0,9109	%2,2012	%0,9036	

Bitkilerdeki farklılığın temel nedeni Göktürk-2 ve Landsat uydularının Kırmızı ve Kızılötesi bant genişlikleri arasında 4 kat farklılık olması ile açılardan bakıldığında bitkilerde farklı yansımanın değişmesine sebep olan homojen olmayan BRDF(Bi-directional Reflectance Distribution Function) özelliğidir. BRDF fonksiyonu yarı küre üzerinde nesnelerin bakış açısına göre gelen ışımayı hangi oranda ilettiklerini tanımlayan bir fonksiyondur, ideal olarak yarı küre üzerinde her nesne için sabit homojen bir değer olması beklenir.

Göktürk-2 görüntülerinin Landsat 8 uydu görüntüleri ile bitki indeksi değerlerinin (NDVI – Normalized Difference Vegetation Index) karşılaştırıldığı çalışmada her iki uydu arasında 0.06 (%3) fark çıkmıştır (Kalkan, vd., 2015).

ç. Kazanç Modlarının Doğrulanması

Dünyadaki herhangi bir yerin aydınlanması bölgesel ve mevsimsel olarak değişebilmektedir. Bu farklı aydınlanma şartlarına uygun görüntü çekimi için Göktürk-2 uydusu 7 farklı kazanç modunda görüntü çekebilmektedir. Çalışılacak kazanç moduna göre o bandın kazanç ve ofset değerleri hesaplanabilir. Her kazanç modu için kullanılan katsayılar Tablo 11 ile verilmektedir.

Tablo 11. Göktürk-2 kazanç modları ve katsayıları

Kazanç Mod	-2	0	2	4	6	8	10
Kazanç Katsayısı	0.99	1.48	2	2.5	3	3.5	4

İstenilen bir kazanç modunun kazanç değeri her bant için o bandın ilgili kazanç modunda ki kazanç katsayısı değerine bölünerek elde edilir(10):

$$Bant Kazanci = \frac{Kazanç}{Kazanç Katsayısı}$$
(10)

Uydunun görüntü çektiği farklı modların doğrulanması için Cezayir kalibrasyon sahasından farklı kazanç modu ayarlarında görüntüler alınmıştır (Tablo 12 ve Şekil 21). Tabloda uydunun yuvarlanma ekseninde dönüşü ve aydınlanma değeri (Güneş'in dik geldiği noktada %100 olacak şekilde) gösterilmiştir. Bu görüntülerin benek değerleri kazanç modlarına ait kazanç katsayıları kullanılarak normalleştirilmiştir.

Tablo 12. Kazanç Modu Test Görüntüleri Çekim Bilgileri

Kazanç Modu	Çekim Zamanı (UTC)	Yuvarlanma (Roll) Açısı	Aydınlanma
-2	2014-01-07 10:06	0.60°	%36,6
0	2014-01-29 10:05	3.47°	%41,4
2	2014-02-09 10:04	5.24°	%45,6
4	2014-02-20 10:03	7.25°	%50,8
6	2014-02-23 10:11	-9.73°	%54,2

Her banda ait sayısal değer o bandın kazanç katsayısı'na (Tablo 11) bölünerek ilgili değerler karşılaştırılmıştır. -2, 0, 2, 4 ve 6 kazanç moduna sahip bantların sayısal değerleri ve normalleştirilmiş değerleri Tablo 13 ile verilmektedir.

Şekil 21 ile kazanç modu 4 ile çekilen görüntünün normalleştirildiğinde kazanç modu -2 ile çok yakın renk değerlerine sahip olduğu gösterilmektedir. Şekil 21 ile gösterilen görüntülerin pan bantlarının normalleştirilmeden önce her sütunun ortalama değeri ve normalleştirilmiş değerleri sırasıyla Şekil 22 ve Şekil 23 ile gösterilmektedir. Gain 2 kazanç modu ile çekilen görüntüde ince bulutlar olduğu için ortalama değerleri bazı sütunlarda yüksek çıkmıştır. Ayrıca L1 görüntüler ile çalışıldığı için görüntülerin konum farkları görüntülerin sayısal değerlerinde küçük farklılıklara sebep olmuştur.

Tablo 13. Farklı kazanç modlarına ait benek sayısal değerleri ve normalleştirilmiş değerler

Sayısal Değer				Ν	lorma	alleşti	rilmi	ì	
-2	0	2	4	6	-2	0	2	4	6
306	423	585	726	956	309	286	293	290	319
311	429	593	734	968	314	290	297	294	323
316	436	603	748	986	319	295	302	299	329
316	436	603	747	985	319	295	302	299	328
315	435	602	745	983	318	294	301	298	328
316	435	601	744	980	319	294	301	298	327
318	440	609	754	994	321	297	305	302	331
318	440	607	751	989	321	297	304	300	330
317	438	606	750	989	320	296	303	300	330
318	439	606	750	987	321	297	303	300	329
320	441	611	756	994	323	298	306	302	331
318	439	607	751	985	321	297	304	300	328
317	438	606	750	984	320	296	303	300	328

Şekil 21. Göktürk-2 Kazanç Modlarının Karşılaştırılması

Şekil 22. Çöl görüntülerine ait ortalama sayısal değerler

Yukarıdaki analize dayanarak, Tablo 7 ile verilen kazanç değerleri kullanılarak alınan görüntülerin ışıma değerlerinin doğal renklere yakın olması için Tablo 14'deki kazanç modları kullanılarak görüntü alınması önerilmektedir.

Tablo 14. Farklı mevsimler için önerilen kazanç modları

Bant	Yaz	Bahar	Kış
Pan	0	2	6
Kırmızı	-2	0	2
Yeşil	4	6	10
Mavi	0	2	8
NIR	-2	0	4

5. SONUÇ

Bu çalışmada Göktürk-2 uydusu için ayrıntılı radyometrik kalibrasyon araştırmalarının analizleri sunulmaktadır. (Atak, vd., 2015) tarafından gerçekleştirilen çalışmada belirtildiği üzere çizgilenme görüntü kalitesini olumsuz olarak etkilemektedir. Bağıl radyometrik kalibrasyon için çeşitli yöntemler karşılaştırılmış, Göktürk-2 sensör modelini kullanan her satır için dinamik ofset hesaplayan bir yöntem geliştirilmiştir. Bu yöntemde her beneğin tepki değeri, sapma açısı 90 derece ile elde edilmiş özel yörünge ayarlarında çekilmiş görüntüler ile hesaplanmıştır. Elde edilen değerlerinin 2014 ve 2015 yıllarında farklı kazanç modlarında elde edilmiş Tuz Gölü görüntülerine uygulandığında düzeltmenin başarılı olduğu görülmüştür.

Göktürk-2 uydusu için geliştirilen mutlak radyometrik kalibrasyon işlemi, Landsat 8 uydusunun çapraz radyometrik kalibrasyon bilgileri kullanılarak gerçekleştirilmiştir. Böylece atmosferik modelleme ve yersel verilere ihtiyaç olmadan Landsat 8 uydusunun kalibrasyonuna göre %2.2 doğruluk ile Göktürk-2 uydusunun mutlak radyometrik kalibrasyonu gerçekleştirilmiştir.

BILGILENDIRME VE TEŞEKKÜR

Onur Haliloğlu bu çalışmanın yapıldığı tarihte TÜBİTAK UZAY'da çalışmıştır.

Dr. Müh. Albay Okan Atak'a verdiği değerli yorumlar için, görüntü taleplerimizi olabildiğince hızlı işleme alan Ayhan Bulut'a, kalibrasyon görüntülerinin çekilmesinde bizlere yardımcı olan Giray Filiz, Göksel Gürgenburan, Emrah Çınar, Ferdi Büyükgüral, Hasan Şen, Ersan Batur, Önder Karagöz, Taner Gündoğdu ve ismini sayamadığımız Keşif Uydu Tabur Komutanlığı personeline teşekkür etmeyi borç biliriz.

KAYNAKLAR

- Atak, V. O., Erdoğan, M., & Yılmaz, A. (2015, Ocak). Göktürk-2 Uydu Görüntü Testleri. Harita Dergisi, 81(2), 18-33.
- CEOS. (2014). CEOS Cal/Val Portal. 23 Nisan 2014, from http://calvalportal.ceos.org/
- Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. *Remote Sensing of Environment, 113*(5), 893-903. http://www.sciencedirect.com/science/article/p ii/S0034425709000169
- Chander, G., Meyer, D., & Helder, D. (2004, Dec). Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor. Geoscience and Remote Sensing, IEEE Transactions on, 42(12), 2821-2831.

- Choi, Y.-W., Harmoul, A., Kang, M., Al Dhafri, S., & Kim, E.-E. (2009). DubaiSat-1 Camera: Pre-launch Performance Characterization. Proceedings of the 60th IAC (International Astronautical Congress). Daejeon, Korea.
- Digital Globe. (2010). Radiometric Use of WorldView-2 Imagery. Tech. rep.
- Fiete, R. D., & Tantalo, T. (2001). Comparison of SNR image quality metrics for remote sensing systems. *Optical Engineering*, 40(4), 574-585. http://dx.doi.org/10.1117/1.1355251
- Finn, M. P., Reed, M. D., & Yamamoto, K. H. (2012). A Straight Forward Guide for Processing Radiance and Reflectance for EO-1 ALI, Landsat 5 TM, Landsat 7 ETM+, and ASTER. Unpublished Report from USGS/Center of Excellence for Geospatial Information Science, 8.
- Gangkofner, U. G., Pradhan, P. S., & Holcomb,
 D. W. (2008). Optimizing the high-pass filter addition technique for image fusion.
 Photogrammetric Engineering & Remote Sensing, 74(9), 1107-1118.
- Gil, J., Romo, A., Moclán, C., & Pirondini, F. (2015). Deimos-2 Post-launch radiometric calibration. JACIE 2015 (Joint Agency Commercial Imagery Evaluation) Workshop, Tampa, Florida, USA,.
- Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing. ed: Prentice Hall Press, ISBN 0-201-18075-8.
- Gunter's Space Page. (2015, Kasım 19). Göktürk-2 Sayfası : http://space.skyrocket.de/doc_sdat/gokturk-2.htm
- Gürbüz, S., Özen, H., & Chander, G. (2012). A Survey of Landnet Sites Focusing on Tuz Gölü Salt Lake, Turkey. International Archives of the Photogrammetry, Australia, Remote Sensing and Spatial Information Sciences, 39, B1.
- Gürol, S., Behnert, I., Özen, H., Deadman, A., Fox, N., & Leloğlu, U. M. (2010). **Tuz Gölü: new CEOS reference standard test site for infrared visible optical sensors.** *Canadian Journal of Remote Sensing, 36*(5), 553-565. http://dx.doi.org/10.5589/m10-086 adresinden alındı

- Gürol, S., Özen, H., Leloğlu, U., & Tunalı, E. (2008). **Tuz Gölü:** New absolute radiometric calibration test site. *ISPRS Congress, Beijing, China*, (pp. 3-11).
- Holst, G. C., & Lomheim, T. S. (2007). *CMOS/CCD* sensors and camera systems (Vol. 408). JCD Publishing.
- Kalkan, K., Orhun, Ö., Filiz, B., & Teke, M. (2015, June). Vegetation Discrimination Analysis from Göktürk-2. Recent Advances in Space Technologies (RAST), 2015 7th International Conference on, (pp. 171-176).
- Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S., . . . Helder, D. (2014). Landsat-8 operational land imager radiometric calibration and stability. *Remote Sensing*, 6(12), 12275-12308.
- Odongo, V. O., Hamm, N. A., & Milton, E. J. (2014). Spatio-temporal assessment of Tuz Gölü, Turkey as a potential radiometric vicarious calibration site. *Remote Sensing*, 6(3), 2494-2513.
- Ozen, H., Fox, N., Leloglu, U., Behnert, I., & Deadman, A. (2011, July). **The 2010 Tuz Gölü field campaign - An overview.** *Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International,* (pp. 3867-3870).
- Padwick, C., Deskevich, M., Pacifici, F., & Smallwood, S. (2010). WorldView-2 pansharpening. Proceedings of the ASPRS 2010 Annual Conference, San Diego, CA, USA, 2630.
- Pande-Chhetri, R., & Abd-Elrahman, A. (2011). De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. *ISPRS Journal of Photogrammetry and Remote Sensing, 66*(5), 620-636. http://www.sciencedirect.com/science/article/p ii/S0924271611000530
- Pesta, F., Helder, D., & Ulmer, J. (2015). Landsat 8 OLI Relative Radiometric Correction Comparison between On-Board and Vicarious Techniques. JACIE 2015 (Joint Agency Commercial Imagery Evaluation) Workshop, Tampa, Florida, USA,.

- Roy, D., Wulder, M., Loveland, T., C.E., W., Allen, R., Anderson, M., . . . Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. *Remote Sensing of Environment , 145*, 154-172. http://www.sciencedirect.com/science/article/p ii/S003442571400042X
- Scheffler, D., & Karrasch, P. (2014). Destriping of hyperspectral image data: an evaluation of different algorithms using EO-1 Hyperion data. Journal of Applied Remote Sensing, 8(1), 083645. http://dx.doi.org/10.1117/1.JRS.8.083645
- Shin, D., Jin, C., Ahn, H., & Choi, C. (2015). Radiometric cross-calibration of KOMPSAT-3 AEISS with Landsat-8. Radiometric cross-calibration of KOMPSAT-3 AEISS with Landsat-8, 9644, 96441T-96441T-6. http://dx.doi.org/10.1117/12.2195643
- Slater, P., Biggar, S., Holm, R., Jackson, R., Mao, Y., Moran, M., . . . Yuan, B. (1987).
 Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors. *Remote Sensing of Environment*, 22(1), 11-37. http://www.sciencedirect.com/science/article/p ii/0034425787900265
- Teke, M. (2016, Ocak). Satellite Image Processing Workflow for RASAT and Göktürk-2. Havacilik ve Uzay Teknolojileri (Huten) Dergisi, 9(1).
- Teke, M., Tevrizoglu, I., Oztoprak, A., Demirkesen, C., Acikgoz, I., Gurbuz, S., . . . Avenoglu, B. (2015, June).
 GEOPORTAL:TUBITAK Uzay satellite data processing and sharing system. Recent Advances in Space Technologies (RAST), 2015 7th International Conference on, (pp. 233-238).
- Thome, K. (2001). Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. *Remote Sensing* of *Environment*, 78(1-2), 27-38. http://www.sciencedirect.com/science/article/p ii/S0034425701002474

- Vermote, E., Tanre, D., Deuze, J., Herman, M., & Morcette, J.-J. (1997, May). Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. Geoscience and Remote Sensing, IEEE Transactions on, 35(3), 675-686.
- Yang, A., Zhong, B., Lv, W., Wu, S., & Liu, Q. (2015). Cross-Calibration of GF-1/WFV over a Desert Site Using Landsat-8/OLI Imagery and ZY-3/TLC Data. *Remote Sensing*, 7(8), 10763-10787.

TUSAGA ve TUSAGA-Aktif İstasyonlarının Hassas Koordinat ve Hızlarının Hesaplanması Üzerine

(On the Estimation of Precise Coordinates and Velocities of TNPGN and TNPGN-Active Stations)

Soner Özdemir

Harita Genel Komutanlığı, Jeodezi Dairesi Başkanlığı, Ankara soner.ozdemir@hgk.msb.gov.tr

ÖZET

Bu çalışmada, Harita Genel Komutanlığı tarafından hassas koordinat ve hızları hesaplanmakta olan TUSAGA-Aktif TUSAGA istasyonlarında ve 28.08.2008-01.01.2015 tarihleri arasında toplanan GPS gözlemlerinin güncel yaklaşımlarla yeniden değerlendirilmesinde kullanılan stratejiler ve sonuçlar göz açıklanmıştır. Çeşitli kriterler önünde performans bulundurularak istasvon analizleri gerceklestirilmis ve problemli istasyonlar tespit edilmiştir. Diğer yandan, tüm istasyonlar için rastgele yürüyüş tipi gürültü modeli kullanılarak istasyonların hassas koordinat ve hız parametreleri ile gerçekçi hız belirsizlikleri ITRF2008 sisteminde hesaplanmıştır. TUTGA-99A ve TUSAGA-Aktif istasyonlarının resmî olarak yayımlanan koordinat ve hızlarıyla uyumlu olması için, elde edilen koordinat ve hızlar dönüştürülerek ITRF1996 sisteminde ifade edilmiştir.

Anahtar Kelimeler: TUSAGA, TUSAGA-Aktif, Hassas Koordinat ve Hız Belirleme, Rastgele Yürüyüş Tipi Gürültü Modeli

ABSTRACT

In this study, reprocessing of GPS data collected at TNPGN (Turkish National Permanent GNSS Network) and TNPGN-Active sites between 28.06.2008 and 01.01.2015 with new approaches, associated strategies and results are explained. Performance of stations are evaluated according to various criteria, and the problematic sites are detected. Additionally, precise coordinates and velocities of the stations with associated realistic uncertainties are estimated in ITRF2008 system by using random-walk type noise model for each station. In order to conform with the official coordinates of TNFGN-99A (Turkish National Fundamental GPS Network) and TNPGN-Active stations, obtained coordinates and velocities are transformed, and expressed in ITRF1996 system.

Keywords: TNPGN, TNPGN-Active, Precise Coordinate and Velocity Estimation, Random Walk Type Noise Model

1. GİRİŞ

Türkiye Avrasya, Anadolu ve Arap tektonik plakalarının kesişim bölgesinde bulunmaktadır. Bu plakaların birbirlerine göre olan hareketleri sebebiyle, nokta konumlarında yıllık bazda cm seviyesinde yer değiştirmeler olabilmektedir.

Ayrıca meydana gelen depremler, büyüklükleri oranında nokta konumlarında metre mertebesinde ver değiştirmelere sebep olabilmektedir. Bu nedenle, jeodezik noktaların koordinatlarındaki değişimler sürekli olarak izlenmeli ve bu noktalara ait hızlar belirlenmelidir. Bu amaçla jeodezik noktalarda uygun zaman aralıklarıvla kampanya tipi GNSS (Küresel Uydu Navigasyon Sistemleri) ölcüleri yapılabileceği gibi, yüksek zamansal çözünürlüğe GNSS sahip sabit istasyonlarından da yararlanılabilir. Türkiye'de sabit GNSS istasyonlarından oluşan bir ağ kurma calışmaları 1991 vilinda kurulan Ankara (ANKR) istasvonuvla Genel baslamıstır. Harita Komutanlığınca yürütülen Türkiye Ulusal Sabit GNSS İstasyonları Ağı (TUSAGA) Projesi kapsamında günümüze değin bir çok sabit GNSS istasyonu kurulmaya devam etmiştir. Diğer yandan, TUSAGA-Aktif projesi kapsamında tüm Türkiye'ye homojen olarak dağılmış, Gerçek Zamanlı Kinematik (GZK) Ağ prensibiyle çalışan 146 adet sabit GNSS (sGNSS) istasyonu kurulmuştur. Büyük ölcekli harita bilgisi üretiminin TUSAGA-Aktif sisteminden elde edilen koordinatlara davalı olarak gerçekleştirildiği göz önüne alındığında, TUSAGA-Aktif referans istasyonlarının koordinat ve hızlarının en doğru şekilde üretilmesi gerekliliği ortaya çıkmaktadır.

GNSS teknikleri, özellikle son yirmi yılda, konumlama amaçlı temel uygulamaların dışında çok geniş ve çeşitli çalışmalarda uygulama alanı bulmuştur. Ülkemizde bir yandan intersismik ve postsismik deformasyon, periyodik GNSS gözlemleriyle incelenmekteyken, diğer yandan belirli bölgelerdeki sürekli kabuk deformasyonunun izlenmesi amacıyla özel sGNSS ağları kurulmuştur. sGNSS ağlarının hız alanı ve zaman serisi analizleri, deformasyon ve sismik tehlike alanlarına ışık tutmaktadır. Yüzey yer değiştirmelerinin hesabında ve gerinim analizinde kullanılan jeodezik ölçülerin, jeofizik çalışmalarda kullanılabilmesi için, jeodezik parametrelerin yanında, bu parametrelere ait belirsizliklerin de yüksek doğruluklu olarak belirlenmesi gerekmektedir. GNSS gözlemlerine ait gürültünün genellikle beyaz (korelasyonsuz) gürültü olduğu varsayılır. Ancak çalışmalar, tamamıyla beyaz gürültü varsayımının, önemli derecede iyimser hız belirsizliği tahminlerine yol açtığını göstermektedir (Zhang vd. 1997; Mao vd. 1999). Sıklıkla ölçü yapılması ve ortalama alınması beyaz gürültünün büyük oranda etkisini ortadan kaldırmakla birlikte, özellikle rastgele yürüyüş tipi zaman-korelasyonlu gürültünün etkisini aynı oranda giderememektedir.

GNSS teknolojisindeki aletsel ilerlemelerin vanında. GNSS veri değerlendirme strateiileri de yeni model, ürün ve yaklaşımlarla önemli değişimler göstermiştir. Yanlış modellenen veya modellenmeyen olguların sonuclar üzerindeki ciddi etkilerinin keşfedilmesi, her seferinde tüm GNSS verisinin yeni tekniklerle veniden değerlendirilmesi hususunu gündeme getirmektedir. Öte yandan, özellikle GNSS zaman serilerinin 2.5 yıldan kısa olduğu durumlarda, yıllık sinyaller istasyon hızlarının önemli kestiriminde bir yanlılığa sebep olabilmektedir. 4.5 yılın üzerine çıkıldığında ise hız yanlılığı süratle ihmal edilebilir seviyelere düşmektedir (Blewitt ve Lavalle, 2002). Bu kapsamda güncel yaklaşımlarla, Harita Genel Komutanlığınca hassas koordinat ve hızları hesaplanan TUSAGA ve **TUSAGA-Aktif** istasvonlarına ait 28.06.2008 -01.01.2015 aralığındaki veriler veniden değerlendirilmiştir.

2. GPS VERİ SETİ

Genel Komutanlığı Calismava. Harita tarafından TUSAGA projesi (Kılıçoğlu vd., 2003) kapsamında işletilen 24 istasyon, TÜBİTAK Marmara Araştırma Merkezi Yer ve Deniz Bilimleri Enstitüsü tarafından işletilen MAGNET (Marmara sürekli GPS Ağı) (TÜBİTAK, 2004) bünyesindeki 13 istasyon, TUSAGA-Aktif projesi (İKÜ, 2010) kapsamında kurulan 146 istasyon, IGS (Uluslararası GNSS Servisi) (IGS, 2016) ağında bulunan 12 istasyon olmak üzere toplam 195 sabit istasyona ait veriler dahil edilmiştir. Türkiye'de bulunan ve analizlerde verileri kullanılan istasyonlar Şekil 1'de gösterilmiştir.

TUSAGA bünyesindeki MLTY istasyonunun faaliyeti 15.11.2012 tarihinde sonlanmıştır. Çeşitli sebepler nedeniyle analiz süresince faaliyet TUSAGA-Aktif, 1 15 TUSAGA gösteren noktasının yerleri değiştirilmiş, yeni birer nokta olarak faaliyetlerine devam etmislerdir. TUSAGA-Aktif istasyonları 2008 yılının ikinci yarısından kurulmava baslanmıs. 30.06.2011 itibaren tarihinde kurulan DIPK (Dipkarpaz/KKTC) ve 10.04.2011 tarihinde kurulan LDML (Lodumlu/Ankara) istasyonlarının haricinde tüm

istasyonların kurulumu 21.07.2009 tarihine kadar tamamlanmıştır. Verilerin değerlendirilmesinde kullanılan GAMIT yazılımı versiyonunun yalnızca GPS verilerinin değerlendirilmesinde kullanılabilmesi nedeniyle,istasyonların büyük bir kısmı GLONASS verisi de toplamasına karşın, analizlere sadece GPS gözlemleri dahil edilmistir. saniye aralıklı günlük GPS gözlemleri 30 tarihine 01.01.2015 kadar analiz edilmis. böylelikle verleri değistirilen ve veri toplamaya geç başlayan istasyonlar haricinde toplam 160 istasyonun 5 yıldan uzun süreli zaman serileri üretilmiştir.

Şekil 1. Analizlere dahil edilen TUSAGA-Aktif, TUSAGA ve MAGNET istasyonları

3. GÜNLÜK ÇÖZÜMLERİN ÜRETİLMESİ

Veri değerlendirme hızını artırmak için, öncelikle Türkiye'de bulunan, yerleri değiştirilenler de dahil olmak üzere toplam 199 istasyon alt gruplara ayrılmıştır. Bu amaçla "netsel" (Herring vd., 2015) programi kullanılmıştır. Bu programla, tüm istasyonları içine alan çalışma bölgesi birer derecelik gridlere ayrılmış, her grid noktasına bu noktanın istasyonlara olan uzaklıklarının terslerinin toplamı yoğunluk değeri olarak atanmıştır. Daha sonra, en yoğun olan grid noktası, oluşturulacak yeni ağın merkezi olarak kabul edilmiş, bu nokta etrafında maksimum 50 istasvon secilerek ilk grup olusturulmustur. Avni islem gerive kalan istasyonlar icin iteratif olarak tekrarlanmış ve toplam 4 alt grup oluşturulmuştur. Bu gruplar arasındaki bağlantıyı sağlamak için, farklı gruplarda çözüme giren ortak istasyonlardan oluşan bir 5. Grup oluşturulmuştur. Bunun haricinde, cözümlere dahil edilen 12 IGS istasyonu (ADIS, ANKR, BUCU, GRAS, GRAZ, KOSG, NICO, NOT1, POLV, POTS, RAMO, ZECK) tüm gruplara dahil edilmiştir. Elde edilen gruplandırma Şekil 2'de gösterilmektedir.

GPS verilerinin analizinde GAMIT 10.5/GLOBK 10.6 (Herring vd., 2015) yazılımı kullanılmıştır. GAMIT tarafından üretilen parametre tahminleri ve kovaryans matrisleri, bir Kalman filtresi olan GLOBK'in girdi dosyalarını oluşturmaktadır.

Analizlerde, tekli ve ikili farkı alınmış faz göreli konumlama aözlemleri. tekniăi cercevesinde kullanılmış ve fark almaktan kaynaklanan korelasyonlar dikkate alınmıştır (Schaffrin ve Bock, 1988). Ancak, alıcı saati hatasının bilinmeyen olarak çözüldüğü ağ vapısında göreli konumlama vöntemi de. farkı alınmamıs taşıyıcı faz gözlemlerinin artık değerlerini incelemek amacıyla kullanılmıştır. Bu amaçla, her epokta istasyon ve uydu saatlerinden kaynaklanan faz kayiklıkları hesaplanmıştır. Analizlerde, üçlü farklar yalnızca ön analizlerde parametre kestiriminde kullanılmış, kullanılmamıştır. Bunun yerine, onarılamayan bir faz kesikliği tespit edildiğinde bu, dengelemeye ekstra bir bilinmeyen olarak dahil edilmiştir. L1 ve L2 belirsizliklerini çözmek için Melbourne-Wübbena kombinasyonu (Melbourne, 1985; Wübbena, 1985) kullanılmıştır. Çözülemeyen ikili faz belirsizlikleri dengelenmistir. IGS fark tarafından yeniden değerlendirilmiş final yörünge parametreleri, dengelemeye bilinen parametreler olarak dahil edilmiştir. Uydu anten faz merkezi düzeltmeleri için nadir açısına bağlı mutlak faz değişimleri, istasyonlarındaki merkezi ver antenlerin faz merkezi kayıklıkları ve düzeltmeleri icin ise yükseklik ve azimut acısına bağlı mutlak faz merkezi değişimleri uygulanmıştır. Zenit Hidrostatik Gecikmeleri (ZHG) ve indirgeme fonksiyonları için Vienna Mapping Function 1 (VMF1) (Boehm vd., 2006) grid dosyaları kullanılmıştır. İkinci ve üçüncü derece iyonosferik etkiler ihmal edilmiştir. Bu etkiler, önsel ZHG ve indirgeme fonksiyonu etkilerinden bile daha küçüktür ve temel olarak ekvatora yakın enlem bölgelerindeki uzun dönemli değişimler için önemli olmaktadır (Petrie vd., 2010). Atmosferik yükleme göz önünde bulundurulmuş, bu amaçla filtre edilmiş gelgitsel olmayan (atmosferik değişimlerin deniz seviyesinde basınçtaki

değişimlere sebep olması nedeniyle oluşan okyanus tabanı basıncı değişimlerinin sebep olduğu kabuk deformasyonu) atmosferik yükleme dosyaları kullanılmıştır (Tregoning ve Watson, 2009).

İkili gözlemleri fark faz yardımıyla istasyonların göreli konumlarının ve troposferik gecikmelerinin tahmin edilmesi zenit icin Kücük Kareler (EKK) ağırlıklandırılmıs En vöntemi kullanılmıştır. Bilinmevenlerin ivi kalitede vaklasık değerlerinin elde edilebilmesi icin öncül bir cözüm gerceklestirilmis, elde edilen artık değerler incelenmiştir. 10 m'ye kadar hatalar kabul edilmiş ve koordinatlar 1 m'den daha yüksek doğrulukla tahmin edilmiştir. Ardından, koordinatlarla güncellenmiş tüm çözüm tekrarlanmıştır. GLOBK ile daha sonra yapılacak birleştirmeleri etkilememek için GAMIT tarafından günlük çözümlere üretilen gevşek kısıt uvgulanmıştır (enlem, boylam ve varicap parametreleri için 10 m., zenit gecikmeleri için 0,5 m.). Doğal olarak, faz belirsizliklerini çözmek için kısıt uygulanarak çeşitli ara çözümler üretilmiş, ancak çözümlere final çözümden önce gevşek kısıt uygulanmıştır.

4. İSTASYON PERFORMANS ANALİZLERİ

tanımlanarak Referans cercevesinin istasvonlara ait zaman serilerinin elde edilmesinden önce, tüm istasvonlar olası anten faz merkezi problemleri, sinyal yansıma etkileri vb. hususlar göz önüne alınarak incelenmiştir. her istasyon ile gözlenen uydular Öncelikle, Lineer Kombinasyon (LK) arasındaki faz ölçülerinin artık değerleri ve uydu yükseklik açıları çizdirilmiştir. Şekil 3'te verilen, örnek olarak secilen bir günde Edirne (EDİR) istasyonuna ait grafik incelendiğinde, LK faz artık değerlerinin normal bir dağılım gösterdiği, uydu yükseklik acısı arttıkca elde edilen artık değerlerin küçüldüğü görülmektedir.

Şekil 3. Seçilen bir günde Edirne istasyonuna ait, LK faz artık değerleri-uydu yükseklik açıları grafiği

gözlem istasyonlarının TUSAGA-Aktif yapacağı minimum yükselik açısı 10° olarak ayarlandığından, grafikteki artık değerler 10°'den baslamaktadır. Tüm istasyonların benzer dağılıma sahip olduğu görülmüş, LK faz artık değerlerinde anten faz merkezi problemlerinden kavnaklanabilecek herhangi bir vanlılığa rastlanmamıştır.

Daha sonra, TEQC programı (Estey ve Meertens, 1999) kullanılarak analiz süresi boyunca her gün için bütün istasyonlara ait L1 ve L2 sinyallerinin metre birimindeki ortalama sinyal yansıması değerleri (mp1 ve mp2) elde edilmiştir. Elde edilen sinyal yansıması değerlerinin ortalamaları alınmış, ortalamanın 30'dan daha uzağında bulunan artık değer sayıları hesap edilmiştir. Tablo 1'de, en yüksek mp1 ve mp2 değerlerine sahip istasyonlar ve aykırı sinyal yansıması değeri sayıları verilmiştir. Batman (BTMN) istasyonu, yüksek sinyal yansıması değerleri ile diğer istasyonlardan ayrışmaktadır.

Tablo 1. En yüksek sinyal yansıması değerlerine sahip olan istasyonlar

ISTASYON	Ortalama MP1*	# MP1 Aykırı Değer	ISTASYON	Ortalama MP2*	# MP2 Aykırı Değer
BTMN	0.7782	156	BTMN	0.7829	157
BAYB	0.5524	5	BAYB	0.5695	8
GIRS	0.4766	20	KAYS	0.5538	5
KIRS	0.4722	34	ERZR	0.5432	12
RDIY	0.4633	16	ANRK	0.5168	27
AKDG	0.4529	30	RDIY	0.5144	20

Batman istasyonundaki sinyal yansımasının davranışını anlayabilmek için oluşturulan, sinyal yansıması değerlerinin zamanla değişim grafiği Şekil 4'te gösterilmiştir. Yüksek sinyal yansıması değerlerinin süreklilik göstermediği, ancak her yıl yaz aylarında çok yüksek değerlere ulaştığı görülmektedir. Bu da Tablo 1'de görülen yüksek aykırı değer sayılarına sebep olmaktadır. Bu durumun, yaz aylarında Batman istasyonunun günlük koordinat kestirimlerinde de yüksek belirsizlik oranlarının elde edilmesine yol açtığı tespit edilmiştir.

Her istasyon için, analiz periyodu boyunca günlük en az bir saatlik sürekli gözlem sağlanan GPS uydusu sayılarının ortalamaları hesap edilmiştir. Tablo 2'de günlük en az sayıda uydu gözlemleyen istasyonlar gösterilmiştir. Bu istasyonların kuruldukları bölgelerin çevresel şartları incelendiğinde, uydu görünürlüğünü etkileyebilecek büyük doğal coğrafi engellerin varlığı tespit edilmiştir. AGRD istasyonu 9,74 değeri ile günlük ortalama en fazla uydu gözlemleyebilen istasyon konumundadır.

Şekil 4. Batman istasyonunun yıllara göre sinyal yansıması grafiği

Tablo	2.	Günlük	en	az	sayıda	uydu
gözlen	nley	en istasy	yonla	ar		

İSTASYON	GÜNLÜK ORTALAMA UYDU
CATK	7.47
SIRT	7.89
GUMU	7.94
FEEK	8.06
GIRS	8.14

Bir diğer performans analizinde, günlük olarak elde edilen, her bir istasyon ile gözlediği uydular arasındaki sıfır-fark lineer kombinasyon faz gözlemlerine ait artık değerlerden elde edilen Karesel Ortalama Hata (KOH/RMS) değerlerinin analiz süresi boyunca ortalamaları ve standart sapmaları hesaplanmıştır. Şekil 5'te ortalama KOH değerlerinin histogramı verilmiştir.

Tüm istasyonlar için ortalama KOH değerlerinin 15 mm'nin altında olduğu görülmektedir. 15 mm'den büyük KOH

değerlerine sahip istasyonlarda, genellikle kötü yaklaşık koordinatlardan veya ölçü süresinin kısa olmasından kaynaklanan yoğun sinyal yansıması varlığı, düşük alıcı performansı, kötü hava etkilerin bulunabileceği koşulları vb. değerlendirilmektedir (Herring vd, 2015). 10-15 mm aralığındaki değerler vüksek ancak kabul edilebilir gürültü seviyesine isaret etmektedir. Tablo 3'te en yüksek ortalama KOH değerlerine sahip istasvonlar ve standart sapmaları listelenmiştir. Bu istasyonların günlük koordinat çözümlerine ait belirsizliklerinin de diăer istasyonlara nazaran daha yüksek olduğu tespit edilmistir.

Tablo 3. LK faz artık değerlerine ait KOH ortalamaları en yüksek istasyonlar

İSTASYON	ORTALAMA KOH (mm)	σKOH (mm)
DATC	13.62	1.92
AYD1	12.60	1.52
MNTS	12.47	3.39
RDIY	12.37	1.12
IPS1	12.30	2.01
HAT1	12.29	2.66
RZE1	12.22	1.96
ISKN	12.14	2.78
MUR1	12.06	1.09
ISKD	12.05	2.14
SIRT	11.94	1.44

5. REFERANS ÇERÇEVESİNİN TANIMLANMASI

Referans çerçevesinin tanımlanarak zaman serilerinin üretilmesi amacıyla, gevşek kısıtlı günlük GAMIT cözümleri (koordinat ve zenit gecikme parametrelerine ait en kücük kareler dengeleme vektörleri ve ilgili varyans-kovaryans matrisleri), bir Kalman filtresi kullanan GLOBK yazılımı kullanılarak birleştirilmiştir. "Genelleştirilmiş Kısıtlar" (Dong vd., 1998) yöntemi kullanılarak, günlük çözümlerde bulunan ve Şekil 6'da coğrafi dağılımı görülen ANKR, BUCU, GRAS, GRAZ, NICO, NOT1, POLV, POTS, RAMO ve ZECK IGS istasyonlarının ITRF2008 sistemindeki koordinat ve hızlarına sıkı kısıt verilerek, üç öteleme, üç dönüklük ve bir ölçek parametresi hesap edilmiştir. Referans gerçekleştirilmesi çerçevesinin sırasında. yükseklik bileşeninin koordinat ve hızlarının ağırlıkları 100 kat düşürülmüştür. Böylelikle düşey bileşendeki olası büyük hataların dönüşüm parametrelerinin hesabına olan etkisinin düşürülmesi hedeflenmiştir (Herring vd., 2015).

2008-2015 yılları arasında referans çerçevesinin tanımlanmasında elde edilen KOH değerleri Şekil 7'de verilmiştir. KOH değerlerinin büyük oranda 2 mm'nin altında olduğu görülmektedir.

Şekil 6. Referans çerçevesinin tanımlanmasında kullanılan IGS istasyonları

Şekil 7. Referans çerçevesinin tanımlanmasında elde edilen KOH değerleri.

Zaman serilerinin elde edilmesinin ardından, günlük çözümlerin belirsizlikleri istasyon bazında incelenmiştir. Tablo 4'te, en yüksek günlük koordinat çözüm belirsizliği ortalamalarına ($M(\sigma)$) sahip istasyonlar ve standart sapmaları ($\sigma(\sigma)$), doğu, kuzey ve yükseklik bileşenleri için verilmiştir. Tablo 3 ve Tablo 4 karşılaştırıldığında, yüksek LK faz artık KOH değerlerine sahip istasyonların günlük koordinat çözümlerine ait belirsizliklerinin de, bekleneceği üzere, yüksek olduğu görülmektedir.

Ağırlıklandırılmış Karesel Ortalama Hata (AKOH/WRMS). istatiksel uyum iyiliği ölcütlerinden biridir ve ölcülerin tekrarlılığı, bir baska devisle hassasiveti hakkında fikir verir. Günlük çözümlerin, doğrusal regresyon ile elde edilen ve zaman serilerine en iyi uyan doğrunun etrafında nasıl dağılım gösterdiğini ifade eder. Tablo 5'de, yatay koordinat bileşenleri için AKOH değeri 3 mm'den büyük, düşey koordinat bileşeni için ise 10 mm'den büyük istasyonlar listelenmiştir.

Tablo 4. Günlük koordinat çözüm belirsizliği ortalamaları (mm) yüksek istasyonlar

İSTASYON	Doğu M(σ)	Doğu σ(σ)	İSTASYON	<u>Kuzey</u> Μ(σ)	Kuzey σ(σ)	İSTASYON	<u>Yük</u> . M(σ)	<u>Yük</u> . σ(σ)
MNTS_GSI	4.53	2.91	MNTS_GSI	4.48	2.63	MNTS_GSI	24.25	21.90
SIRT_GPS	3.16	0.48	SIRT_GPS	3.67	0.48	SIRT_GPS	16.85	2.37
DATC_GPS	3.10	0.54	DATC_GPS	3.34	0.49	KANT_GDU	14.00	2.90
KANT_GDU	3.07	0.71	KANT_GDU	3.32	0.63	DATC_GPS	13.23	2.18
DATC_1PS	2.78	0.37	RDIY_GPS	3.03	0.29	AVCT_GPS	12.18	2.18
AYD1_GPS	2.71	0.33	DATC_1PS	2.98	0.39	CATK_1PS	11.12	1.48
RDIY_GPS	2.60	0.26	ARTV_GPS	2.95	0.34	ANRK_GPS	11.07	8.70
DIYB_1PS	2.60	0.27	RZE1_GPS	2.94	0.46	RDIY_GPS	10.99	1.12
MURA_GPS	2.58	0.36	MURA_GPS	2.90	0.39	DATC_1PS	10.95	1.45
AVCT_GPS	2.57	0.38	DIYB_1PS	2.85	0.28	CATK_GPS	10.75	1.38
MUR1_GPS	2.56	0.26	AYD1_GPS	2.84	0.35	ARTV_GPS	10.65	1.28
IPS1_GPS	2.56	0.37	TRBN_GPS	2.83	0.67	MURA_GPS	10.63	1.36
CATK_1PS	2.55	0.34	AVCT_GPS	2.83	0.39	SEMD_GPS	10.49	1.48
RZE1_GPS	2.52	0.40	MUR1_GPS	2.81	0.28	AYD1_GPS	10.47	1.33
SEMD_GPS	2.52	0.41	IPS1_GPS	2.80	0.34	DIYB_1PS	10.32	1.05
HAT1_GPS	2.49	0.24	TVAN_1PS	2.80	0.57	MUR1_GPS	10.32	1.07
TRBN_GPS	2.49	0.64	CATK_1PS	2.78	0.35	IPS1_GPS	10.18	1.38
CATK_GPS	2.49	0.34	MURA_1PS	2.75	0.29	TVAN_1PS	10.13	2.34
TVAN_GPS	2.49	0.91	SEMD_GPS	2.74	0.38	ISKN_GPS	9.98	2.33

Tablo 5. Yüksek AKOH değerlerine sahip istasyonlar

İSTASYON	Kuzey WRMS	İSTASYON	Doğu WRMS	İSTASYON	Yükseklik WRMS
ADAN_GPS	14.2	MALZ_GPS	11.9	MALZ_GPS	18.9
MALZ_GPS	10.2	ADAN_GPS	11.2	AVCT_GPS	11.6
MUUS_GPS	10.1	KAPN_GPS	8.9		
KAPN_GPS	5.9	INEB_GPS	6.7		
INE1_GPS	5.6	MUUS_GPS	5.9		
SLEE_GPS	5.5	MERS_GPS	4.9		
INEB_GPS	4.8	AVCT_GPS	4.4		
AKSI_GPS	3.9	AKSI_GPS	3.9		
VAN1_GPS	3.8	RZE1_GPS	3.6		
SIRT_GPS	3.8	KLIS_GPS	3.5		
EDIR_GPS	3.8	ADIS_GPS	3.3		
SAMN_GPS	3.5	SAMN_GPS	3		
KOSG_3PS	3.4				
KLIS_GPS	3.1				
BOGZ_GPS	3				

6. DEPREM ETKİLERİNİN BELİRLENMESİ

Zaman serilerinin incelenmesi sonucunda, 08.03.2010 tarihli Mw:6.1 Elazığ depreminden 1, 23.10.2011 tarihli Mw:7.2 Van depreminden 10, 24.05.2014 tarihli Mw:6.8 Ege Denizi depreminden 3 istasyonun etkilendiği ve zaman serilerinde atımlara sebep olduğu tespit edilmiştir. Bu istasyonların coğrafi dağılımları Şekil 8'de gösterilmiştir.

Bunların haricinde, 1 istasyonda anten pilyesinin değiştirilmesi sebebiyle, 3 istasyonda kaynağı tespit edilemeyen nedenler sebebiyle zaman serilerinde atımlar bulunmuştur. Van depreminden etkilenen 10 istasyonun zaman serilerindeki deprem sonrası (postsismik) etkiyi gidermek için, bu istasyonlarda deprem anından 30.06.2012 tarihine kadar toplanan veriler çözümlerden çıkarılmıştır. Tablo 6'da listesi verilen bu 18 istasyon için, atım tespit edilen andan sonrası için yeni koordinat ve hızlar hesaplanmıştır.

Şekil 8. Zaman serilerinde atımlara sebep olan depremler (kırmızı daire) ve etkilenen istasyonlar (yeşil üçgen: Van depremi, sarı üçgen: Elazığ depremi, mavi üçgen: Ege depremi)

Tablo 6. Zaman serilerinde atım tespit edilen istasyonlar

Nu.	Eski İsim	Yeni İsim	Değişme Nedeni
1	AGRD_GPS	AGRD_1PS	Van Depremi
2	BASK_GPS	BASK_1PS	Van Depremi
3	CATK_GPS	CATK_1PS	Van Depremi
4	HAKK_GPS	HAKK_1PS	Van Depremi
5	IGIR_GPS	IGIR_1PS	Van Depremi
6	KRS1_GPS	KRS1_1PS	Van Depremi
7	MURA_GPS	MURA_1PS	Van Depremi
8	OZAL_GPS	OZAL_1PS	Van Depremi
9	TVAN_GPS	TVAN_1PS	Van Depremi
10	VAAN_GPS	VAAN_1PS	Van Depremi
11	BING_GPS	BING_1PS	Elazığ Depremi
12	CANA_GPS	CANA_1PS	Ege Depremi
13	IPSA_GPS	IPSA_1PS	Ege Depremi
14	YENC_GPS	YENC_1PS	Ege Depremi
15	DATC_GPS	DATC_1PS	Bilinmiyor
16	DIYB_GPS	DIYB_1PS	Anten pilye değişimi
17	SARV_GPS	SARV_1PS	Bilinmiyor
18	KNYA_GPS	KNYA_1PS	Bilinmiyor

Ayrıca, analiz süresi boyunca 15 TUSAGA-Aktif istasyonunun yeri çeşitli sebepler dolayısıyla değiştirilmiş ve isimleri Tablo 7'de görüldüğü şekilde değiştirilmiştir.

Nu.	Eski İsim	İlk gözlem	Son gözlem	Yeni İsim	İlk Gözlem
1	BAND	27.09.2008	09.02.2014	BAN1	17.02.2014
2	CAVD	08.11.2008	04.12.2012	CAV1	06.12.2012
3	ERZI	10.08.2008	16.12.2012	ERZ1	17.12.2012
4	HATA	09.11.2008	19.08.2014	HAT1	09.09.2014
5	INEB	28.07.2008	08.10.2012	INE1	09.10.2012
6	IPSA	08.11.2008	05.06.2014	IPS1	07.06.2014
7	KNYA	11.11.2008	06.03.2014	KNY1	07.03.2014
8	MALZ	29.08.2008	02.06.2014	MLZ1	07.07.2014
9	MURA	27.09.2008	28.01.2014	MUR1	12.03.2014
10	SAMN	27.07.2008	27.11.2012	SAM1	28.11.2012
11	SIHI	01.01.2009	22.08.2013	SIH1	27.08.2013
12	TOKA	01.01.2009	14.02.2014	TOK1	14.02.2014
13	TVAN	01.01.2009	20.02.2014	TVA1	22.02.2014
14	TUFA	01.01.2009	26.12.2013	TUF1	14.01.2014
15	VAAN	27.09.2008	27.11.2012	VAN1	28.11.2012

Tablo 7. Yeri değiştirilen istasyonlar

Şekil 9. Giresun istasyonuna ait a) orijinal zaman serileri ve trendleri (sol), b) tespit edilen uyuşumsuz değerler (orta),c) temizlenmiş zaman serileri (sağ)

7. UYUŞUMSUZ DEĞERLERİN TESPİTİ

Koordinat zaman serilerindeki uyuşumsuz günlük cözümlerin temizlenmesi amacıyla etkili ve hızlı bir uyuşumsuz değer tespit programı hazırlanmıştır. Öncelikle, belirsizliği 500 mm'den büyük günlük çözümler doğrudan uyuşumsuz değer olarak kabul edilmiştir. Daha sonra verinin ortalaması bulunmuştur. Bu amacla, artık değerlerin L2 normunu minimize eden En Kücük Kareler (EKK) yöntemi yerine, L1 normunu minimize eden IRLS (Iteratively Reweighted Least Squares) vontemi (Scales vd., 1988) kullanılmıştır. Böylelikle, büyük bir uyuşumsuz değerin ortalamanın hesabına olan etkisinin düşürülmesi hedeflenmiştir. Yıllık ve yarı-yıllık etkiler de göz önünde bulundurularak trendi alınmış zaman serilerinin ceyrekler acıklığı (Inter Quartile Range-IQR) hesap edilmiştir. IQR yardımıyla Alt Bant (AB) ve Üst Bant (ÜB) değerleri asağıdaki sekilde hesap edilmiştir:

$$AB = Q_1 - \alpha/2 * IQR \tag{1}$$

$$\ddot{U}B = Q_3 + \alpha/2 * IQR \tag{2}$$

Burada Q_1 alt çeyrek değerini Q_3 üst çeyrek değerini ifade etmektedir (Tukey, 1977). Elde edilen bu bantlar dışında kalan değerler uyuşumsuz değer olarak temizlenmiştir. Daha etkili bir uyuşumsuz değer tespiti için (1) ve (2)'de α , genel yaklaşımın aksine 3 yerine 2.5 olarak kullanılmıştır.

Şekil 9'da örnek olarak seçilen Giresun (GIRS) istasyonunun koordinat bileşenlerine ait orijinal zaman serileri ile, uyuşumsuz değerlerin temizlenmesinin ardından elde edilen zaman serileri gösterilmiştir.

8. GÜRÜLTÜ MODELLEME

Tektonik plakaların hareketleri araştırılırken, aslında ölçülen, yerin üzerinde bulunan jeodezik tesisin hareketidir. Bu nedenle, kıtasal hareketle ilgisi olmayan, jeodezik tesisin yapay hareketi, birçok jeodezik ölçü için önemli bir hata kaynağı TUSAGA-Aktif olmaktadır. sisteminin temel amacı, tektonik izlemeden ziyade, arazideki kullanıcılara hızlı ve yeterli doğrulukta konum bilgisi sağlamak olduğu için, işletme kolaylığı açısından istasyonların büyük çoğunluğu kamu binalarının teras ve çatılarına kurulmuştur. Bu, TUSAGA-Aktif istasyonlarına ait zaman serilerinde, jeodezik tesisin sebep olduğu gürültüyü tespit etmenin önemini ortaya çıkarmaktadır. Diğer zaman-korelasyonlu gürültü kaynakları; referans çerçevesi etkileri, yanlış modellenen anten faz merkezi etkileri, yanlış modellenen uydu yörüngeleri ve yanlış modellenen atmosferik etkilerdir. Varsayılan gürültü türünün, elde edilen hız belirsizliklerindeki etkisi büyüktür. Belirsizliklerin gerçekçi bir biçimde tespiti için, zaman serilerine uygulanacak gürültü analizi önemlidir. Böylelikle, gürültünün kaynağı hakkında ipuçları elde edilebilir.

GPS konum kestirimlerindeki gürültünün ortalama genliği, ağın sekline, jeodezik tesisin tipine ve kullanılan değerlendirme vazılımına bağlı olarak değişim gösterir. Her tür jeodezik veriye ait gürültü, zaman periyodu genişledikçe artar (Langbein ve Johnson, 1997) ve genellikle $1/f^k$ şeklinde ifade edilen güç yasasına riayet eder (Williams vd., 2004). Burada f frekansı ifade ederken k, 1 ile 3 arasında değişen spektral indekstir. Bu çalışmada, GNSS zaman serileri için zaman-korelasyonlu gürültü modeli üreten "Realistic Sigma" (Herring, 2003) yöntemi kullanılmıştır. Bu yöntemin ortaya koyduğu belirsizlikler ile kırpışma gürültüsü modeli üreten CATS (Williams, 2008) yazılımının hesapladığı belirsizlikler karşılaştırılmış ve büyük oranda tutarlı olduğu görülmüştür (Floyd ve Palamartchouk, 2015).

Realistic Sigma (RS) modeli ile, her koordinat bileseni icin elde edilen artık değerlerin, gittikce artan zaman aralıkları için ortalamaları alınmakta, bu ortalamalar için χ^2/sd oranlarındaki artış hesaplanmakta. bövlelikle artık deăerlerin korelasvon zamanı kestirilmektedir (sd: serbestlik derecesi). Bir beyaz gürültü hata modeli varsayımında χ^2/sd oranının, ortalaması alınan zaman aralığına bağımlı olmaması gerekir. Oysa sabit GPS (sGPS) zaman serileri incelendiğinde bu oranın, ortalaması alınan zaman aralığıyla ilişkili olarak büyüdüğü görülmektedir. Şekil 10'da, "tsview" yazılımı (Herring, 2003) ile elde edilen, Bayburt (BAYB) istasyonu kuzey bileşeni icin ortalaması alınan artık değerlerin karakteristiği görülmektedir. Realistic Sigma ile elde edilen rastgele yürüyüş gürültü modelleri, bir önceki bölümde anlatılan yöntemle uyuşumsuz değerleri temizlenen zaman serilerinden elde edilmistir.

9. HAFTALIK BİRLEŞTİRMELER VE PARAMETRE KESTİRİMİ

Her bir zaman serisinin davranışına uyan gürültü modelinin de kullanılmasıyla, koordinat ve hız hesaplamalarında kullanılmak üzere günlük çözümler gevşek kısıt verilerek haftalık olacak şekilde birleştirilmiştir. Hız kestiriminde günlük çözümler yerine haftalık birleştirmelerin kullanılması hesaplama zamanını kısaltmakta, istasyonların günlük davranışlarında kaybolmadan uzun dönemli tekrarlılıkların incelenmesine imkân vermektedir.

çerçevesinin Referans tanımlanmasında kullanılan IGS istasyonu sayısının mümkün olduğu kadar fazla olması tercih edilmektedir. Referans cercevesinin tanımlanması iteratif bir sekilde gerceklestirilmekte ve yüksek belirsizlik oranına sahip IGS istasyonları her iterasyonda tanımlamadan cıkarılmaktadır. Öte vandan. calısmada güclü bir uyusumsuz değer temizleme vöntemi kullanıldığı icin, bazı günlerde bir cok IGS istasyonunun uyuşumsuz günlük çözümleri temizlenebilmektedir. Bu durum. referans çerçevesinin tanımlanmasında kullanılabilecek IGS istasyonu sayısını önemli ölcüde düsürebilmektedir. Koordinat ve hız tahminlerinde haftalık birleştirmeler kullanıldığı için, referans çerçevesinin tanımlanmasında kullanılan IGS istasyonu sayısı hicbir zaman 8'in altına düşmemiştir.

Şekil 10. BAYB kuzey bileşeni için Realistic Sigma belirleme eğrisi

Haftalık birleştirmeler vasıtasıyla, çalışmaya dahil edilen tüm istasyonların koordinat ve hız parametreleri ve bu parametrelere ait belirsizlikler GLOBK yazılımı ile ITRF2008 (Altamimi vd., 2011) sisteminde hesaplanmıştır. Şekil 11'de, tüm istasyonlara ait ITRF2008 sistemindeki hızlar ve %95 güven seviyesinde hata elipsleri cizdirilmistir. Yerlerinin değişmesi nedenivle vüksek hassasivette hız belirlemeve vetecek uzunlukta verileri olmayan ve Tablo 5'te listesi verilen vüksek AKOH değerlerine sahip istasyonların hata elipsleri daha büyüktür. Elde edilen koordinat ve hız parametreleri, Türkiye Ulusal Temel GPS Ağı-99A (TUTGA-99A) (Ayhan vd., 2002; Aktuğ vd., 2011) ve TUSAGA-Aktif istasyonlarının Harita Genel Komutanlığı tarafından yayımlanan resmî koordinat ve

hızlarıyla uyumlu olması için, Uluslararası Yer Dönüklüğü ve Referans Sistemleri Servisi (International Earth Rotation and Reference Systems Service-IERS) tarafından yayımlanan parametreleri (Transformation dönüsüm Parameters, 2016) kullanılarak ITRF1996 sisteminde, 2005.0 epočunda hesap edilmistir vd., 2013). EK-A'da istasvonların (Cinaöz 2005.0 **ITRF1996** sisteminde. epoăunda belirlenen kartezven koordinatları, hızları ve standart sapmaları; EK-B'de istasyonların 2005.0 epoğunda elipsoidal coğrafi koordinatları, lokal koordinat sistemindeki hızları ve standart sapmaları verilmiştir. Lokal koordinat sisteminde noktanın kuzey bileşeni, noktanın jeodezik enlemine gelen düzeltme ile GRS80 elipsoidinin büyük yarı ekseninin carpılmasıyla elde edilir. Yükseklik bileşeni, elipsoidal yüksekliğe gelen düzeltmedir. Doğu bileşeni ise, noktanın jeodezik boylamına gelen düzeltme ile noktanın en yakınındaki 1 derecelik enlem dairesinden geçen küçük dairenin yarıçapının çarpılmasıyla bulunur. Böylelikle noktanın doğu bileşeninin değerinin enlemdeki değişimlerden etkilenmemesi sağlanmış olur (Herring vd., 2015). Bir başka devisle, avnı boylam dairesi üzerindeki tüm noktaların doğu koordinatları aynı olur.

10.DIŞ KONTROL

Önceki bölümlerde anlatılan stratejiler takip edilerek elde edilen sonuçların doğruluğunu değerlendirmek amacıyla, analizlere dahil edilen 12 IGS istasyonundan 6 tanesinin (ANKR, NICO, NOT1, GRAS, POLV, RAMO) koordinat ve hızlarına sıkı kısıt uygulanarak değerlendirmeye dahil edilen istasyonların koordinat ve hiz parametreleri yeniden hesaplanmıştır. Bu 6 istasyon seçilirken, 12 istasyonun IGS tarafından ITRF2008 sisteminde yayımlanan koordinat ve hız çözümündeki (IGb08.snx) standart sapmaları incelenmiş ve koordinat bileşenlerine ait standart sapmaları en düşük olan istasyonlar seçilmiştir. sonra, koordinat ve hızlarına kısıt Daha uygulanmayan diğer 6 IGS istasyonundan 5 tanesinin (ADIS, BUCU, GRAZ, POTS, ZECK) ITRF2008 sisteminde elde edilen koordinatları, IGS cözümü 2005.0 epoăunda ile karsılaştırılmıştır. KOSG istasyonunun zaman yüzünden serilerindeki tutarsız davranısı koordinat parametrelerinin yeterli hassasiyette belirlenememesi sebebiyle, bu istasyon karşılaştırmada kullanılmamıştır. Tablo 8'de iki çözüm arasında kartezyen koordinatlarda elde edilen farklar gösterilmiştir. Tablo incelendiğinde farkların genel olarak birkaç mm mertebesinde olduğu görülmektedir.

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Sekil 11. ITRF2008 sisteminde elde edilen hızlar ve hata elipsleri (%95 güven düzevinde)

Tablo 8. Seçilen IGS istasyonlarının kartezyen koordinatlarında elde edilen, yerel çözümle IGS çözümü arasındaki farklar

Nokta	ΔX (m)	ΔY (m)	ΔΖ (m)		
ADIS_GPS	-0.00144	-0.00213	-0.00192		
BUCU_2PS	-0.00049	-0.00175	-0.00219		
GRAZ_5PS	0.00087	0.00211	-0.00111		
POTS_3PS	-0.00474	0.00508	-0.00985		
ZECK_4PS	-0.00326	-0.00265	0.00004		

11.SONUÇLAR VE ÖNERİLER

1990'lı yılların başından bu yana, sabit ve kampanya tipi GPS verileri Harita Genel Komutanlığınca analiz edilmektedir. Bu süre zarfında, GPS analiz sonuclarını iyilestirmeye yönelik birçok gelişme olmuş, yeni gelişmeler GPS verilerinin ısığında yeniden değerlendirilmesi gerekmiştir. Buna örnek olarak, IGS analiz merkezlerince 1996 yılından beri göreli faz kullanılan anten merkezi düzeltmelerinin yerine 2006 yılından sonra mutlak düzeltmelerin kullanılmaya başlanması verilebilir (Gendt, 2006). Her ne kadar analiz merkezlerince ikili fark gözlemlerinin değerlendirilmesinde izlenen yöntem neredeyse standart bir hal alsa da, günümüzde analiz stratejilerindeki küçük değişikliklerin, koordinat tahminlerinde sebep olduğu mm altı değişikler dahi tespit edilebilmektedir. Bu durum göz önüne alınarak, MAGNET, TUSAGA ve TUSAGA-Aktif ağlarından 28.06.2008 tarihinden 2015 yılı basına kadar elde edilen GPS gözlemleri güncel yaklaşımlarla yeniden değerlendirilmiştir.

Bu calışmada izlenen analiz strateiisi. Harita Genel Komutanlığınca bundan önceki dönemde kullanılan stratejiden (Özdemir vd., 2011) çeşitli

farklılıklar göstermektedir. Öncelikle, MAGNET. TUSAGA ve TUSAGA-Aktif ağlarının farklı ağlar şeklinde ayrı ayrı değerlendirilmesi yerine, tüm verilerin tek bir havuzda toplanması tercih edilmiştir. Alt gruplar bu ana küme üzerinden oluşturulmuş, baz uzunluğu tabanlı gruplandırma vapılarak en kısa baz mesafelerinin olusturulmasına calısılmıstır. IGS final vörüngelerin veterli hassasiveti saăladıăı cözümlerde varsayılarak, günlük vörünge parametreleri dengelemeve bilinen deăerler olarak dahil edilmiştir. Böylelikle yörüngelerin belirlenmesi için, elde edilen çözümlerin global çözümlerle birleştirilmesine ihtiyaç kalmamıştır. Atmosferik etkisi göz yükleme önünde bulundurulmuş, kısa dönemli düşey hareketleri tutarlı şekilde modelleyebilmek için, filtre edilmiş gelgitsel olmayan atmosferik yükleme dosyaları, zamanla değişen VMF1 indirgeme fonksiyonuyla birlikte kullanılmıştır.

İstasyon performans analizleri neticesinde, Batman (BTMN) ve Bayburt (BAYB) istasyonlarında yüksek sinyal yansıması varlığı tespit edilmiştir. BTMN istasyonundaki sinyal yansıması varlığı sadece yaz aylarında ortaya çıkmaktadır. Bu bakımdan bu istasyonlardaki sinyal yansıması varlığının sebepleri ortaya cıkarılarak giderilmelidir. Catak (CATK). Siirt (SIRT), Gümüshane (GUMU), Fenike (FEEK) ve Giresun (GIRS) istasyonlarının etrafındaki büyük coğrafi engeller, bu istasyonlarda gözlenen günlük ortalama uydu sayısını diğer istasyonlara nazaran düşürmektedir. Ancak bu durumun, koordinat çözümlerine kaydadeğer miktarda olumsuz etkisi olmadığı görülmüştür. Datca (DATC), Aydın (AYD1), Reşadiye (RDIY), İpsala (İPS1), Hatay (HAT1), Rize (RZE1) ve Siirt (SIRT) istasyonlarından elde edilen LK faz artık

değerlerine ait KOH ortalamaları yüksektir. Bu durum, söz konusu istasyonların günlük çözüm belirsizliklerinin de yüksek çıkmasına sebep olmaktadır. Bu istasyonlardaki yüksek KOH değerlerinin sebepleri araştırılmalı, istasyonların çevresel şartları yeniden incelenmelidir. Günlük zaman serileri incelendiğinde. Tablo 5'te listesi verilen istasyonların yüksek AKOH değerlerine aörülmektedir. sahip olduău Doărusal regresyonla elde edilen bu istasyonlara ait artık değerlerin histogramları normal dağılım göstermemekte, farklı normal dağılımların bileşkesi gibi görünmektedir. Bu durum, bu istasyonların hareketinin doğrusal hiz varsayımıyla açıklanmasını zorlaştırmaktadır. Bu nedenle özellikle, TUSAGA-Aktif ağında bulunan Adana (ADAN), Muş (MUUŞ) ve Karapınar (KAPN) istasyonlarının daha uygun zemine sahip yerlere taşınması değerlendirilmelidir.

(KNY1) Konya istasyonunun yükseklik bileşenine ait hız değeri yaklaşık -7 cm/yıl olarak tespit edilmiştir. Normal şartlar altında bu derece yüksek bir hızın istasyonda deformasyona sebep olması beklenmektedir. Ancak istasvonda herhangi bir deformasyon tespit edilmediğinden, bölgede daha geniş bir alanı etkisi altına alan, yeraltı suyu çekilmesi gibi bir çökme hareketinin bulunabileceği değerlendirilmektedir. Bu sebeple KNY1 istasyonu daha sağlam zemine sahip bir bölgeve tasınmalıdır.

Zaman serilerindeki uyuşumsuz değerlerin için kullanıcının tecrübe temizlenmesi ve yorumlamasına ihtiyaç duymayan güçlü bir program uvusumsuz deăer temizleme geliştirilmiştir. Program kullanıcının α değerini belirlemesine izin vermektedir. Böylelikle ileri zaman serisi analizlerinde, sinyalin içindeki yüksek frekanslı sinyallerin varlığı araştırılmak istendiğinde, daha gevşek bir uyuşumsuz değer temizleme yöntemi kullanılabilir.

Her istasyon icin rastgele yürüyüs gürültü modeli oluşturularak, daha gerçekçi hız belirsizliği parametreleri elde edilmiştir. Beyaz gürültü varsayımıyla tüm istasyonlar için çok küçük ve birbirine çok benzeyen belirsizlikler elde edilirken, çalışmada kullanılan modelle her istasyonun davranışıyla uyumlu belirsizlik oranları elde edilmiştir. Tablo 5'te verilen yüksek AKOH değerlerine sahip istasyonların hızlarına ait belirsizliklerin de, bekleneceği üzere yüksek olduğu EK-A ve EK-B'de görülmektedir. Bu çalışmada elde edilen hassas koordinat ve hız parametreleri ile bu parametrelere ait gerçekçi belirsizliklerin, yalnızca hassas konum bilgisine ihtiyaç duyulan jeodezik çalışmalarda değil, deformasyon ve sismik tehlike alanlarına ışık

tutması açısından gerinim analizi yoluyla jeofizik çalışmalarda da kullanılabileceği değerlendirilmektedir.

Deprem vb. etkiler nedeniyle zaman serilerinde atım tespit edilmesi nedeniyle yeni birer nokta olarak ele alınan ve Tablo 6'da listesi verilen istasyonlar ile, çeşitli sebepler nedeniyle verleri değiştirilen ve Tablo 7'de listesi verilen istasyonların zamansal çözünürlüğünün, 5 yıldan uzun süreli verileri bulunan diğer daha istasyonlara nazaran düşük olduğu, hız ve analizlerinde aerinim alanı qöz önünde bulundurulmalıdır. Öte yandan, bu calışmada Hakkâri (HAKK), İnebolu (INEB ve INE1), Mus (MUUŞ) ve Malazgirt (MALZ) istasyonları için elde edilen hız değerlerinin TUTGA hız alanı ile uyuşumsuz olduğu tespit edilmiştir. Bu durum, bu genel istasvonlarda bölgenin davranısına uymayan lokal hareketler bulunduğu şeklinde yorumlanabilir.

BİLGİLENDİRME VE TEŞEKKÜR

Bu çalışmada anlatılan GPS verilerinin değerlendirilmesinde kullanılan strateji, Prof. Dr. Mahmut Onur KARSLIOĞLU yürütücülüğünde gerçekleştirilen 113Y511 numaralı "Sabit GNSS İstasyonlarına Ait Zaman Serilerinde Zayıf Sinyallerin Tespit Edilmesi" başlıklı TÜBİTAK Araştırma Projesi kapsamında geliştirilmiştir.

TUSAGA, TUSAGA-Aktif ve MAGNET istasyonlarının işletilmesinde verilerin ve kullanıcılara sağlanmasında emeği geçen Harita Genel Komutanlığı, Tapu ve Kadastro Genel Müdürlüğü ile TÜBİTAK-MAM Yer ve Deniz Enstitüsü personeline, Bilimleri calısma geliştirilen kapsamında yazılımlardaki katkılarından dolayı Dr. Murat DURMAZ'a, makalenin yeniden gözden geçirilmesinde ve ITRF2008-ITRF96 datum dönüşümleri için gerekli yazılımların hazırlanmasında sağladığı katkılar icin Dr.Müh.Yb.Ali İhsan KURT'a tesekkür ederim.

KAYNAKLAR

- Aktuğ B., Sezer S., Özdemir S., Lenk O., Kılıçoğlu A., (2011), Türkiye Ulusal Temel
 GPS Ağı Güncel Koordinat ve Hızlarının
 Hesaplanması, Harita Dergisi, 145, 1-14.
- Altamimi Z., Collilieux X., M'etivier L., (2011), ITRF2008: An improved solution of the international terrestrial reference frame, Journal of Geodesy, 85 (8) (457-473), DOI:10.1007/s00190-011-0444-4, DOI: 10.1007/s00190-011-0444-4.

- Ayhan M.E., Demir C., Lenk O, Kılıçoğlu A., Aktuğ B., Açıkgöz M., Fırat O., Şengün Y.S., Cingöz A., Gürdal M.A., Kurt A.İ., Ocak M, Türkezer A., Yıldız H., Bayazıt N., Ata M., Çağlar Y., Özerkan A., (2002), Türkiye Ulusal Temel GPS Ağı-1999A (TUTGA-99A), Harita Dergisi Özel Sayı, No.16, Ankara.
- Blewitt G. ve Lavallee D., (2002), Effect of Annual Signals on Geodetic Velocity, Journal of Geophysical Research, 107(B7), 10.1029/2001JB000570.
- Boehm J., Werl B., Schuh H., (2006), Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, doi:10.1029/2005JB003629
- Cingöz A., Erkan Y., Kurt A.İ., Peker S., (2013), **Türkiye Ulusal Sabit GNSS İstasyonları Ağı-(TUSAGA-Aktif) Sistemi**, TMMOB Harita ve Kadastro Mühendisleri Odası, 14. Türkiye Harita Bilimsel ve Teknik Kurultayı, 14-17 Mayıs 2013, Ankara.
- Dong D.N., Herring T.A., King R.W., (1998), Estimating Regional Deformation from a Combination of Space and Terrestrial Geodetic Data, J. Geodesy, 72, 200-214.
- Estey L.H. ve Meertens C. M., (1999), **TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data**, GPS Solutions (pub. by John Wiley & Sons), Vol. 3, No. 1, pp. 42-49, doi:10.1007/PL00012778
- Floyd M. ve Palamartchouk K., (2015), **Time** series and error analysis with FOGMEx, CATS and Hector, GAMIT-GLOBK course lecture notes, University of Bristol, UK
- Gendt G., (2006), **IGS switch to absolute antenna model and ITRF2005**, IGSMAIL-5438, IGS Central Bureau, Pasadena
- Herring T.A., (2003), MATLAB Tools for viewing GPS velocities and time series, GPS Solutions, 7, 194-199.
- Herring T.A., King R.W., Floyd M.A., McClusky S.C., (2015), Introduction to GAMIT/GLOBK, Release 10.6, Syf: 25

- Herring T.A., King R.W., Floyd M.A., McClusky S.C., (2015), GAMIT/GLOBK Reference Manual, Release 10.6
- IGS, (2016), **IGS Tracking Network**, <u>https://igscb.jpl.nasa.gov/network/netindex.ht</u> <u>ml</u> (ziyaret tarihi: 02.01.2016)
- İKÜ, (2010), TUSAGA-AKTİF (CORS-TR) Projesi, Sonuç Raporu, TÜBİTAK Proje No: 105G017
- Kılıçoğlu A., Kurt A.İ., Tepeköylü S., Cingöz A., Akça E., (2003), **Türkiye Ulusal Sabit GPS İstasyonları Ağı (TUSAGA)**, TUJK 2003 Yılı Bilimsel Toplantısı, 24-26 Eylül 2003, Selçuk Üniversitesi, Konya
- Langbein J.O. ve Johnson H., (1997), Correlated Errors in Geodetic Time-series: Implications for Time Dependent Deformation, J. Geophys. Res., 102:591-603
- Mao A., Harrison C.G.A., Dixon T.H., (1999), Noise in GPS Coordinate Time-series, J. Geophys. Res., 104, 2797-2896
- Melbourne W. G. (1985), **The case for ranging in GPS based geodetic systems**, Proceedings of 1st international symposium on precise positioning with the global positioning system, Rockville, MD, pp. 373– 386.
- Özdemir S., Cingöz A., Aktuğ B., Lenk O., Kurt M., Parmaksız E., (2011), **Sabit İstasyon Verilerinin Analizi**, 13. Türkiye Harita Bilimsel ve Teknik Kurultayı, 18-22 Nisan 2011, Ankara.
- Petrie E. J., King M.A., Moore P., Lavallée D.A., (2010), **Higher-order ionospheric effects on the GPS reference frame and velocities**, J. Geophys. Res., 115, B03417, doi:10.1029/2009JB006677
- Scales J.A., Gersztenkorn A., Tretiel S., (1988),
 Fast Ip Solution of large, sparse, linear systems: Application to Seismic Travel Time Tomography, J. Computational Physics, 75(2):314-333.
- Schaffrin B. ve Bock Y., (1988), A Unified Scheme for Processing GPS Phase Observations, Bull. Geodesique, 62, 142-160.

- Tukey J., (1977), **Data Analysis**, Syf.43-44, Addison-Wesley
- TransformationParameters,
Parameters,
(2016),InternationalTerrestrialReference
sitesi,(ITRF)internetsitesi,http://itrf.ensg.ign.fr/doc_ITRF/Transfo-
ITRF2008_ITRFs.txt(ziyarettarihi:03.01.2016)03.01.2016)tarihit
- Tregoning P. ve Watson C., (2009), Atmospheric effects and spurious signals in GPS analyses, J. Geophys. Res., 114, B09403, doi:10.1029/2009/B006344
- TÜBİTAK, (2004), Marmara Bölgesi Sürekli Gps Gözlem Ağı Projesi, http://ydbe.mam.tubitak.gov.tr/tr/icerik/marmar <u>a-bolgesi-sureki-gps-gozlem-agi</u> (ziyaret tarihi: 02.01.2016)
- Williams S.D.P., Bock Y., Fang P., Jamason P., Nikolaidis R.M., Prawirodirdjo L., Miller M., Johnson D.J., (2004), Error analysis of continuous GPS position time series, J. Geophys. Res., 109, B03412, doi:10.1029/2003JB002741
- Williams S.D.P., (2008), CATS: GPS coordinate time series analysis software, GPS Solutions, 12, 147-149
- Wübbena G., (1985), Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements, Proceedings of 1st international symposium on precise positioning with the global positioning system, Rockville, MD, pp. 403– 412
- Zhang J., Bock Y., Johnson H., Fang P., Williams S., Genrich J., Wdowinski S., Behr J., (1997), Southern California Permanent GPS Geodetic Array: Error Analysis of Daily Position Estimates and Site Velocities, J. Geophys. Res., 102, 18,035-18,055

EK-A ITRF1996 Epok:2005 Kartezyen Koordinat ve Hızlar

Nekto	V (m)	V (m)	7 (m)	aV (m)	aV (m)	~7 (m)	Vy (m /y)	Vir Im Ivi	V- (m/v)	σVx	σVy	σVz
NOKLA	^ (m)	¥ (III)	2 (m)	0 x (m)	01 (m)	02 (m)	vx (m/y)	vy (m/y)	vz (m/y)	(m/y)	(m/y)	(m/y)
ADAN_GPS	4159895.21360	2950137.39261	3817739.72459	0.00069	0.00062	0.00072	-0.01021	0.00915	0.00293	0.00170	0.00164	0.00224
ADIY_GPS	3967201.78946	3125208.90445	3883612.44465	0.00058	0.00048	0.00053	-0.02377	0.00472	0.01564	0.00065	0.00057	0.00060
AFYN_GPS	4290278.45786	2533323.84159	3970373.97156	0.00045	0.00032	0.00042	-0.00688	0.00042	0.00393	0.00027	0.00021	0.00027
AGRD_1PS	3592016.19064	3353464.56028	4054981.87092	0.00068	0.00063	0.00075	-0.02352	0.01507	0.00928	0.00132	0.00124	0.00169
AGRD_GPS	3592016.20168	3353464.55966	4054981.88490	0.00360	0.00337	0.00466	-0.02709	0.01149	0.01052	0.00120	0.00113	0.00155
AKDG_GPS	3985177.07014	2881782.35537	4049905.31060	0.00044	0.00034	0.00042	-0.01256	-0.00148	0.01149	0.00029	0.00023	0.00030
AKHI_GPS	4384884.47424	2332433.52828	3989568.40010	0.00045	0.00029	0.00040	-0.00219	0.00080	0.00119	0.00034	0.00023	0.00031
AKHR_GPS	4273150.89652	2611388.08068	3938311.84263	0.00044	0.00035	0.00038	-0.00812	-0.00056	0.00088	0.00032	0.00034	0.00026
AKSI_GPS	4333132.53924	2685347.08048	3822339.97039	0.00045	0.00034	0.00039	-0.01295	0.00710	0.00302	0.00035	0.00029	0.00039
AKSR_GPS	4151746.03721	2800192.93635	3938383.96154	0.00042	0.00031	0.00039	-0.01404	-0.00093	0.00789	0.00029	0.00022	0.00028
AMAS_GPS	3927328.13429	2837618.04457	4134622.57774	0.00045	0.00034	0.00046	-0.01618	0.00212	0.01144	0.00030	0.00024	0.00031
ANKR_6PS	4121948.53768	2652187.90973	4069023.72533	0.00027	0.00019	0.00026	-0.00591	-0.00238	0.00519	0.00034	0.00024	0.00040
ANMU_GPS	4335426.32067	2800969.21443	3734407.62364	0.00051	0.00036	0.00043	-0.01516	0.00883	0.00792	0.00036	0.00027	0.00031
ANRK_GPS	4119925.65215	2659815.33773	4066510.60688	0.00050	0.00036	0.00048	-0.00773	-0.00095	0.00774	0.00041	0.00030	0.00041
ANTE_GPS	4050047.38655	3093540.15943	3823682.75206	0.00044	0.00036	0.00040	-0.02353	0.00588	0.01601	0.00039	0.00033	0.00035
ANTL_GPS	4393226.82441	2605026.36248	3807552.40116	0.00040	0.00027	0.00034	-0.00980	0.00847	0.00296	0.00027	0.00019	0.00024
ARDH_GPS	3537827.61218	3264506.09060	4172946.49377	0.00051	0.00047	0.00055	-0.02395	0.01486	0.00743	0.00044	0.00042	0.00051
ARPK_GPS	3883559.29587	3087719.53748	3996601.45422	0.00055	0.00046	0.00054	-0.01773	-0.00074	0.01290	0.00049	0.00042	0.00050
ARTV_GPS	3583454.81330	3206040.31456	4177515.50939	0.00050	0.00048	0.00055	-0.02900	0.01666	0.00834	0.00041	0.00042	0.00038
AVCT_GPS	4228203.57122	2317162.89546	4161553.46306	0.00330	0.00220	0.00320	-0.02232	0.01113	0.00001	0.00123	0.00082	0.00121
AYD1_GPS	4459716.78960	2355111.72988	3891560.42304	0.00122	0.00068	0.00105	-0.00041	0.00409	-0.00589	0.00106	0.00058	0.00093
AYVL_GPS	4415163.36654	2219261.44253	4019162.61506	0.00052	0.00036	0.00046	-0.00256	0.00372	-0.00140	0.00031	0.00024	0.00027
BAD1_GPS	4220922.74981	2351062.65214	4150171.28149	0.00060	0.00036	0.00059	-0.01688	0.01582	0.00846	0.00049	0.00029	0.00050
BALK_GPS	4347061.60088	2301032.01285	4047360.22281	0.00031	0.00025	0.00028	-0.00509	0.00120	0.00343	0.00018	0.00018	0.00017
BAN1_GPS	4299018.02189	2283417.70384	4107629.52798	0.00056	0.00034	0.00052	-0.00709	-0.00306	0.00267	0.00191	0.00119	0.00187
BAND_GPS	4299255.67741	2285638.27243	4106153.98480	0.00108	0.00063	0.00106	-0.00417	0.00398	0.00549	0.00045	0.00026	0.00044
BASK_1PS	3618144.31962	3496113.69632	3910667.65452	0.00080	0.00078	0.00083	-0.02557	0.00504	0.02031	0.00180	0.00175	0.00204
BASK_GPS	3618144.34456	3496113.73737	3910667.66411	0.00514	0.00499	0.00583	-0.02875	0.00359	0.01451	0.00167	0.00162	0.00189

Nokta	X (m)	V (m)	7 (m)	σX (m)	σV (m)	σ7 (m)	Vx(m/y)	Vy (m/y)	$V_7 (m/y)$	σVx	σVy	σVz
	, (iii)	. ()	2 (11)	ол (ш)		02 (m)	• ~ (, • ,)	• • (, •)	• 2 (III, y)	(m/y)	(m/y)	(m/y)
BAYB_GPS	3724825.07487	3146766.94886	4100328.40018	0.00040	0.00035	0.00041	-0.02225	0.01484	0.00818	0.00026	0.00024	0.00026
BCAK_GPS	4366381.22684	2594413.64243	3846218.05704	0.00036	0.00025	0.00032	-0.00769	0.00667	0.00341	0.00024	0.00018	0.00022
BEYS_GPS	4298980.61314	2659931.99914	3877883.26147	0.00035	0.00026	0.00032	-0.00950	0.00428	0.00462	0.00020	0.00016	0.00019
BILE_GPS	4229802.39475	2439852.69621	4090382.20972	0.00042	0.00028	0.00040	-0.00612	-0.00111	0.00452	0.00030	0.00020	0.00029
BING_1PS	3780877.89603	3229264.16521	3983169.49595	0.00055	0.00048	0.00055	-0.02023	0.00342	0.01552	0.00053	0.00047	0.00055
BING_GPS	3780877.91035	3229264.16388	3983169.51141	0.00247	0.00217	0.00258	-0.02172	0.00256	0.01242	0.00126	0.00111	0.00128
BOGZ_GPS	4042636.10369	2857592.32548	4009697.44521	0.00043	0.00033	0.00042	-0.01678	-0.00213	0.00764	0.00038	0.00029	0.00045
BOLU_GPS	4122737.13733	2536526.43335	4140560.70693	0.00036	0.00026	0.00036	-0.01201	0.00694	0.00894	0.00021	0.00016	0.00023
BOYT_GPS	3931121.57385	2731860.85909	4201198.45377	0.00043	0.00032	0.00043	-0.01994	0.01421	0.00640	0.00034	0.00026	0.00036
BOZT_GPS	4254713.28550	2337311.44151	4123337.67651	0.00039	0.00028	0.00038	-0.00902	0.00342	0.00476	0.00023	0.00018	0.00023
BOZU_GPS	4243032.53557	2454529.12359	4068391.03457	0.00041	0.00028	0.00038	-0.00545	-0.00107	0.00443	0.00027	0.00021	0.00027
BTMN_GPS	3796501.16567	3318261.82633	3893902.15998	0.00040	0.00035	0.00038	-0.02365	0.00550	0.01875	0.00028	0.00026	0.00026
BURS_GPS	4265347.97372	2365803.28334	4096299.29281	0.00049	0.00036	0.00045	-0.00634	-0.00042	0.00437	0.00027	0.00025	0.00025
CANA_1PS	4374891.44656	2173079.55867	4087527.73874	0.00041	0.00025	0.00038	-0.00729	-0.00668	0.00076	0.00204	0.00126	0.00186
CANA_GPS	4374891.41644	2173079.47381	4087527.71765	0.00062	0.00039	0.00061	-0.00527	0.00518	0.00121	0.00029	0.00018	0.00029
CANK_GPS	4038848.25371	2684459.21784	4130037.96522	0.00045	0.00033	0.00042	-0.00999	0.00060	0.00804	0.00032	0.00029	0.00035
CATK_1PS	3677361.01457	3436484.60128	3907027.16773	0.00073	0.00067	0.00082	-0.02769	0.00554	0.02013	0.00120	0.00112	0.00174
CATK_GPS	3677361.03776	3436484.60740	3907027.16417	0.00326	0.00306	0.00487	-0.02650	0.00696	0.01475	0.00107	0.00100	0.00157
CAV1_GPS	4422030.80013	2521110.50188	3832164.16949	0.00034	0.00024	0.00032	-0.00360	0.00664	0.00086	0.00046	0.00033	0.00045
CAVD_GPS	4422142.11278	2521339.25244	3831920.99450	0.00193	0.00116	0.00175	-0.00400	0.00728	0.00275	0.00066	0.00040	0.00060
CESM_GPS	4490049.34978	2226201.25169	3931995.65071	0.00043	0.00027	0.00038	0.00216	0.00667	-0.00955	0.00027	0.00018	0.00024
CIHA_GPS	4187342.48310	2711236.70890	3962713.14115	0.00038	0.00029	0.00037	-0.01042	0.00038	0.00696	0.00026	0.00021	0.00030
CINC_GPS	4467493.02625	2371395.25290	3873038.93550	0.00037	0.00024	0.00032	0.00192	0.00561	-0.00824	0.00024	0.00017	0.00022
CMLD_GPS	4098740.53728	2608623.41857	4120424.38561	0.00038	0.00027	0.00036	-0.00683	0.00049	0.00576	0.00025	0.00019	0.00024
CORU_GPS	3975761.90264	2782018.50071	4126901.92300	0.00044	0.00033	0.00043	-0.01244	0.00153	0.00969	0.00031	0.00024	0.00033
DATC_1PS	4533056.99938	2379084.11043	3791550.39287	0.00103	0.00060	0.00088	0.00238	0.01489	-0.01303	0.00186	0.00105	0.00158
DATC_GPS	4533057.00255	2379084.12495	3791550.40676	0.00309	0.00171	0.00262	-0.00064	0.01181	-0.01631	0.00109	0.00061	0.00092
DEIR_GPS	4354177.87423	2378749.05337	3995884.14058	0.00046	0.00029	0.00042	-0.00332	0.00017	0.00199	0.00028	0.00019	0.00027
DENI_GPS	4412026.33276	2454909.06643	3884891.07745	0.00054	0.00042	0.00052	0.00111	0.00514	0.00119	0.00047	0.00043	0.00052
Nokta	X (m)	V (m)	7 (m)	aX (m)	aV (m)	g7 (m)	Vy (m/y)	Vy (m/y)	$\sqrt{2}$ (m/y)	σVx	σVy	σVz
----------	---------------	---------------	---------------	----------	---------	---------	--------------	--------------	------------------	---------	---------	---------
	× (11)	1 (11)	2 (11)	0X (III)	01 (11)	02 (11)	• × (III/ y)	• y (111/ y)	v 2 (111/ y)	(m/y)	(m/y)	(m/y)
DIDI_GPS	4511088.98854	2325222.78052	3850343.51153	0.00032	0.00022	0.00028	0.00293	0.00766	-0.01240	0.00018	0.00014	0.00016
DINA_GPS	4347405.99783	2526832.31698	3912082.83237	0.00037	0.00025	0.00033	-0.00626	0.00201	0.00207	0.00025	0.00018	0.00024
DIPK_GPS	4297914.34683	2920274.50945	3686590.23159	0.00041	0.00031	0.00035	-0.01661	0.00958	0.01100	0.00038	0.00030	0.00034
DIVR_GPS	3884499.27531	3046261.71514	4026933.23443	0.00049	0.00040	0.00048	-0.01637	-0.00019	0.01340	0.00037	0.00031	0.00038
DIYB_1PS	3847302.97210	3249783.74015	3901931.58573	0.00075	0.00064	0.00074	-0.02270	0.00511	0.01828	0.00085	0.00072	0.00086
DIYB_GPS	3847301.71957	3249782.69382	3901930.37941	0.00348	0.00296	0.00353	-0.02515	0.00311	0.01752	0.00129	0.00110	0.00130
DUM2_GPS	4229005.98975	2380190.12474	4126495.13392	0.00049	0.00052	0.00041	-0.00914	0.00092	0.00515	0.00026	0.00032	0.00020
EDIR_GPS	4267856.19918	2132620.90863	4218916.87155	0.00045	0.00031	0.00046	-0.02104	0.01598	0.00709	0.00073	0.00046	0.00090
EKIZ_GPS	4006747.03342	3039957.52536	3911404.58282	0.00056	0.00045	0.00052	-0.01780	0.00171	0.01254	0.00045	0.00038	0.00041
ELAZ_GPS	3862979.12565	3156913.29485	3962226.82855	0.00067	0.00055	0.00066	-0.01744	-0.00119	0.01317	0.00069	0.00057	0.00070
ELMI_GPS	4438085.15177	2542811.11848	3799379.19084	0.00035	0.00024	0.00032	-0.00678	0.00796	0.00109	0.00030	0.00023	0.00035
EMIR_GPS	4247338.73430	2566611.85900	3994897.10119	0.00045	0.00030	0.00041	-0.00640	-0.00002	0.00515	0.00035	0.00024	0.00033
ERDT_GPS	4302815.48229	2269380.11027	4111396.40755	0.00036	0.00028	0.00034	-0.00708	0.00381	0.00346	0.00020	0.00018	0.00020
ERGN_GPS	3855072.03382	3207162.19603	3929594.19868	0.00047	0.00040	0.00044	-0.02312	0.00416	0.01805	0.00043	0.00039	0.00041
ERZ1_GPS	3789694.38525	3124662.72383	4057119.18481	0.00044	0.00037	0.00047	-0.01553	0.00453	0.01091	0.00061	0.00053	0.00071
ERZI_GPS	3789706.20169	3124667.15161	4057105.01834	0.00079	0.00071	0.00081	-0.01744	0.00506	0.01011	0.00028	0.00025	0.00029
ERZR_GPS	3684388.57517	3231743.89405	4071179.89984	0.00049	0.00044	0.00049	-0.02280	0.01476	0.00920	0.00042	0.00040	0.00040
ESKS_GPS	4233442.93855	2490068.30585	4056858.51658	0.00037	0.00025	0.00035	-0.00583	-0.00104	0.00463	0.00032	0.00021	0.00030
ESME_GPS	4371961.56749	2422806.00650	3950029.95726	0.00041	0.00027	0.00037	-0.00393	0.00032	0.00062	0.00028	0.00018	0.00026
FASA_GPS	3822604.24338	2931571.01756	4166264.59215	0.00039	0.00038	0.00034	-0.02142	0.01386	0.00771	0.00039	0.00047	0.00022
FEEK_GPS	4086437.89183	2959427.72872	3889620.69649	0.00058	0.00044	0.00052	-0.01650	0.00282	0.01184	0.00045	0.00034	0.00043
FETH_GPS	4476942.23681	2494267.75233	3784205.84302	0.00038	0.00026	0.00035	-0.00464	0.00938	-0.00612	0.00024	0.00017	0.00026
FINI_GPS	4450189.59557	2584502.86723	3755291.14754	0.00055	0.00037	0.00047	-0.01112	0.01147	0.00268	0.00040	0.00027	0.00037
GEME_GPS	4001582.54895	2915955.50331	4009036.16690	0.00037	0.00034	0.00034	-0.01262	-0.00155	0.01122	0.00045	0.00052	0.00037
GIRS_GPS	3782947.62999	2997054.39431	4155987.95513	0.00050	0.00041	0.00051	-0.02273	0.01385	0.00743	0.00026	0.00023	0.00027
GUMU_GPS	3751012.95754	3093875.08759	4115853.76533	0.00054	0.00044	0.00052	-0.02145	0.01510	0.00826	0.00039	0.00034	0.00040
GURU_GPS	3964282.89852	3020834.78092	3968732.49743	0.00047	0.00044	0.00041	-0.01658	0.00065	0.01252	0.00025	0.00025	0.00020
GYUR_GPS	4376414.34486	2840933.15293	3656179.06195	0.00050	0.00040	0.00042	-0.01866	0.01101	0.00704	0.00052	0.00048	0.00043

Nokta	V (m)	V (m)	7 (m)	aV (m)	aV (m)	σ7 (m)	Vy (m/y)	Vy (m/y)	Vz (m/y)	σVx	σVy	σVz
NOKLA	× (III)	f (111)	2 (111)	0A (III)	01 (III)	02 (III)	vx (III/y)	vy (117y)	vz (117y)	(m/y)	(m/y)	(m/y)
HAKK_1PS	3657828.77420	3500279.40268	3869176.60807	0.00064	0.00059	0.00061	-0.02234	0.01414	0.00432	0.00077	0.00075	0.00078
HAKK_GPS	3657828.78111	3500279.40285	3869176.59846	0.00192	0.00188	0.00198	-0.02221	0.01623	0.00286	0.00066	0.00064	0.00067
HALP_GPS	4195041.32934	2849168.09551	3857488.10334	0.00044	0.00032	0.00039	-0.01464	0.00439	0.01064	0.00026	0.00020	0.00025
HARC_GPS	4293416.42539	2394865.92908	4050966.42231	0.00057	0.00047	0.00051	-0.00616	-0.00101	0.00423	0.00032	0.00039	0.00025
HAT1_GPS	4160635.18270	3040200.79971	3746202.50328	0.00083	0.00067	0.00077	-0.02152	0.00840	0.00942	0.00547	0.00478	0.00522
HATA_GPS	4160364.78632	3039661.13046	3746945.11680	0.00057	0.00046	0.00055	-0.02121	0.00787	0.01541	0.00028	0.00023	0.00028
HEND_GPS	4156191.54529	2471765.54917	4145350.57818	0.00041	0.00030	0.00039	-0.01675	0.01256	0.00554	0.00025	0.00022	0.00026
HINI_GPS	3687743.00521	3285172.78869	4025157.47236	0.00034	0.00030	0.00035	-0.02570	0.01183	0.01004	0.00028	0.00026	0.00031
HORS_GPS	3625113.34776	3283287.11393	4082551.25285	0.00058	0.00053	0.00060	-0.02513	0.01506	0.00986	0.00053	0.00050	0.00063
HRN1_GPS	3954532.71017	3203017.29842	3832852.20338	0.00048	0.00043	0.00044	-0.02660	0.00296	0.01820	0.00052	0.00048	0.00047
HRRN_GPS	3954876.38226	3202227.95055	3833205.82739	0.00086	0.00075	0.00085	-0.02371	0.00463	0.01744	0.00030	0.00026	0.00029
HYMN_GPS	4161311.88079	2650610.45934	4030510.13163	0.00049	0.00040	0.00045	-0.00823	-0.00038	0.00549	0.00024	0.00021	0.00022
IGIR_1PS	3522555.15039	3403861.15861	4072528.05387	0.00057	0.00054	0.00061	-0.02679	0.01574	0.00980	0.00099	0.00096	0.00115
IGIR_GPS	3522555.15165	3403861.16564	4072528.06668	0.00266	0.00258	0.00312	-0.02836	0.01368	0.00895	0.00088	0.00085	0.00103
INE1_GPS	3947751.21868	2639084.99766	4243935.79434	0.00048	0.00035	0.00051	-0.02213	0.01383	0.00943	0.00067	0.00050	0.00074
INEB_GPS	3947747.43973	2639078.88894	4243943.54810	0.00352	0.00479	0.00204	-0.02236	-0.00479	0.00694	0.00114	0.00155	0.00068
IPS1_GPS	4323568.78371	2144875.31854	4155880.62824	0.00268	0.00160	0.00243	-0.00519	0.00457	0.00108	0.00837	0.00785	0.00831
IPSA_GPS	4324027.78154	2144564.43142	4155539.26060	0.00044	0.00033	0.00042	-0.01634	0.01738	0.00696	0.00020	0.00016	0.00019
ISKD_GPS	4138370.26811	3026641.82890	3781268.59833	0.00075	0.00058	0.00065	-0.01432	-0.00020	-0.00341	0.00565	0.00487	0.00519
ISKN_GPS	4143266.32411	3026429.02880	3776473.12348	0.00131	0.00105	0.00116	-0.02124	0.00693	0.01619	0.00070	0.00057	0.00063
ISPT_GPS	4346416.19493	2567083.33782	3887251.73905	0.00052	0.00036	0.00045	-0.00656	0.00244	0.00158	0.00042	0.00031	0.00037
ISTN_GPS	4223661.03623	2325014.97889	4161716.16387	0.00029	0.00022	0.00027	-0.01852	0.01663	0.00687	0.00020	0.00018	0.00019
IZMI_GPS	4456584.31163	2278765.52673	3939930.84981	0.00040	0.00027	0.00035	0.00085	0.00299	-0.00534	0.00023	0.00016	0.00021
IZMT_GPS	4189506.34862	2414031.29254	4146014.76773	0.00034	0.00024	0.00032	-0.01585	0.01390	0.00619	0.00022	0.00017	0.00021
KAMN_GPS	4256387.88200	2787453.45934	3835136.47240	0.00078	0.00054	0.00069	-0.02364	-0.00056	0.00194	0.00097	0.00066	0.00087
KANT_GDU	4209902.99414	2339491.49282	4167619.18154	0.00053	0.00042	0.00050	-0.01835	0.01814	0.00624	0.00026	0.00021	0.00024
KAPN_GPS	4212053.56359	2790745.01928	3881074.76378	0.00064	0.00055	0.00056	-0.02004	-0.00034	0.00677	0.00105	0.00123	0.00083
KARB_GPS	4206855.66530	2301542.27520	4191502.30733	0.00037	0.00025	0.00035	-0.01822	0.01808	0.00657	0.00021	0.00016	0.00021
KARS_GPS	3545202.25290	3313096.08771	4128377.85915	0.00054	0.00050	0.00059	-0.02514	0.01555	0.00786	0.00062	0.00058	0.00076

Nokto	V (m)	V (m)	7 (m)	aV (m)	aV (m)	g7 (m)	Vy (m/y)	Vy (m/y)	Vz (m/y)	σVx	σVy	σVz
NORLa	A (III)	* (111)	2 (111)	07 (11)	01 (III)	02 (III)	vx (III/y)	vy (117y)	vz (III/y)	(m/y)	(m/y)	(m/y)
KART_GPS	4290215.03597	2313189.11992	4100818.24596	0.00046	0.00031	0.00043	-0.00727	0.00112	0.00414	0.00024	0.00017	0.00023
KAYS_GPS	4056743.63349	2896261.00141	3967817.78707	0.00051	0.00039	0.00049	-0.01538	0.00023	0.01007	0.00036	0.00028	0.00036
KIKA_GPS	4389217.28171	2301675.16324	4001606.82527	0.00040	0.00028	0.00036	-0.00215	0.00182	0.00009	0.00025	0.00020	0.00023
KIRL_GPS	4238828.79887	2180140.98921	4224130.38551	0.00042	0.00025	0.00040	-0.01838	0.01816	0.00661	0.00028	0.00017	0.00029
KIRS_GPS	4098385.60160	2780607.92625	4007175.41611	0.00036	0.00030	0.00034	-0.01080	-0.00062	0.00868	0.00026	0.00026	0.00024
KKAL_GPS	4088935.96101	2708243.46828	4065148.07311	0.00034	0.00026	0.00033	-0.00931	-0.00044	0.00784	0.00027	0.00023	0.00030
KLIS_GPS	4082921.95900	3089253.76629	3791925.05061	0.00052	0.00047	0.00048	-0.02257	0.00501	0.01746	0.00071	0.00079	0.00067
KLUU_GPS	4155559.19598	2705396.68516	3999801.18637	0.00041	0.00030	0.00039	-0.00942	0.00125	0.00845	0.00024	0.00019	0.00026
KNY1_GPS	4254239.00713	2707781.60681	3893800.50055	0.00074	0.00052	0.00066	-0.05541	-0.03671	-0.02486	0.00300	0.00224	0.00283
KNYA_1PS	4243584.91005	2704006.75775	3908123.89911	0.00058	0.00042	0.00051	-0.01154	-0.00134	0.00529	0.00348	0.00256	0.00307
KNYA_GPS	4243584.91952	2704006.72904	3908123.89969	0.00049	0.00042	0.00045	-0.00978	0.00302	0.00766	0.00021	0.00018	0.00019
KRBK_GPS	4043710.77280	2593617.59348	4182089.64534	0.00038	0.00028	0.00037	-0.01944	0.01502	0.00759	0.00022	0.00017	0.00022
KRS1_1PS	3542999.81593	3314720.18212	4129002.51336	0.00064	0.00060	0.00070	-0.02399	0.01598	0.01026	0.00109	0.00103	0.00125
KRS1_GPS	3542999.82818	3314720.19192	4129002.53104	0.00299	0.00281	0.00342	-0.02648	0.01366	0.00858	0.00098	0.00092	0.00111
KSTM_GPS	3984936.85599	2665216.30590	4194002.77661	0.00041	0.00035	0.00039	-0.02080	0.01361	0.00736	0.00037	0.00041	0.00031
KURU_GPS	4003510.57921	2571959.07486	4232936.93899	0.00032	0.00024	0.00032	-0.02076	0.01559	0.00732	0.00019	0.00016	0.00020
KUTA_GPS	4274186.13852	2457652.46885	4034348.40770	0.00045	0.00029	0.00041	-0.00573	-0.00042	0.00452	0.00032	0.00021	0.00030
LDML_GPS	4121952.12329	2652205.22838	4069009.65112	0.00033	0.00024	0.00032	-0.00649	-0.00089	0.00695	0.00031	0.00024	0.00032
LEFK_GPS	4358706.51829	2868899.66428	3655675.39103	0.00040	0.00029	0.00034	-0.01789	0.01113	0.01015	0.00027	0.00021	0.00023
MADT_GPS	4298035.82290	2245711.71451	4130242.19673	0.00079	0.00045	0.00075	-0.00476	0.00557	0.00528	0.00056	0.00031	0.00054
MALY_GPS	3936259.64481	3099410.17414	3935525.12945	0.00052	0.00044	0.00048	-0.01869	0.00035	0.01350	0.00049	0.00047	0.00042
MALZ_GPS	3651048.12334	3349181.89634	4005632.84801	0.00192	0.00184	0.00261	-0.02919	0.01363	0.01026	0.00100	0.00096	0.00137
MARA_GPS	4045897.87468	3041185.23451	3869047.03361	0.00050	0.00040	0.00046	-0.01872	0.00469	0.01425	0.00045	0.00036	0.00043
MARD_GPS	3849706.84646	3314578.29375	3845502.42188	0.00034	0.00030	0.00032	-0.02271	0.00703	0.01929	0.00022	0.00021	0.00021
MER1_GPS	4260027.58529	2261450.05815	4159711.24437	0.00038	0.00025	0.00036	-0.01980	0.01699	0.00733	0.00022	0.00015	0.00022
MERS_GPS	4239149.51206	2886967.93440	3778876.95437	0.00129	0.00176	0.00052	-0.01780	0.00851	0.01036	0.00083	0.00116	0.00028
MGOS_GPS	4333261.05389	2912641.66794	3651135.65960	0.00035	0.00029	0.00030	-0.01876	0.01058	0.01137	0.00021	0.00020	0.00019
MIDY_GPS	3807624.21609	3351844.29947	3854881.05006	0.00033	0.00030	0.00031	-0.02304	0.00680	0.01947	0.00021	0.00021	0.00019

Nokta	V (m)	V (m)	7 (m)	aV (m)	aV (m)	g7 (m)	Vy (m/y)	Vy (m/y)	Va (m/y)	σVx	σVy	σVz
NUKLA	^ (III)	f (11)	2 (11)	07 (III)	01 (III)	02 (III)	vx (III/y)	vy (117y)	vz (117y)	(m/y)	(m/y)	(m/y)
MIHA_GPS	4180701.70203	2561424.23425	4067956.96206	0.00034	0.00024	0.00031	-0.00583	-0.00101	0.00604	0.00021	0.00017	0.00020
MLTY_GPS	3925510.01752	3114139.13375	3934753.04932	0.00101	0.00084	0.00106	-0.01973	-0.00039	0.01315	0.00033	0.00028	0.00035
MLZ1_GPS	3650349.12806	3349687.24712	4005884.10234	0.00067	0.00061	0.00070	-0.01323	0.00390	0.00991	0.00309	0.00289	0.00326
MRSI_GPS	4209893.97983	2904492.46270	3797979.74237	0.00037	0.00029	0.00033	-0.01583	0.00557	0.01013	0.00031	0.00026	0.00028
MUGL_GPS	4475459.01302	2416283.16188	3836973.80947	0.00044	0.00029	0.00039	0.00066	0.00752	-0.00681	0.00032	0.00023	0.00032
MUR1_GPS	3585956.41625	3434313.92333	3992711.97346	0.00103	0.00099	0.00107	-0.02447	0.01834	0.01162	0.00384	0.00374	0.00416
MURA_1PS	3586016.98796	3434438.32693	3992555.41011	0.00164	0.00160	0.00195	-0.02628	0.01503	0.00528	0.00144	0.00140	0.00168
MURA_GPS	3586016.95666	3434438.33707	3992555.41780	0.00288	0.00280	0.00345	-0.02650	0.01031	0.01298	0.00096	0.00093	0.00114
MUUS_GPS	3728734.24940	3299156.10418	3975259.57024	0.00047	0.00041	0.00049	-0.02243	-0.00161	0.01326	0.00082	0.00076	0.00115
NAHA_GPS	4169069.13581	2538032.81728	4093162.95073	0.00035	0.00026	0.00033	-0.00550	-0.00088	0.00621	0.00021	0.00017	0.00020
NEVS_GPS	4103186.20042	2841492.93445	3959954.41146	0.00042	0.00032	0.00039	-0.01276	0.00075	0.01061	0.00028	0.00022	0.00027
NGDE_GPS	4145854.57755	2859239.07273	3902900.49443	0.00035	0.00027	0.00032	-0.01342	0.00307	0.01112	0.00022	0.00017	0.00020
NIGD_GPS	4141537.59949	2865538.07164	3902607.01094	0.00034	0.00027	0.00032	-0.01373	0.00280	0.01095	0.00021	0.00018	0.00020
ONIY_GPS	4107230.24652	3011971.00154	3826521.26249	0.00038	0.00030	0.00035	-0.01814	0.00406	0.01225	0.00025	0.00021	0.00025
OZAL_1PS	3589305.90975	3464782.10832	3963953.61806	0.00044	0.00041	0.00047	-0.02958	0.00582	0.01771	0.00064	0.00062	0.00082
OZAL_GPS	3589305.90914	3464782.11424	3963953.61693	0.00166	0.00161	0.00220	-0.02729	0.00720	0.01671	0.00056	0.00055	0.00073
POZA_GPS	4161506.69902	2900048.29379	3855204.60554	0.00059	0.00044	0.00053	-0.01446	0.00482	0.01136	0.00042	0.00030	0.00039
RDIY_GPS	3868550.43955	2950853.23577	4111010.82960	0.00050	0.00040	0.00052	-0.01729	0.00524	0.01079	0.00027	0.00023	0.00029
RHIY_GPS	3820827.05673	3068819.02032	4071037.94037	0.00039	0.00032	0.00039	-0.01648	0.00294	0.01088	0.00031	0.00026	0.00033
RZE1_GPS	3663979.08752	3128569.85773	4165561.13585	0.00082	0.00072	0.00086	-0.02603	0.00998	0.00305	0.00093	0.00086	0.00095
SALH_GPS	4409101.61820	2356570.05889	3947657.34324	0.00035	0.00022	0.00030	-0.00495	-0.00267	-0.00421	0.00024	0.00017	0.00023
SAM1_GPS	3865237.74853	2842807.58969	4188254.38929	0.00038	0.00031	0.00038	-0.02078	0.01439	0.00805	0.00050	0.00043	0.00052
SAMN_GPS	3866998.28826	2835986.10177	4191202.86614	0.00164	0.00144	0.00191	-0.02097	0.01493	0.00530	0.00055	0.00048	0.00063
SARV_1PS	4313738.36816	2760581.60721	3791392.53609	0.00075	0.00051	0.00075	-0.01448	0.00664	0.01177	0.00139	0.00092	0.00191
SARV_GPS	4313738.33973	2760581.58587	3791392.62121	0.00402	0.00266	0.00562	-0.01336	0.00787	0.00516	0.00131	0.00087	0.00181
SARY_GPS	4231111.46707	2241812.29112	4199557.82286	0.00040	0.00025	0.00038	-0.01842	0.01762	0.00625	0.00027	0.00018	0.00027
SEMD_GPS	3619196.63058	3565760.68386	3845246.95748	0.00049	0.00044	0.00048	-0.02632	0.00417	0.01860	0.00034	0.00033	0.00040
SHUT_GPS	4306791.98225	2533622.27110	3952810.95999	0.00051	0.00034	0.00045	-0.00564	0.00102	0.00373	0.00029	0.00021	0.00027

Nokta	X (m)	Y (m)	Z (m)	σX (m)	σY (m)	σZ (m)	Vx (m/v)	Vv (m/v)	Vz (m/v)	σVx	σVy	σVz
	,	. (,	- ()	•/(,	•••(,	•= (,	• ~ (, , , ,	• , (, ,,	•= (, ,,	(m/y)	(m/y)	(m/y)
SIH1_GPS	4204315.38286	2580068.09275	4031436.41118	0.00044	0.00031	0.00040	-0.00635	-0.00010	0.00650	0.00087	0.00062	0.00080
SIHI_GPS	4204426.85525	2580039.76308	4031324.52033	0.00054	0.00044	0.00052	-0.00603	-0.00060	0.00536	0.00021	0.00017	0.00020
SILF_GPS	4265286.76646	2870088.89956	3762422.19019	0.00050	0.00037	0.00043	-0.01582	0.00798	0.00914	0.00044	0.00035	0.00038
SINP_GPS	3879379.59968	2731933.87987	4248135.43302	0.00039	0.00030	0.00041	-0.02260	0.01414	0.00573	0.00029	0.00023	0.00031
SIRN_GPS	3737528.51040	3419638.42452	3864656.22654	0.00043	0.00039	0.00042	-0.02128	0.00567	0.01393	0.00031	0.00030	0.00033
SIRT_GPS	3747604.79398	3366735.34725	3900048.83262	0.00070	0.00061	0.00063	-0.02591	0.00455	0.01677	0.00038	0.00034	0.00037
SIVE_GPS	3906227.05270	3200543.83669	3884259.43665	0.00066	0.00055	0.00063	-0.02325	0.00542	0.01688	0.00052	0.00044	0.00054
SIVS_GPS	3922745.13038	2956268.25521	4056992.34181	0.00045	0.00035	0.00044	-0.01333	-0.00114	0.01244	0.00034	0.00027	0.00035
SLEE_GPS	4180827.67192	2375106.48618	4176631.19432	0.00047	0.00032	0.00051	-0.01834	0.01801	0.00317	0.00083	0.00051	0.00107
SSEH_GPS	3843143.95895	3010691.44081	4092563.41603	0.00042	0.00035	0.00042	-0.01650	0.00394	0.01166	0.00026	0.00023	0.00028
SUNL_GPS	4029961.97593	2756161.78882	4091588.55108	0.00047	0.00034	0.00046	-0.01104	-0.00124	0.00852	0.00039	0.00028	0.00040
SURF_GPS	3964029.90103	3189215.35690	3834786.92886	0.00048	0.00040	0.00045	-0.02222	0.00427	0.01765	0.00040	0.00034	0.00039
SVAS_GPS	3925596.18772	2946582.16691	4061734.92649	0.00034	0.00028	0.00034	-0.01407	-0.00189	0.01283	0.00021	0.00018	0.00021
TEKR_GPS	4278776.84536	2227057.71118	4158961.96887	0.00040	0.00025	0.00038	-0.01667	0.01777	0.00522	0.00025	0.00017	0.00025
TNCE_GPS	3822004.03071	3155732.83222	4002414.70942	0.00058	0.00049	0.00056	-0.01703	0.00033	0.01286	0.00053	0.00044	0.00057
TOK1_GPS	3911480.33348	2900418.97469	4106499.56059	0.00055	0.00044	0.00056	-0.01356	-0.00130	0.00927	0.00202	0.00168	0.00222
TOKA_GPS	3911485.49664	2900388.11492	4106496.21785	0.00048	0.00043	0.00048	-0.01384	-0.00092	0.01173	0.00020	0.00018	0.00020
TRBN_GPS	3708089.38862	3079771.40719	4162932.56249	0.00039	0.00034	0.00039	-0.02281	0.01461	0.00755	0.00023	0.00022	0.00023
TUBI_GDU	4211317.36418	2377865.91598	4144663.24062	0.00039	0.00028	0.00038	-0.01609	0.01343	0.00595	0.00022	0.00018	0.00022
TUF1_GPS	4047077.71839	2962929.49236	3929124.58486	0.00088	0.00069	0.00081	-0.01475	-0.00145	0.01223	0.00257	0.00207	0.00240
TUFA_GPS	4046403.13386	2963783.62379	3929101.53592	0.00069	0.00063	0.00067	-0.01512	0.00337	0.01246	0.00029	0.00026	0.00028
TVA1_GPS	3696746.91271	3362693.98050	3952674.44985	0.00084	0.00077	0.00086	-0.02146	0.00784	0.01777	0.00293	0.00272	0.00318
TVAN_1PS	3696773.32954	3362679.90048	3952660.86071	0.00179	0.00165	0.00187	-0.02400	0.00444	0.01506	0.00154	0.00142	0.00159
TVAN_GPS	3696773.35332	3362679.90410	3952660.85510	0.00322	0.00296	0.00338	-0.02817	0.00523	0.01636	0.00110	0.00102	0.00115
TVAS_GPS	4431450.02131	2470097.11387	3854318.94599	0.00104	0.00074	0.00088	-0.00189	0.00543	-0.00209	0.00054	0.00040	0.00046
UCG2_1PS	4186331.57267	2413318.12283	4149720.12805	0.00050	0.00043	0.00049	-0.01813	0.01559	0.00635	0.00028	0.00028	0.00028
UDER_GPS	3633837.08353	3220327.80329	4123736.29518	0.00054	0.00048	0.00056	-0.02384	0.01490	0.00771	0.00043	0.00039	0.00048
ULUT_GPS	4269113.56411	2379227.77495	4087622.35821	0.00047	0.00033	0.00044	-0.00588	-0.00053	0.00449	0.00029	0.00022	0.00028
USAK_GPS	4344010.35469	2448245.57784	3965182.95016	0.00073	0.00045	0.00065	-0.00216	0.00185	0.00216	0.00055	0.00034	0.00053

Nokta	X (m)	Y (m)	Z (m)	σX (m)	σY (m)	σZ (m)	Vx (m/y)	Vy (m/y)	Vz (m/y)	σVx _(m/y)_	σVy _(m/y)	σVz _(m/y) _
VAAN_GPS	3636156.00856	3424493.56021	3955761.28639	0.00138	0.00136	0.00128	-0.02549	0.00628	0.01508	0.00054	0.00053	0.00051
VAN1_GPS	3637221.32311	3433038.89969	3947418.41131	0.00054	0.00051	0.00055	-0.03563	-0.00748	0.01918	0.00113	0.00113	0.00129
VEZI_GPS	3918174.86036	2791368.06059	4174222.88746	0.00039	0.00032	0.00039	-0.01879	0.01157	0.00895	0.00023	0.00019	0.00024
VIRA_GPS	3909356.08903	3251510.89551	3838432.55070	0.00051	0.00043	0.00047	-0.02314	0.00620	0.01860	0.00029	0.00025	0.00028
YENC_1PS	4354315.05486	2241822.14554	4072748.50634	0.00042	0.00026	0.00037	-0.00180	0.00188	0.00684	0.00208	0.00132	0.00186
YENC_GPS	4354315.08041	2241822.13382	4072748.56385	0.00052	0.00035	0.00049	-0.00488	0.00367	0.00041	0.00024	0.00017	0.00023
YOZT_GPS	4028006.00759	2801198.42651	4063858.13755	0.00037	0.00029	0.00035	-0.01135	-0.00117	0.00981	0.00023	0.00020	0.00022
YUNA_GPS	4234022.35165	2618043.29602	3975909.16216	0.00045	0.00033	0.00041	-0.00643	0.00063	0.00551	0.00028	0.00023	0.00026
YUNK_GPS	4233095.38938	2617095.59278	3977555.53593	0.00031	0.00023	0.00030	-0.00717	0.00025	0.00435	0.00021	0.00017	0.00022
YZGT_GPS	4031450.31672	2801710.38937	4060251.87630	0.00037	0.00029	0.00036	-0.01163	-0.00089	0.00993	0.00024	0.00020	0.00024
ZONG_GPS	4070091.44899	2521417.30543	4200083.39687	0.00055	0.00038	0.00056	-0.02412	0.01434	0.00172	0.00049	0.00033	0.00051

EK-B Epok:2005 Coğrafi Koordinatlar ve Kuzey-Doğu-Yükseklik Hızları

Nokta	φ (° ' '')	λ (° ' '')	h (m)	<i>a</i> (m)	a) (m)	ah (m)	Vk	Vd	Vh	σVk	σVd	σVh
NUKLA	Enlem	Boylam	Yükseklik	οφ (m)	ол (m)	on (m)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
ADAN_GPS	37 00 12.597580	35 20 37.368046	60.51780	0.00072	0.00052	0.00077	0.00417	0.01337	-0.00066	0.00274	0.00159	0.00075
ADIY_GPS	37 44 45.089732	38 13 46.845478	711.09722	0.00018	0.00027	0.00087	0.02201	0.01841	-0.00288	0.00014	0.00038	0.00098
AFYN_GPS	38 44 18.102523	30 33 39.611755	1072.27599	0.00025	0.00022	0.00065	0.00664	0.00386	-0.00199	0.00020	0.00017	0.00035
AGRD_1PS	39 43 03.221907	43 01 58.348952	1672.58482	0.00049	0.00024	0.00109	0.01156	0.02707	0.00062	0.00152	0.00035	0.00193
AGRD_GPS	39 43 03.222097	43 01 58.348617	1672.59963	0.00620	0.00138	0.00785	0.01574	0.02689	-0.00248	0.00140	0.00031	0.00175
AKDG_GPS	39 39 36.575036	35 52 17.916737	1404.81634	0.00019	0.00019	0.00067	0.01590	0.00616	-0.00117	0.00013	0.00014	0.00044
AKHI_GPS	38 57 43.258447	28 00 34.802326	841.76196	0.00018	0.00019	0.00063	0.00191	0.00173	-0.00047	0.00015	0.00018	0.00047
AKHR_GPS	38 22 09.378172	31 25 47.071925	1046.39826	0.00018	0.00028	0.00061	0.00517	0.00376	-0.00511	0.00013	0.00034	0.00039
AKSI_GPS	37 02 51.777492	31 47 14.988496	1193.43622	0.00029	0.00022	0.00060	0.00679	0.01286	-0.00398	0.00041	0.00024	0.00036
AKSR_GPS	38 22 13.403468	33 59 53.337054	1005.78962	0.00020	0.00018	0.00063	0.01373	0.00708	-0.00463	0.00015	0.00013	0.00041
AMAS_GPS	40 39 56.486391	35 50 57.460977	443.61307	0.00021	0.00020	0.00070	0.01642	0.01119	-0.00155	0.00015	0.00016	0.00044
ANKR_6PS	39 53 14.535182	32 45 30.491454	976.01790	0.00018	0.00011	0.00036	0.00799	0.00119	-0.00147	0.00042	0.00014	0.00037
ANMU_GPS	36 04 08.452571	32 51 54.382913	39.64458	0.00019	0.00022	0.00072	0.01107	0.01565	-0.00176	0.00013	0.00019	0.00049
ANRK_GPS	39 51 21.472530	32 50 46.326654	1231.27834	0.00024	0.00021	0.00073	0.01043	0.00339	-0.00042	0.00021	0.00019	0.00059
ANTE_GPS	37 03 53.857181	37 22 24.993718	886.88332	0.00017	0.00021	0.00065	0.02190	0.01895	-0.00242	0.00013	0.00024	0.00055
ANTL_GPS	36 53 18.414819	30 39 59.128458	88.75269	0.00016	0.00017	0.00056	0.00483	0.01228	-0.00151	0.00011	0.00013	0.00037
ARDH_GPS	41 06 40.538239	42 41 56.622128	1834.06868	0.00029	0.00024	0.00082	0.01054	0.02716	-0.00079	0.00030	0.00023	0.00070
ARPK_GPS	39 02 26.135093	38 29 14.352033	1243.50359	0.00028	0.00025	0.00084	0.01905	0.01046	-0.00301	0.00030	0.00026	0.00072
ARTV_GPS	41 10 30.350233	41 49 05.938705	662.39211	0.00028	0.00034	0.00081	0.01319	0.03175	-0.00242	0.00023	0.00042	0.00051
AVCT_GPS	40 59 19.198805	28 43 25.895564	122.35934	0.00146	0.00155	0.00534	0.00934	0.02049	-0.01073	0.00050	0.00055	0.00176
AYD1_GPS	37 50 26.614941	27 50 16.383169	101.82930	0.00028	0.00028	0.00173	-0.00560	0.00381	-0.00239	0.00015	0.00016	0.00151
AYVL_GPS	39 18 41.192864	26 41 10.240252	54.25550	0.00021	0.00029	0.00074	-0.00069	0.00447	-0.00136	0.00012	0.00021	0.00041
BAD1_GPS	40 51 07.619755	29 07 04.428535	239.14956	0.00028	0.00017	0.00087	0.01101	0.02203	0.00021	0.00024	0.00012	0.00071
BALK_GPS	39 38 21.714441	27 53 37.072453	202.49160	0.00021	0.00022	0.00042	0.00516	0.00344	-0.00084	0.00015	0.00019	0.00018
BAN1_GPS	40 20 55.144733	27 58 29.806679	98.17212	0.00029	0.00022	0.00083	0.00702	0.00063	-0.00414	0.00116	0.00073	0.00258
BAND_GPS	40 19 52.410619	27 59 48.160956	97.22156	0.00064	0.00032	0.00169	0.00536	0.00548	0.00217	0.00024	0.00012	0.00062
BASK_1PS	38 02 36.397097	44 01 02.293798	2312.24048	0.00042	0.00026	0.00133	0.02517	0.02139	0.00079	0.00118	0.00049	0.00297
BASK_GPS	38 02 36.396414	44 01 02.294298	2312.28297	0.00481	0.00201	0.01258	0.02264	0.02256	-0.00538	0.00108	0.00045	0.00276

Nokta	φ (° ' '')	λ (° ' '')	h (m)	a(n (m)	a) (m)	ah (m)	Vk	Vd	Vh	σVk	σVd	σVh
NUKLA	Enlem	Boylam	Yükseklik	υψ (iii)	07 (III)	011 (111)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
BAYB_GPS	40 15 00.541030	40 11 29.167525	1709.04917	0.00020	0.00022	0.00064	0.01103	0.02570	-0.00038	0.00014	0.00019	0.00038
BCAK_GPS	37 19 16.397139	30 43 04.468447	683.40723	0.00016	0.00016	0.00052	0.00465	0.00966	-0.00048	0.00012	0.00013	0.00033
BEYS_GPS	37 40 38.283585	31 44 47.581601	1187.46024	0.00019	0.00018	0.00051	0.00722	0.00864	-0.00179	0.00014	0.00013	0.00026
BILE_GPS	40 08 29.257520	29 58 38.610770	584.32601	0.00018	0.00016	0.00062	0.00723	0.00209	-0.00156	0.00013	0.00012	0.00043
BING_1PS	38 53 07.629105	40 30 02.819417	1183.52907	0.00025	0.00023	0.00088	0.02034	0.01574	-0.00051	0.00023	0.00022	0.00084
BING_GPS	38 53 07.629291	40 30 02.818989	1183.54659	0.00300	0.00280	0.01067	0.01899	0.01605	-0.00377	0.00056	0.00052	0.00197
BOGZ_GPS	39 11 36.991260	35 15 18.359746	1106.73918	0.00030	0.00018	0.00060	0.01536	0.00795	-0.00675	0.00046	0.00016	0.00043
BOLU_GPS	40 44 00.742584	31 36 07.317668	789.24241	0.00024	0.00018	0.00052	0.01108	0.01221	0.00084	0.00021	0.00013	0.00025
BOYT_GPS	41 27 39.742815	34 47 47.977183	404.68415	0.00021	0.00019	0.00064	0.01027	0.02305	-0.00196	0.00018	0.00017	0.00050
BOZT_GPS	40 32 03.785679	28 46 55.324920	115.56349	0.00025	0.00023	0.00058	0.00769	0.00734	-0.00166	0.00018	0.00016	0.00029
BOZU_GPS	39 52 51.421623	30 02 55.398464	842.53782	0.00022	0.00019	0.00058	0.00676	0.00180	-0.00119	0.00020	0.00017	0.00035
BTMN_GPS	37 51 48.964645	41 09 16.140349	650.78732	0.00019	0.00020	0.00061	0.02351	0.01970	0.00031	0.00014	0.00020	0.00039
BURS_GPS	40 12 51.304960	29 00 54.825109	183.28489	0.00027	0.00029	0.00069	0.00705	0.00270	-0.00157	0.00018	0.00024	0.00033
CANA_1PS	40 06 40.337091	26 24 51.610835	141.22906	0.00027	0.00023	0.00082	0.00670	-0.00274	-0.00678	0.00102	0.00079	0.00275
CANA_GPS	40 06 40.337920	26 24 51.608191	141.16597	0.00047	0.00029	0.00088	0.00248	0.00698	-0.00107	0.00021	0.00013	0.00036
CANK_GPS	40 36 30.872662	33 36 37.369340	794.94243	0.00031	0.00026	0.00059	0.01130	0.00603	-0.00083	0.00037	0.00027	0.00032
CATK_1PS	38 00 26.440248	43 03 38.494565	1527.91514	0.00066	0.00027	0.00112	0.02599	0.02295	-0.00057	0.00194	0.00033	0.00137
CATK_GPS	38 00 26.439735	43 03 38.494100	1527.92959	0.00798	0.00130	0.00551	0.02062	0.02318	-0.00243	0.00176	0.00029	0.00120
CAV1_GPS	37 09 33.328868	29 41 18.770768	1109.99434	0.00022	0.00018	0.00055	0.00059	0.00755	0.00065	0.00038	0.00025	0.00056
CAVD_GPS	37 09 22.929532	29 41 24.589095	1130.47789	0.00109	0.00058	0.00341	0.00212	0.00830	0.00177	0.00030	0.00016	0.00092
CESM_GPS	38 18 13.735766	26 22 21.253449	52.45361	0.00020	0.00019	0.00061	-0.01052	0.00501	-0.00208	0.00013	0.00014	0.00035
CIHA_GPS	38 39 01.392358	32 55 20.660456	1012.71284	0.00028	0.00020	0.00052	0.01076	0.00598	-0.00232	0.00032	0.00017	0.00027
CINC_GPS	37 37 43.868827	27 57 35.504668	227.34431	0.00017	0.00016	0.00052	-0.00917	0.00405	-0.00161	0.00014	0.00013	0.00031
CMLD_GPS	40 29 27.478407	32 28 28.254778	1274.15937	0.00017	0.00017	0.00056	0.00795	0.00408	-0.00044	0.00012	0.00013	0.00035
CORU_GPS	40 34 13.479160	34 58 55.932893	922.09654	0.00025	0.00019	0.00065	0.01342	0.00838	-0.00078	0.00024	0.00014	0.00042
DATC_1PS	36 42 30.862273	27 41 30.604746	59.17644	0.00036	0.00031	0.00153	-0.01584	0.01208	-0.00055	0.00053	0.00043	0.00256
DATC_GPS	36 42 30.862448	27 41 30.605204	59.19240	0.00100	0.00079	0.00526	-0.01602	0.01076	-0.00580	0.00029	0.00023	0.00151
DEIR_GPS	39 02 05.462790	28 38 54.257909	890.91305	0.00021	0.00019	0.00066	0.00333	0.00174	-0.00095	0.00014	0.00013	0.00039
DENI_GPS	37 45 43.566395	29 05 31.682993	471.08078	0.00044	0.00035	0.00067	-0.00118	0.00395	0.00347	0.00058	0.00041	0.00042

Nekto	φ (° ' '')	λ (° ' '')	h (m)		-) (m)		Vk	Vd	Vh	σVk	σVd	σVh
NOKLA	Enlem	Boylam	Yükseklik	οφ (m)	ол (m)	on (m)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
DIDI_GPS	37 22 19.668316	27 16 07.179422	79.26841	0.00017	0.00017	0.00044	-0.01357	0.00546	-0.00267	0.00012	0.00013	0.00022
DINA_GPS	38 04 10.068030	30 09 58.809293	917.90835	0.00018	0.00016	0.00052	0.00435	0.00488	-0.00219	0.00015	0.00014	0.00033
DIPK_GPS	35 32 12.829252	34 11 40.791465	155.27787	0.00019	0.00019	0.00062	0.01381	0.01726	-0.00040	0.00020	0.00021	0.00052
DIVR_GPS	39 23 39.544707	38 06 13.981624	1087.60445	0.00022	0.00022	0.00076	0.01860	0.00995	-0.00154	0.00017	0.00019	0.00056
DIYB_1PS	37 57 15.900590	40 11 14.973476	773.67549	0.00027	0.00024	0.00122	0.02305	0.01855	0.00017	0.00022	0.00020	0.00138
DIYB_GPS	37 57 15.902295	40 11 14.973841	771.64670	0.00182	0.00162	0.01099	0.02440	0.01860	-0.00279	0.00035	0.00031	0.00208
DUM2_GPS	40 33 55.888572	29 22 18.822868	930.47389	0.00031	0.00054	0.00062	0.00880	0.00529	-0.00236	0.00015	0.00035	0.00025
EDIR_GPS	41 40 36.161667	26 33 03.636982	98.19790	0.00044	0.00024	0.00051	0.01306	0.02370	-0.00401	0.00116	0.00031	0.00031
EKIZ_GPS	38 03 31.794382	37 11 16.585676	1325.04227	0.00021	0.00027	0.00084	0.01798	0.01213	-0.00262	0.00014	0.00028	0.00065
ELAZ_GPS	38 38 40.821200	39 15 23.275492	1027.40920	0.00021	0.00019	0.00107	0.01919	0.01011	-0.00291	0.00014	0.00014	0.00112
ELMI_GPS	36 47 21.871034	29 48 38.345462	1129.38750	0.00022	0.00017	0.00046	0.00203	0.01028	-0.00089	0.00037	0.00019	0.00031
EMIR_GPS	39 01 19.883784	31 08 38.492976	1057.67191	0.00018	0.00017	0.00066	0.00745	0.00329	-0.00102	0.00013	0.00013	0.00051
ERDT_GPS	40 23 35.601874	27 48 28.612941	92.18593	0.00024	0.00024	0.00052	0.00554	0.00668	-0.00117	0.00016	0.00017	0.00023
ERGN_GPS	38 16 10.574758	39 45 29.493357	987.81838	0.00019	0.00022	0.00071	0.02354	0.01799	-0.00068	0.00016	0.00027	0.00064
ERZ1_GPS	39 44 45.014866	39 30 22.026457	1238.25632	0.00036	0.00024	0.00073	0.01420	0.01337	-0.00003	0.00070	0.00033	0.00074
ERZI_GPS	39 44 44.414407	39 30 21.854245	1238.37433	0.00068	0.00067	0.00152	0.01432	0.01500	-0.00141	0.00018	0.00018	0.00039
ERZR_GPS	39 54 20.189896	41 15 19.676499	1915.00942	0.00020	0.00028	0.00076	0.01181	0.02613	0.00022	0.00013	0.00034	0.00060
ESKS_GPS	39 44 44.470759	30 27 49.002721	850.75207	0.00015	0.00015	0.00054	0.00711	0.00206	-0.00131	0.00012	0.00013	0.00045
ESME_GPS	38 30 18.647269	28 59 37.916533	884.35770	0.00019	0.00016	0.00058	0.00253	0.00219	-0.00219	0.00016	0.00013	0.00037
FASA_GPS	41 02 43.897724	37 29 05.092458	40.97648	0.00020	0.00035	0.00050	0.01144	0.02404	-0.00139	0.00016	0.00056	0.00028
FEEK_GPS	37 48 54.414308	35 54 44.375136	600.29552	0.00021	0.00021	0.00087	0.01653	0.01196	-0.00199	0.00015	0.00016	0.00067
FETH_GPS	36 37 34.349054	29 07 25.585738	37.32662	0.00025	0.00018	0.00052	-0.00522	0.01045	-0.00324	0.00026	0.00013	0.00027
FINI_GPS	36 18 07.982883	30 08 47.074657	36.35717	0.00026	0.00022	0.00076	0.00444	0.01551	-0.00152	0.00025	0.00017	0.00052
GEME_GPS	39 11 06.473790	36 04 51.041909	1214.79472	0.00025	0.00030	0.00047	0.01572	0.00618	-0.00152	0.00037	0.00058	0.00036
GIRS_GPS	40 55 21.464654	38 23 17.364634	81.27645	0.00025	0.00027	0.00079	0.01166	0.02497	-0.00210	0.00014	0.00018	0.00038
GUMU_GPS	40 26 13.462756	39 30 58.219908	1248.53298	0.00023	0.00023	0.00083	0.01079	0.02530	0.00008	0.00016	0.00021	0.00059
GURU_GPS	38 43 02.465607	37 18 28.328153	1357.43949	0.00029	0.00042	0.00064	0.01777	0.01056	-0.00215	0.00015	0.00026	0.00027
GYUR_GPS	35 12 04.492535	32 59 22.086152	78.98176	0.00023	0.00031	0.00067	0.01132	0.01940	-0.00383	0.00027	0.00045	0.00064
HAKK_1PS	37 34 27.538574	43 44 20.861480	1758.03931	0.00035	0.00032	0.00107	0.00730	0.02566	-0.00241	0.00058	0.00055	0.00106

Nokta	φ (° ' '')	λ (° ' '')	h (m)	a(n (m)	a) (m)	ah (m)	Vk	Vd	Vh	σVk	σVd	σVh
NORCA	Enlem	Boylam	Yükseklik	υψ (iii)	07 (III)	on (iii)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
HAKK_GPS	37 34 27.538226	43 44 20.861290	1758.03750	0.00234	0.00220	0.00406	0.00521	0.02708	-0.00208	0.00052	0.00049	0.00089
HALP_GPS	37 26 42.290062	34 11 00.150876	1252.50102	0.00022	0.00019	0.00065	0.01431	0.01186	-0.00119	0.00019	0.00013	0.00034
HARC_GPS	39 40 39.877165	29 09 09.937024	712.52829	0.00031	0.00038	0.00079	0.00701	0.00212	-0.00181	0.00018	0.00041	0.00034
HAT1_GPS	36 12 00.065757	36 09 20.955878	132.32391	0.00054	0.00051	0.00147	0.01494	0.01948	-0.00446	0.00379	0.00355	0.00729
HATA_GPS	36 12 29.791099	36 09 09.898708	137.87779	0.00042	0.00032	0.00084	0.01981	0.01886	-0.00097	0.00022	0.00016	0.00036
HEND_GPS	40 47 41.968479	30 44 26.693239	208.53374	0.00027	0.00023	0.00056	0.00941	0.01935	-0.00242	0.00025	0.00020	0.00028
HINI_GPS	39 22 07.634705	41 41 44.833459	1742.62255	0.00024	0.00019	0.00050	0.01494	0.02593	-0.00238	0.00032	0.00022	0.00030
HORS_GPS	40 02 29.926900	42 10 02.376499	1592.32732	0.00041	0.00030	0.00086	0.01303	0.02803	-0.00018	0.00063	0.00035	0.00064
HRN1_GPS	37 10 15.569291	39 00 22.044646	530.94820	0.00024	0.00028	0.00082	0.02587	0.01905	-0.00399	0.00027	0.00038	0.00072
HRRN_GPS	37 10 29.210163	38 59 48.414216	561.59469	0.00086	0.00076	0.00188	0.02328	0.01852	-0.00182	0.00020	0.00018	0.00041
HYMN_GPS	39 26 05.008473	32 29 44.571020	1261.53910	0.00027	0.00033	0.00072	0.00878	0.00410	-0.00203	0.00013	0.00019	0.00031
IGIR_1PS	39 55 45.122691	44 01 05.705197	884.28511	0.00032	0.00024	0.00095	0.01286	0.02994	-0.00010	0.00067	0.00040	0.00162
IGIR_GPS	39 55 45.122889	44 01 05.705373	884.29777	0.00267	0.00157	0.00651	0.01385	0.02955	-0.00261	0.00060	0.00035	0.00144
INE1_GPS	41 58 44.400657	33 45 46.299822	98.13775	0.00035	0.00024	0.00079	0.01418	0.02380	-0.00165	0.00066	0.00031	0.00085
INEB_GPS	41 58 44.729174	33 45 46.170455	98.46470	0.00286	0.00692	0.00220	0.01937	0.00845	-0.01115	0.00075	0.00181	0.00057
IPS1_GPS	40 55 17.275346	26 23 07.829317	66.50099	0.00100	0.00096	0.00370	0.00253	0.00640	-0.00127	0.00762	0.00767	0.00916
IPSA_GPS	40 55 03.115943	26 22 47.210545	49.22669	0.00029	0.00030	0.00065	0.00979	0.02283	-0.00066	0.00013	0.00014	0.00025
ISKD_GPS	36 35 35.804906	36 10 48.988826	30.62523	0.00050	0.00050	0.00135	0.00422	0.00830	-0.01141	0.00372	0.00368	0.00743
ISKN_GPS	36 32 16.890636	36 08 45.892659	247.67080	0.00046	0.00065	0.00200	0.02078	0.01813	-0.00086	0.00022	0.00036	0.00101
ISPT_GPS	37 47 06.321726	30 34 01.119968	1032.13062	0.00018	0.00023	0.00074	0.00395	0.00544	-0.00251	0.00012	0.00024	0.00058
ISTN_GPS	40 59 27.462292	28 49 53.882694	77.05219	0.00017	0.00017	0.00041	0.01057	0.02350	-0.00168	0.00014	0.00017	0.00024
IZMI_GPS	38 23 41.307452	27 04 54.559330	74.93568	0.00018	0.00019	0.00058	-0.00550	0.00227	-0.00165	0.00012	0.00014	0.00030
IZMT_GPS	40 48 07.121388	29 57 03.361068	326.07407	0.00018	0.00017	0.00049	0.00912	0.01996	-0.00109	0.00014	0.00015	0.00028
KAMN_GPS	37 11 35.617978	33 13 12.976968	1057.00678	0.00024	0.00024	0.00114	0.01368	0.01248	-0.01483	0.00023	0.00026	0.00142
KANT_GDU	41 03 38.906691	29 03 41.152137	155.02049	0.00033	0.00031	0.00094	0.00945	0.02477	-0.00135	0.00018	0.00017	0.00033
KAPN_GPS	37 42 52.792635	33 31 36.936114	1039.51112	0.00036	0.00046	0.00083	0.01569	0.01079	-0.00922	0.00073	0.00135	0.00098
KARB_GPS	41 20 49.626317	28 40 57.975218	93.58674	0.00019	0.00018	0.00054	0.00976	0.02460	-0.00115	0.00013	0.00013	0.00028
KARS_GPS	40 34 52.519062	43 03 42.020148	1784.68926	0.00033	0.00018	0.00087	0.01101	0.02853	-0.00077	0.00055	0.00015	0.00099
KART_GPS	40 15 54.929186	28 19 57.234016	485.63573	0.00020	0.00022	0.00067	0.00695	0.00444	-0.00180	0.00011	0.00013	0.00034

Nokto	φ(°'")	λ (° ' '')	h (m)	<i>σιο</i> (m)	a) (m)	ah (m)	Vk	Vd	Vh	σVk	σVd	σVh
NUKLA	Enlem	Boylam	Yükseklik	οφ (m)	ол (m)	on (m)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
KART_GPS	40 15 54.929186	28 19 57.234016	485.63573	0.00020	0.00022	0.00067	0.00695	0.00444	-0.00180	0.00011	0.00013	0.00034
KAYS_GPS	38 42 30.139520	35 31 28.059161	1138.77584	0.00019	0.00019	0.00079	0.01560	0.00912	-0.00336	0.00014	0.00014	0.00055
KIKA_GPS	39 06 21.568900	27 40 19.940203	241.20924	0.00018	0.00020	0.00057	0.00074	0.00261	-0.00076	0.00014	0.00017	0.00033
KIRL_GPS	41 44 17.238502	27 13 04.616366	280.61107	0.00021	0.00016	0.00060	0.01028	0.02455	-0.00160	0.00017	0.00011	0.00039
KIRS_GPS	39 09 52.647180	34 09 19.756026	1063.64000	0.00021	0.00022	0.00051	0.01260	0.00555	-0.00172	0.00019	0.00025	0.00031
KKAL_GPS	39 50 35.754578	33 31 04.381701	794.56808	0.00025	0.00019	0.00046	0.01115	0.00478	-0.00113	0.00032	0.00020	0.00026
KLIS_GPS	36 42 30.959868	37 06 43.832509	681.92627	0.00040	0.00041	0.00063	0.02295	0.01762	-0.00157	0.00078	0.00090	0.00040
KLUU_GPS	39 04 44.767989	33 03 55.308533	1052.31531	0.00028	0.00021	0.00057	0.01111	0.00618	-0.00027	0.00024	0.00015	0.00029
KNY1_GPS	37 51 33.833244	32 28 34.878121	1085.34412	0.00034	0.00031	0.00107	0.02116	-0.00122	-0.06773	0.00169	0.00151	0.00411
KNYA_1PS	38 01 19.746457	32 30 18.842203	1205.71848	0.00040	0.00038	0.00133	0.01061	0.00508	-0.00497	0.00158	0.00153	0.00483
KNYA_GPS	38 01 19.746620	32 30 18.841002	1205.71297	0.00034	0.00041	0.00072	0.01012	0.00781	-0.00050	0.00014	0.00017	0.00026
KRBK_GPS	41 13 53.843946	32 40 33.336439	435.54309	0.00022	0.00019	0.00057	0.01115	0.02313	-0.00121	0.00016	0.00013	0.00029
KRS1_1PS	40 35 18.425692	43 05 36.396040	1811.73899	0.00028	0.00025	0.00110	0.01209	0.02806	0.00166	0.00039	0.00037	0.00188
KRS1_GPS	40 35 18.425797	43 05 36.395988	1811.76237	0.00155	0.00147	0.00762	0.01303	0.02807	-0.00201	0.00035	0.00033	0.00168
KSTM_GPS	41 22 16.436803	33 46 31.818394	835.39586	0.00025	0.00029	0.00057	0.01195	0.02287	-0.00244	0.00026	0.00044	0.00037
KURU_GPS	41 50 46.050781	32 43 03.869575	74.41114	0.00018	0.00017	0.00047	0.01148	0.02434	-0.00185	0.00013	0.00013	0.00025
KUTA_GPS	39 28 51.115193	29 53 55.881211	1076.35948	0.00020	0.00017	0.00065	0.00679	0.00249	-0.00112	0.00015	0.00013	0.00044
LDML_GPS	39 53 13.927591	32 45 31.022701	976.49662	0.00019	0.00016	0.00051	0.00914	0.00276	-0.00010	0.00023	0.00018	0.00042
LEFK_GPS	35 11 42.169039	33 21 10.453063	180.50374	0.00018	0.00018	0.00058	0.01338	0.01913	-0.00136	0.00014	0.00015	0.00036
MADT_GPS	40 36 40.865859	27 35 12.991139	749.14610	0.00024	0.00022	0.00117	0.00508	0.00714	0.00219	0.00014	0.00013	0.00082
MALY_GPS	38 20 15.700708	38 13 00.801933	985.89984	0.00019	0.00030	0.00077	0.01956	0.01184	-0.00297	0.00014	0.00043	0.00065
MALZ_GPS	39 08 35.379048	42 31 50.888159	1547.61272	0.00332	0.00143	0.00158	0.01572	0.02977	-0.00306	0.00167	0.00071	0.00071
MARA_GPS	37 34 50.716146	36 55 52.079402	616.75302	0.00021	0.00021	0.00076	0.01870	0.01499	-0.00094	0.00018	0.00021	0.00066
MARD_GPS	37 18 37.801192	40 43 41.829508	1064.13712	0.00017	0.00019	0.00052	0.02299	0.02015	0.00165	0.00012	0.00018	0.00030
MER1_GPS	40 58 00.959934	27 57 42.295804	91.76555	0.00020	0.00017	0.00055	0.01178	0.02429	-0.00238	0.00013	0.00012	0.00030
MERS_GPS	36 33 58.997282	34 15 21.068151	38.46843	0.00035	0.00213	0.00084	0.01423	0.01705	-0.00180	0.00019	0.00139	0.00039
MGOS_GPS	35 08 44.953772	33 54 26.595384	49.77783	0.00020	0.00022	0.00052	0.01486	0.01925	-0.00136	0.00015	0.00019	0.00025
MIDY_GPS	37 25 02.637413	41 21 26.643512	977.71085	0.00018	0.00020	0.00050	0.02324	0.02033	0.00166	0.00012	0.00020	0.00027
MIHA_GPS	39 52 17.045927	31 29 41.596409	1434.80987	0.00016	0.00017	0.00049	0.00816	0.00218	-0.00035	0.00012	0.00015	0.00028

Nokta	φ (° ' '')	λ (° ' '') Develoes	h (m)	σφ (m)	σλ (m)	σh (m)	Vk	Vd (m(r)	Vh	σVk	σVd	σVh
	Enlem	Boylam	Yukseklik				(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
MLTY_GPS	38 19 41.996932	38 25 30.917304	1055.61473	0.00083	0.00052	0.00195	0.02005	0.01196	-0.00416	0.00022	0.00014	0.00050
MLZ1_GPS	39 08 45.245375	42 32 26.064511	1571.72958	0.00039	0.00034	0.00126	0.01218	0.01181	0.00074	0.00175	0.00146	0.00483
MRSI_GPS	36 46 51.600063	34 36 09.332599	40.49614	0.00018	0.00018	0.00053	0.01402	0.01358	-0.00184	0.00017	0.00021	0.00041
MUGL_GPS	37 12 58.889704	28 21 51.983933	713.67175	0.00025	0.00020	0.00059	-0.00794	0.00631	-0.00081	0.00028	0.00018	0.00039
MUR1_GPS	38 59 30.954543	43 45 45.236218	1734.03568	0.00052	0.00046	0.00170	0.01217	0.03017	0.00343	0.00256	0.00226	0.00586
MURA_1PS	38 59 24.362014	43 45 47.228097	1736.40661	0.00240	0.00143	0.00305	0.00951	0.02903	-0.00335	0.00155	0.00092	0.00190
MURA_GPS	38 59 24.362526	43 45 47.229301	1736.39933	0.00488	0.00285	0.00556	0.01764	0.02577	-0.00117	0.00109	0.00063	0.00122
MUUS_GPS	38 47 35.654561	41 30 07.779135	1287.68361	0.00042	0.00026	0.00063	0.02153	0.01366	-0.00562	0.00140	0.00052	0.00060
NAHA_GPS	40 10 23.892662	31 19 55.515826	705.51503	0.00017	0.00019	0.00051	0.00807	0.00211	0.00007	0.00012	0.00015	0.00028
NEVS_GPS	38 36 59.634079	34 42 10.604526	1292.45334	0.00019	0.00019	0.00063	0.01456	0.00788	-0.00124	0.00012	0.00015	0.00041
NGDE_GPS	37 57 39.636940	34 35 33.217683	1410.62971	0.00017	0.00016	0.00052	0.01449	0.01015	-0.00050	0.00012	0.00013	0.00030
NIGD_GPS	37 57 31.571386	34 40 45.971684	1252.32608	0.00020	0.00018	0.00050	0.01460	0.01011	-0.00091	0.00016	0.00015	0.00026
ONIY_GPS	37 06 07.892884	36 15 13.886202	127.19189	0.00020	0.00018	0.00056	0.01715	0.01400	-0.00236	0.00016	0.00015	0.00035
OZAL_1PS	38 39 26.324858	43 59 19.244420	2037.25055	0.00035	0.00023	0.00068	0.02460	0.02473	-0.00240	0.00087	0.00037	0.00076
OZAL_GPS	38 39 26.324755	43 59 19.244614	2037.25272	0.00349	0.00147	0.00303	0.02219	0.02414	-0.00099	0.00078	0.00033	0.00066
POZA_GPS	37 25 19.604679	34 52 17.978658	826.40077	0.00022	0.00020	0.00089	0.01455	0.01222	-0.00033	0.00014	0.00013	0.00062
RDIY_GPS	40 23 06.844972	37 20 08.400735	539.81613	0.00027	0.00024	0.00080	0.01507	0.01465	-0.00106	0.00017	0.00015	0.00040
RHIY_GPS	39 54 22.002569	38 46 14.876714	1626.85705	0.00018	0.00016	0.00061	0.01541	0.01261	-0.00147	0.00015	0.00013	0.00048
RZE1_GPS	41 02 12.825296	40 29 35.131378	70.69900	0.00026	0.00042	0.00131	0.01105	0.02449	-0.00804	0.00017	0.00062	0.00145
SALH_GPS	38 28 59.123180	28 07 24.765596	156.16836	0.00017	0.00016	0.00048	0.00020	-0.00002	-0.00703	0.00015	0.00013	0.00032
SAM1_GPS	41 18 30.576407	36 20 01.544972	53.36964	0.00024	0.00020	0.00063	0.01147	0.02390	-0.00086	0.00039	0.00031	0.00068
SAMN_GPS	41 20 38.406652	36 15 20.314421	33.66173	0.00270	0.00151	0.00211	0.00931	0.02444	-0.00257	0.00071	0.00039	0.00053
SARV_1PS	36 41 47.945667	32 37 02.119204	1569.95656	0.00067	0.00025	0.00096	0.01459	0.01339	0.00012	0.00221	0.00033	0.00120
SARV_GPS	36 41 47.948567	32 37 02.119098	1569.97901	0.00900	0.00130	0.00489	0.00833	0.01383	-0.00254	0.00209	0.00030	0.00112
SARY_GPS	41 26 34.685727	27 54 59.163570	198.86966	0.00017	0.00017	0.00057	0.00999	0.02419	-0.00188	0.00012	0.00013	0.00039
SEMD_GPS	37 18 18.518051	44 34 25.996177	1422.93739	0.00035	0.00027	0.00072	0.02438	0.02144	-0.00131	0.00041	0.00025	0.00039
SHUT_GPS	38 32 02.206965	30 28 03.619406	1337.42806	0.00022	0.00021	0.00074	0.00562	0.00373	-0.00108	0.00014	0.00015	0.00040
SIH1_GPS	39 26 47.472717	31 32 10.500183	1127.28353	0.00024	0.00023	0.00081	0.00849	0.00324	-0.00009	0.00038	0.00040	0.00122
SIHI_GPS	39 26 43.019711	31 32 07.052634	1118.12013	0.00047	0.00044	0.00087	0.00761	0.00264	-0.00081	0.00015	0.00015	0.00026

Nekto	φ (° ' '')	λ (° ' '')	h (m)		a) (m)	ah (m)	Vk	Vd	Vh	σVk	σVd	σVh
NOKLA	Enlem	Boylam	Yükseklik	σφ (m)	ол (m)	on (m)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
SILF_GPS	36 22 54.803833	33 56 11.045010	52.75436	0.00018	0.00022	0.00071	0.01250	0.01546	-0.00156	0.00014	0.00026	0.00062
SINP_GPS	42 01 48.843361	35 09 14.201209	54.57622	0.00024	0.00019	0.00059	0.01118	0.02457	-0.00384	0.00025	0.00016	0.00038
SIRN_GPS	37 31 30.094651	42 27 24.635715	1459.31278	0.00029	0.00026	0.00062	0.01828	0.01854	-0.00093	0.00032	0.00027	0.00036
SIRT_GPS	37 55 54.864393	41 56 08.050762	916.61162	0.00031	0.00028	0.00113	0.02321	0.02070	-0.00250	0.00021	0.00021	0.00056
SIVE_GPS	37 45 08.619815	39 19 45.380294	830.83568	0.00032	0.00026	0.00101	0.02225	0.01892	-0.00117	0.00031	0.00022	0.00078
SIVS_GPS	39 44 37.315613	37 00 08.980232	1325.49031	0.00019	0.00018	0.00069	0.01681	0.00711	-0.00077	0.00014	0.00014	0.00052
SLEE_GPS	41 10 07.424833	29 36 02.454680	127.81574	0.00054	0.00021	0.00050	0.00703	0.02472	-0.00323	0.00139	0.00025	0.00033
SSEH_GPS	40 09 44.903018	38 04 29.620494	1200.95271	0.00025	0.00021	0.00064	0.01572	0.01328	-0.00055	0.00020	0.00017	0.00037
SUNL_GPS	40 09 14.321877	34 22 08.076455	807.30196	0.00020	0.00017	0.00070	0.01284	0.00521	-0.00201	0.00016	0.00013	0.00059
SURF_GPS	37 11 30.646456	38 49 04.881713	680.76492	0.00019	0.00020	0.00073	0.02290	0.01726	-0.00099	0.00015	0.00018	0.00061
SVAS_GPS	39 47 48.962526	36 53 31.811510	1635.72017	0.00020	0.00018	0.00052	0.01779	0.00693	-0.00131	0.00015	0.00015	0.00027
TEKR_GPS	40 57 30.004522	27 29 47.387257	48.78749	0.00020	0.00017	0.00057	0.00826	0.02346	-0.00155	0.00015	0.00012	0.00034
TNCE_GPS	39 06 34.822919	39 32 44.277465	1019.12376	0.00027	0.00019	0.00090	0.01813	0.01110	-0.00191	0.00029	0.00015	0.00083
TOK1_GPS	40 19 51.542497	36 33 26.881205	662.71516	0.00036	0.00026	0.00085	0.01462	0.00703	-0.00289	0.00188	0.00111	0.00265
TOKA_GPS	40 19 51.758516	36 33 25.700936	649.70126	0.00039	0.00039	0.00074	0.01649	0.00750	-0.00130	0.00015	0.00016	0.00026
TRBN_GPS	41 00 19.473874	39 42 41.361316	85.34728	0.00025	0.00024	0.00059	0.01109	0.02581	-0.00125	0.00019	0.00021	0.00028
TUBI_GDU	40 47 12.208662	29 27 02.460462	220.33234	0.00021	0.00019	0.00057	0.00935	0.01961	-0.00172	0.00015	0.00015	0.00028
TUF1_GPS	38 15 37.958965	36 12 30.409522	1504.76376	0.00035	0.00039	0.00141	0.01751	0.00754	-0.00244	0.00090	0.00126	0.00377
TUFA_GPS	38 15 38.167851	36 13 15.138531	1459.37354	0.00060	0.00061	0.00101	0.01611	0.01165	-0.00030	0.00023	0.00024	0.00035
TVA1_GPS	38 31 46.720865	42 17 26.819225	1718.07364	0.00045	0.00034	0.00139	0.02050	0.02024	0.00277	0.00191	0.00123	0.00457
TVAN_1PS	38 31 46.172882	42 17 25.655641	1717.48423	0.00068	0.00082	0.00397	0.02098	0.01944	-0.00217	0.00043	0.00054	0.00254
TVAN_GPS	38 31 46.172336	42 17 25.655091	1717.49640	0.00117	0.00164	0.00819	0.02358	0.02283	-0.00336	0.00026	0.00037	0.00184
TVAS_GPS	37 24 35.987960	29 08 07.307769	1126.76884	0.00041	0.00059	0.00154	-0.00227	0.00567	-0.00048	0.00020	0.00031	0.00072
UCG2_1PS	40 50 43.849625	29 57 44.643001	397.43923	0.00042	0.00039	0.00064	0.00998	0.02256	-0.00183	0.00028	0.00028	0.00029
UDER_GPS	40 31 52.619463	41 32 51.183395	1131.78129	0.00027	0.00023	0.00087	0.01103	0.02696	-0.00103	0.00024	0.00020	0.00068
ULUT_GPS	40 05 51.173036	29 07 53.198242	2088.92209	0.00024	0.00025	0.00069	0.00691	0.00240	-0.00123	0.00015	0.00017	0.00040
USAK_GPS	38 40 45.167807	29 24 18.795240	965.99166	0.00034	0.00024	0.00103	0.00229	0.00267	0.00059	0.00030	0.00017	0.00076
VAAN_GPS	38 33 55.263082	43 16 58.494689	1695.73921	0.00140	0.00196	0.00356	0.02067	0.02205	-0.00175	0.00030	0.00042	0.00075
VAN1_GPS	38 28 09.613294	43 20 44.922763	1693.30382	0.00046	0.00038	0.00074	0.03432	0.01901	-0.01237	0.00153	0.00114	0.00076

Nokta	φ (° ' '')	λ (° ' '')	h (m)	<i>a</i> (m)	σλ (m)	σh (m)	Vk	Vd	Vh	σVk	σVd	σVh
	Enlem	Boylam	Yükseklik	οφ (m)			(m/y)	(m/y)	(m/y)	(m/y)	(m/y)	(m/y)
VEZI_GPS	41 08 16.801524	35 27 59.963342	372.98313	0.00021	0.00019	0.00061	0.01239	0.02033	-0.00058	0.00014	0.00013	0.00033
VIRA_GPS	37 14 01.198011	39 45 04.171604	596.42045	0.00024	0.00022	0.00080	0.02317	0.01957	0.00024	0.00015	0.00013	0.00043
YENC_1PS	39 56 09.380717	27 14 30.141130	333.86382	0.00027	0.00024	0.00089	0.00571	0.00250	0.00383	0.00089	0.00083	0.00284
YENC_GPS	39 56 09.381786	27 14 30.140199	333.91404	0.00028	0.00029	0.00079	0.00201	0.00550	-0.00177	0.00013	0.00013	0.00032
YOZT_GPS	39 49 26.464707	34 48 57.352066	1343.13658	0.00019	0.00020	0.00056	0.01393	0.00552	-0.00139	0.00013	0.00016	0.00031
YUNA_GPS	38 48 05.931470	31 43 47.796913	1162.88944	0.00022	0.00023	0.00066	0.00751	0.00392	-0.00056	0.00016	0.00019	0.00037
YUNK_GPS	38 49 13.676026	31 43 34.594391	1192.05103	0.00022	0.00017	0.00043	0.00713	0.00398	-0.00193	0.00023	0.00015	0.00022
YZGT_GPS	39 46 51.904739	34 47 52.390256	1431.78852	0.00017	0.00018	0.00056	0.01406	0.00591	-0.00138	0.00012	0.00015	0.00034
ZONG_GPS	41 26 58.292170	31 46 41.414175	168.14031	0.00025	0.00020	0.00083	0.00986	0.02489	-0.00857	0.00023	0.00017	0.00072

YAZIM ESASLARI

1. Harita Dergisinde Yayımlanabilecek Yazılar

a. Haritacılık bilim dalları (Jeodezi, fotogrametri, kartografya, astronomi, jeofizik, kamu ölcmeleri ve mühendislik ölcmeleri) ve haritacılık ile ilgili diğer disiplinlerde (yerbilimleri, uzay teknolojileri, temel bilimler vb.) alanlarda olmak üzere, bir araştırma çalışmasını bulgu ve sonuçlarıyla yansıtan orijinal bilimsel makaleler; yeterli sayıda bilimsel makaleyi tarayarak, konuyu bilgi düzeyinde bugünkü özetleyen, değerlendirme yapan, bulguları karşılaştırarak eleştiren bilimsel derleme yazılar; orijinalliği ve bilimsel değeri bakımından çok önemli yabancı dilden çeviri bilimsel makaleler Harita Dergisi'nde yayımlanabilir.

b. Harita Genel Komutanlığı tarafından yılda iki kez (Ocak-Temmuz) yayımlanan hakemli bir dergidir. Yayımlanan yazılardaki fikirler yazarlarına aittir. Harita Genel Komutanlığını ve dergiyi sorumlu kılmaz. Dergideki yazı ve resimlerin her hakkı saklıdır.

c. Harita Dergisinde yayımlanmak üzere gönderilen yazılar, değerlendirme ve seçme işlemine esas olmak üzere, konularında uzman en az üç Bilim Kurulu Üyesi tarafından incelenir. Bilim Kurulunca "yetersiz" bulunan yazılar, dergide yayımlanmaz.

2. Harita Dergisine Yazı Hazırlama Esasları

a. Sayfa büyüklüğü A4 (210x297 mm) standardında olmalı; her sayfanın sağ kenarından 2 cm diğer kenarlarından 3'er cm boşluk bırakılmalıdır. Yazı toplam 15 sayfayı geçmemelidir. Yazı, bilgisayarda Microsoft Word formatında Arial Türkçe fontu bir satır aralığı ile yazılmalıdır.

b. Makale adı, Türkce ve İngilizce olarak kelimelerin ilk harfleri büyük olacak sekilde 12 punto büyüklüğünde sayfanın üst ortasına aelecek sekilde vazılmalı ve iki satırı gecmemelidir. Makale adı, makale iceriğini en fazla ölçüde yansıtmalı; makale içeriğinde anlatılan konuların büyük çoğunluğu, makale adı ile doğrudan ilgili olmalıdır. Makale adından sonra bir satır boşluk bırakıp ortalayarak yazar adı ve soyadı koyu (bold) ve 10 punto harf büyüklüğünde yazılmalıdır (Soyadı büyük harflerle). Yazar adının altına ortalayarak adres ve elektronik posta adresi 9 punto harf büyüklüğünde yazılır.

c. Yazı; Öz, Anahtar Kelime, Abstract (İngilizce öz), Keywords (İngilizce anahtar kelimeler), Giriş, Bölümler, Sonuç ve Kaynaklar şeklindeki ana bölümlerden oluşur. Bu bölümlerin tamamı sayfada iki sütün olacak şekilde yazılır. Sütunlar arasında 0,5 cm boşluk bırakılır. Her ana bölüm ve alt bölüm başlığı öncesi ve sonrası bir satır boşluk bırakılır.

Özet bölümünde, yapılan çalışma tanıtılarak yöntemler ve sonuçlar kısaca kullanılan belirtilmeli; abstract bölümü, özetin doğru ve eksiksiz tercümesini içermelidir. Giriş bölümünde, çalışmanın amacı ve konuyla ilgili diğer calısmalar anlatılmalıdır. Ara bölümlerde, kullanılan yöntemler ve veriler acıklanmalı; sonuc bölümünde, bulgular başka araştırmacıların bulguları ile karşılaştırılmalı, yazarın yorumu belirtilmeli ve ayrıca bulgulardan çıkan sonuçlar ve varsa öneriler yazılmalıdır. Özet, abstact, anahtar kelimeler ve key words, 9 punto büyüklüğünde italik harflerle yazılmalıdır. Diğer bölümler 10 punto harf büyüklüğünde normal yazılır.

Ana bölüm başlıkları büyük harflerle koyu (bold) olarak ve alt bölümlerin başlıkları kelimelerin ilk harfleri büyük diğerleri küçük ve sadece birinci düzey alt bölümlerin başlıkları koyu (bold) olarak yazılmalıdır. Yazının geri kalan kısmı normal baskıda yazılmalı, italik ya da altı cizgili karakterler kullanılmamalıdır. Özet. Anahtar Kelime, Abstract (ingilizce özet), Key Words (İngilizce anahtar kelimeler) ve kaynaklar ana bölümleri dışındaki ana bölüm başlıkları 1., 2., 3.; alt bölüm başlıkları a., b., c.; (1), (2), (3); (a), (b), (c); (I), (II), (III); (aa), (bb), (cc) şeklinde hiyerarşik düzeyde numaralandırılmalı; ardışık düzeylerin numaraları arasındaki dikey fark 0.5 olmalıdır. Numaralandırılan bölümlerin cm başlıkları, numaralarının başlangıç hizasından 0.5 cm içeriden; bir alt satıra devam eden bölüm başlıkları sayfa başından; tüm paragraflar sayfanın 0.5 cm içerisinden başlamalıdır.

Noktalama ve imlâ için Türk Dil Kurumu tarafından en son yayımlanan İmlâ Kılavuzu ve Türkçe sözlüğüne, Haritacılık ile ilgili Yönetmeliklerde kullanılan deyimlere uyulmalıdır. İfadelerde üçüncü şahıs kullanılmalı; her sembol ilk geçtiği yerde tanımlanmalı; her kısaltma ilk geçtiği yerde parantez içinde yazılmalı (örneğin, Coğrafi Bilgi Sistemi (CBS)); kelime ikiye bölünmemelidir. Noktalama işaretlerinden sonra bir karakter boşluk bırakılmalı; sayfa numaralama yapılmamalıdır. **ç.** Tablo isimleri, tablonun üstüne sol üst köşesinden itibaren yazılmalı (örneğin, Tablo 1. Karesel ortalama hatalar.); şekil isimleri, şeklin altına ortalanarak yazılmalı (örneğin, Şekil 1. CBS tasarımı.); tablo isimlerinden ve şekillerden önce, şekil isimlerinden ve tablolardan sonra bir satır boşluk bırakılmalı; tablolar ve şekiller sayfaya ortalanmalıdır. Tablolar ve şekillerin boyutu tek sütundan büyük olduğu durumlarda, sayfanın tamamına ortalı olarak yazılabilir.

d. Denklemlere verilen numaralar, kendi hizalarına ve sayfa sağ kenarına çakışacak şekilde parantez içinde (1),(2),(3),... şeklinde yazılmalıdır. Metin içerisindeki denklemlerin kendi aralarında ve metin ile aralarında bir satır boşluk bırakılır.

e. Kaynaklardan yapılan alıntılar, metin içinde geçtikleri her yerde, kaynak hakkında ()parantez içinde bilgi verilir. Parantez içine yazılacak bilgiler sırası ile kaynağı kaleme alan yazarın soyadı, yazarın ilk adı/adlarının baş harfleri ve kaynağın basım tarihidir (Yılmaz, 1997), birden fazla yazar için (Arpat, vd., 1975). Kaynaklar sıralanırken numaralandırma yapılmaz ve kaynaklar arası bir satır boşluk bulunur. Özet ve abstract bölümlerinde kaynak atıfı vapılmamalıdır.

f. Kaynaklar ana bölümü başlığı birer aralıklı büyük harflerle koyu (bold) ve sayfa ortalanarak yazılmalıdır. Kaynaklar yazar soyadına göre alfabetik sırada sıralanır. Aynı yazarın birden fazla yayını varsa önce yeni tarihli kaynaktan başlanır. Kaynaklar sayfasında yazarın soyadı ve adı 0,5 cm. asılı olarak sol taraftan başlayarak yazılır. Basım tarihi, yazar isminden hemen sonra gelir, parantez içerisinde ve sadece yıl olarak yazılır. Kitap veya yayının ismi koyu harflerle yazılır. Yabancı yazarların isimleri belirtilirken Latin imlâ kurallarına uyulur. (Örneğin; MİTTAG yerine MITTAG). İnternetten alınan kaynakların gösteriminde web adresinden sonra mutlaka kaynağın bu adresten alındığı tarih yazılır.

g. Makaleler, "MAKALE ÖRNEĞİ"nde sunulan boşluk ve yapılandırmalara uyularak; Şekil, Tablo ve Denklemler tek sütunda olacak ise metin aralarına konularak; iki sütuna yayılan bir bütün halindeki metin bloğundan sonra veya önce sayfanın alt veya üstünde olacak ve okuma akıcılığını bozmayacak şekilde yazılır.

3. Makalelerin Gönderilmesi

Makaleler, "haritadergisi @ hgk.msb.gov.tr" adresine e-posta ile gönderilir.

3 cm

XX

3 cm •

1.25 cm

ŧ

2 cm

(MAKALE ÖRNEĞİ)

(1) Xxxxx Xxxxxx Xxxxxx Xxxxxxx.(2 nci düzey alt bölüm başlığı)

(1 satır boşluk)

(2 nci düzey alt bölüm 1 nci paragraf)

(1 satır boşluk)

- (a) Xxxxx Xxxxxx Xxxxx Xxxx
- (3 üncü düzey alt bölüm başlığı)(1 satır boşluk)

XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXX XXXXXX XXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXX XXXX XXXXXX XXXXXXX XXXXXXXXXX XXXXXXXXXXX XXXXXXXXX XXXXXX XXXXXXXX XXXX XXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXXX

- (1 satır boşluk)
- (b) Xxxxx Xxxxx Xxxxx Xxxx
- (3 üncü düzey alt bölüm başlığı)

(1 satır boşluk)

XXXXXXXXX XXXXX XXXXXX XXXXXXX XXXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXXXXXXXXX XXXXX XXXXX XXXXXX XXXXXXXX XXXXXXXXXX XXXXX XXXXXXXX XXXXX XXXXXXX XXXXXXXX XXXXX XXXXX

(1 satır boşluk)

(I) XXXXX XXXXXX XXXXX XXXX

(4 üncü düzey alt bölüm başlığı)

(1 satır boşluk)

XXXX XXXXX XXXX XXXXXXX XXXXXX XXXXXXX XXXX XXXXXXXX XXXXXX XXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXX xxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXX XXXXX XXXX XXXXXX XXXXXXXX XXX XXXX.

(1 satır boşluk)

Tablo 1. Xxxx xxxxxx xxxxxx xxxxxx (1 satır boşluk)

$$KOH = \sqrt{\frac{\sum_{i=1}^{n} x_i - x_{i(RASAT)}}{n}}$$
(1)

(1 satır boşluk)

(1 satır boşluk)

(1 satır boşluk)

Şekil 1. Xxxxx xxxx xxxx xxxx xxxx (1 satır boşluk)

- (1 satır boşluk)
- 3. SONUÇ
 - (1 satır boşluk)

(1 satır boşluk)

(1 satır boşluk)

Soyad, A., Dergi Basım Yılı, Bildiri Adı, Dergi Adı, Cilt:16, Sayı: 116, Sayfa Aralığı.

(1 satır boşluk)

Soyad1, A., Soyad2, B., Kitap Basım Yılı, Kitap Adı, Yayımcı Adı, Yayım Yeri, ISBN: xxxxxxx. (1 satır boşluk)

SATIŞ BÜROSUNDAN SATIŞI YAPILAN TASNİF DIŞI KÂĞIT BASKI HARİTALARIN 2016 YILI SATIŞ FİYAT LİSTESİ

<u>د</u>			BOYUT	DACK		FİYAT	TI (TL)
5. NU.	ÖLÇEK	CINSI	(cmxcm)	TARİHİ	ÖZELLİKLERİ	KDV Hariç	KDV DÂHİL
1	1:250.000	TÜRKİYE KARA (JOG-G) TOPOĞRAFİK	70 x 55	MUH.	PAFTA	14,41	17,00
2	1:250.000	TÜRKİYE HAVA (JOG-A) TOPOĞRAFİK	70 x 55	MUH.	PAFTA	14,41	17,00
3	1:250.000	TÜRKİYE ALÇAK İRTİFA ÖZEL HAVA (TFC) TOPOĞRAFİK	70 x 55	MUH.	PAFTA	14,41	17,00
4	1:500.000	TÜRKİYE KARA (1404 SERİSİ) TOPOĞRAFİK	70 x 60	MUH.	PAFTA	15,25	18,00
5	1:500.000	TÜRKİYE ÖZEL HAVA HARİTASI	70 x 60	MUH.	PAFTA	15,25	18,00
6	1:1.000.000	TÜRKİYE MÜLKİ İDARE BÖLÜMLERİ (81 İL)	177 x 91	2014	3 PARÇA	9,32	11,00
7	1:1.800.000	TÜRKİYE MÜLKİ İDARE BÖLÜMLERİ (81 İL)	96 x 52	2015	TEK PARÇA	6,78	8,00
8	1:1.000.000	TÜRKİYE FİZİKİ	177 x 91	2014	3 PARÇA	9,32	11,00
9	1:1.800.000	TÜRKİYE FİZİKİ	96 x 52	2015	TEK PARÇA	6,78	8,00
10	1:3.500.000	TÜRKİYE VE ÇEVRE ÜLKELER SİYASİ	192 x 132	2010	4 PARÇA	9,75	11,50
11	1:3.500.000	TÜRKİYE VE ÇEVRE ÜLKELER FİZİKİ	192 x 132	2010	4 PARÇA	9,75	11,50
12	1:3.000.000	TÜRKİYE VE ÇEVRE ÜLKELER FİZİKİ	224 x 96	2009	4 PARÇA	11,02	13,00
13	1:1.500.000	KAFKASLAR SIYASI	98 x 68	2009	1 PARÇA	12,71	15,00
14	1:1.500.000	KAFKASLAR FİZİKİ	98 x 68	2009	1 PARÇA	12,71	15,00
15	1:1.800.000	ORTADOĞU SİYASİ ⁽¹⁾	111 x 77	2015	2 PARÇA	10,17	12,00
16	1:1.800.000	ORTADOĞU FİZİKİ ⁽¹⁾	111 x 77	2015	2 PARÇA	10,17	12,00
17	1:30.000.000	DÜNYA SIYASI	137 x 90	2015	2 PARÇA	12,71	15,00
18	1:30.000.000	DÜNYA FİZİKİ	140 x 75	2015	2 PARÇA	12,71	15,00
19	1:42.500.000	DÜNYA SİYASİ	82 x 49	2011	TEK PARÇA	6,78	8,00
20	1:42.500.000	DÜNYA FİZİKİ	82 x 49	2011	TEK PARÇA	6,78	8,00
21	1:3.000.000	OSMANLI İMPARATORLUĞU	190 x 131	1993	4 PARÇA	7,63	9,00
22	1:12.000.000	OSMANLI İMPARATORLUĞU	95 x 65	1993	TEK PARÇA	3,81	4,50
23	1:1.200.000	BALKANLAR SİYASİ ⁽¹⁾	70 x 85	2015	TEK PARÇA	6,78	8,00
24	1:1.200.000	BALKANLAR FİZİKİ ⁽¹⁾	65,5 x 74	2015	TEK PARÇA	6,78	8,00
25	1:9.000.000	AVRUPA SİYASİ	75 x 56	2013	TEK PARÇA	8,05	9,50
26	1:9.000.000	AVRUPA FİZİKİ	75 x 56	2013	TEK PARÇA	8,05	9,50
27	1:1.800.000	TÜRKİYE COĞRAFİ BÖLGELER HARİTASI (FİZİKİ)	96,5 x 50	2011	TEK PARÇA	5,93	7,00
28	1:800.000	BOSNA HERSEK-KOSOVA SİYASİ HARİTASI	74 x 54	2012	TEK PARÇA	11,44	13,50
29	1:800.000	BOSNA HERSEK-KOSOVA FIZIKI HARITASI	74 x 54	2012	TEK PARÇA	11,44	13,50
30	1:2.500.000	AFGANISTAN SIYASI HARITASI	68 x 46	2012	TEK PARÇA	11,44	13,50
31	1:2.500.000	AFGANISTAN FIZIKI HARITASI	68 x 46	2012	TEK PARÇA	11,44	13,50
32	1:1.000.000	LÜBNAN VE SURİYE SİYASİ HARİTASI	87 x 60	2013	TEK PARÇA	7,63	9,00
33	1:1.000.000	LÜBNAN VE SURİYE FİZİKİ HARİTASI	87 x 60	2013	TEK PARÇA	7,63	9,00
34	1:1.500.000	IRAK SIYASI HARITASI	70 x 75	2015	TEK PARÇA	6,78	8,00
35	1:1.500.000	IRAK FİZİKİ HARİTASI	70 x 75	2015	TEK PARÇA	6,78	8,00
36	1:1.800.000	SURİYE-IRAK SİYASİ HARİTASI	78 x 58	2015	TEK PARÇA	6,78	8,00
37	1:1.800.000	SURIYE-IRAK FIZIKI HARITASI	78 x 58	2015	TEK PARÇA	6,78	8,00
38	1:2.750.000	IRAN SIYASI HARITASI	80 x 75	2015	TEK PARÇA	6,78	8,00
39	1:2.750.000	IRAN FİZİKİ HARİTASI	80 x 75	2015	TEK PARÇA	6,78	8,00
40	1:12.000.000	AVRUPA-AFRİKA-SİYASİ HARİTASI	70 x 100	2015	TEK PARÇA	9,32	11,00
41	1:12.000.000	AVRUPA-AFRİKA FİZİKİ HARİTASI	70 x 100	2015	TEK PARÇA	9,32	11,00
42	1:50.000	ÇANAKKALE MUHAREBELERİ	68 x100	2015	TEK PARÇA	9,32	11,00
43	1:200.000	SARIKAMIŞ MUHAREBELERİ ⁽¹⁾	92 x 58	2015	TEK PARÇA	9,32	11,00

^{(1) :} Güncelleme çalışmaları devam etmektedir. Güncellemesini müteakip, 2015 yılı basımı satışa sunulacaktır.

SATIŞ BÜROSUNDAN SATIŞI YAPILAN TASNİF DIŞI PLASTİK KABARTMA HARİTALARIN 2016 YILI SATIŞ FİYAT LİSTESİ

6			BOVUT	DACKI		FİYATI (TL)	
NU.	ÖLÇEK	CINSI	(cm x cm)	TARİHİ	ÖZELLİKLERİ	KDV HARİÇ	KDV DÂHİL
44	1:250.000	TÜRKİYE KARA (JOG SERİSİ) TOPOĞRAFİK	65 x 61	MUH.	PAFTA	53,81	63,50
45	1:1.000.000	TÜRKİYE FİZİKİ	172 x 90	2013	3 PARÇA	166,53	196,50
46	1:1.850.000	TÜRKİYE FİZİKİ	93 x 48	2015	TEK PARÇA	35,59	42,00
47	1:3.500.000	TÜRKİYE FİZİKİ	49 x 26	2004	TEK PARÇA	9,32	11,00
48	1:8.500.000	TÜRKİYE FİZİKİ	15 x 24	2014	TEK PARÇA	4,24	5,00
49	1:1.000.000	TÜRKİYE VE ÇEVRE ÜLKELER FİZİKİ	354 x 218	2007	16 PARÇA	863,56	1019,00
50	1:3.000.000	TÜRKİYE VE ÇEVRE ÜLKELER FİZİKİ	224 x 96	2009	4 PARÇA	216,10	255,00
51	1:4.250.000	TÜRKİYE VE ÇEVRE ÜLKELER FİZİKİ	164 x 114	2011	4 PARÇA	216,10	255,00
52	1:1.800.000	ORTADOĞU FİZİKİ	115 x 81	2007	2 PARÇA	107,63	127,00
53	1:25.000.000	DÜNYA FİZİKİ ⁽¹⁾	162 x 85	2015	3 PARÇA	161,02	190,00
54	1:2.000.000	KAFKASLAR FİZİKİ	77 x 54	2010	TEK PARÇA	24,58	29,00
55	1:2.700.000	BALKANLAR FİZİKİ	57 x 63	2010	TEK PARÇA	24,58	29,00
56	1:14.000.000	AVRUPA-AFRİKA FİZİKİ HARİTASI	54 x 82	2015	TEK PARÇA	50,85	60,00
57	1:50.000	ÇANAKKALE MUHAREBELERİ	68 X 100	2015	TEK PARÇA	29,66	35,00
58	1:850.000	ÇANAKKALE KARTPOSTALI	25 X 16	2015	TEK PARÇA	4,24	5,00
59	1:200.000	SARIKAMIŞ MUHAREBELERİ ⁽¹⁾	92 X 58	2015	TEK PARÇA	29,66	35,00

(www.hgk.msb.gov.tr:urunler:satis:satis.htm)