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ABSTRACT 
 
 It is a well-known fact that the utilization of erroneous 
lever arm values in an aided inertial navigation system 
degrades the accuracy of the navigation solution. In 
practice, lever arm determination can be difficult, in 
particular when the displacement between the aiding 
sensors such as GNSS antenna, odometer, or a laser 
scanner and IMU is relatively large or the line of sight 
between them is blocked by the vehicle chassis. This 
paper considers the accurate determination of lever arm 
vector via 3D triangulation, describes the methodology, 
and provides a MATLAB function for a quick 
implementation. Slant distance, horizontal direction, 
and zenith angle measurements of a total station along 
with the fixed positions of the reference points on the 
IMU casing in an experimental setup are used to 
estimate the aiding sensor position in the inertial sensor 
coordinate frame by non-linear weighted least squares 
adjustment. The results reveal that lever arm accuracy 
of a few millimeters can be achieved with a total station 
of a medium quality.  

 
Keywords: Aided inertial navigation, lever arm vector, 
3D triangulation, non-linear weighted least squares.  

 
ÖZ 
 
 Destekli ataletsel navigasyon sistemlerinde hatalı 
kol kaçıklığı değeri kullanımının, navigasyon sonuçları 
doğruluğunu düşürdüğü iyi bilinen bir gerçektir. Özellikle 
GNSS anteni, odometre veya lazer tarayıcı gibi destek 
sensörleri ile IMU arasındaki mesafenin göreceli olarak 
fazla olması veya birbirleri arasındaki  görüş hattının 
araç gövdesi tarafından bloke edilmesi durumunda, 
pratikte kol kaçıklığı belirlemek zor bir durum haline 
gelebilir. Bu çalışma; kol kaçıklığı vektörünün 3B 
üçgenleme ile hassas bir şekilde belirlenmesini konu 
almakta, metodolojiyi tanımlamakta ve hızlı bir 
uygulama için bir MATLAB fonksiyonu sunmaktadır. 
Deneysel bir kurulum yapılarak bir total station ile elde 
edilen eğik mesafe, yatay doğrultu ve zenit açı ölçümleri 
ile birlikte IMU kasası üzerindeki referans noktalarının 
sabit konumları kullanılarak, destek sensörünün 
ataletsel sensör koordinat çerçevesindeki konumu, 
doğrusal-olmayan ağırlıklı en küçük kareler 
dengelemesi ile kestirilmiştir. Sonuçlar, orta kaliteli bir 
total station ile birkaç milimetre doğruluğunda kol 
kaçıklığının belirlenebileceğini göstermektedir. 
 
 

Anahtar Kelimeler: Destekli ataletsel navigasyon, kol 
kaçıklığı vektörü, 3B üçgenleme, doğrusal-olmayan 
ağırlıklı en küçük kareler. 

 
1. INTRODUCTION 
 
 The integration of Inertial Navigation System 
(INS) with some aiding sensors such as Global 
Navigation Satellite System (GNSS), odometer, 
magnetometer, laser scanner, camera, or a radar 
altimeter aims to utilize the benefits of the 
individual navigation sensor and to overcome their 
drawbacks for a continuous, high-bandwidth, and 
better navigation solution. Aided inertial navigation 
systems have been used for many years in a wide 
variety of applications from underwater to space. 
The integration architectures may vary depending 
on the application of the corrections to the inertial 
navigation solution, types of aiding sensor 
measurements used, and integration algorithm 
adapted. But, regardless of the integration 
approach, the lever arm vector between the aiding 
sensor and the Inertial Measurement Unit (IMU) of 
an INS must be considered while calculating the 
navigation solution (Jekeli, 2001; Titterton and 
Weston, 2004; Farrell, 2008; Groves 2013; Grewal 
et al., 2013). Using erroneous lever arm values or 
failing to compensate for its effect yields an 
attitude dependent error which eventually 
degrades the accuracy of the navigation solution 
(Bell, 2000; Hong et al., 2002; He and Jianye, 
2002). It is obvious that the lever arm vector 
should be determined with accuracy at least not 
worse than today’s GNSS positional accuracy. 
 
 In practice, it is not possible to locate the GNSS 
antenna, IMU, and the other aiding sensors at the 
same place physically. The antenna must be 
mounted on the outside surface of the platform to 
capture signals from the GNSS satellites. The 
odometer is mounted on a wheel of a moving 
vehicle. However, the IMU is usually located inside 
the platform or at different spots. The non-
colocation of the sensors potentially yields 
inconsistent position estimates of IMU and aiding 
sensor by the amount equal to the lever arm 
vector, which is the relative position of the aiding 
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sensor resolved in the inertial sensor coordinate 
frame (see Figure 1). When both sensors are 
mounted on the platform as close as possible to 
each other, the lever arm vector can be measured 
by a simple ruler or a tape measure. 
 

Figure 1. GNSS antenna lever arm vector resolved 
in the inertial sensor coordinate frame. 
 

Figure 2. A typical GNSS antenna and IMU setup 
for the airborne applications. 
 
 But, when the displacement between the aiding 
sensor and IMU is relatively large or the line of 
sight between them is blocked by the vehicle 
chassis (e.g. aircraft setup in Figure 2), it is not 
that easy to accurately measure the components 
of the lever arm vector. More advanced 
techniques such as close-range photogrammetry 
(Luhmann et al., 2020) or geodetic techniques are 
required. 
 
 There are some computational methods 
proposed in the literature for the compensation of 
the lever arm effects provided that the lever arm 
vector or its magnitude is known to some accuracy 
level (Hong et al., 2004; Hong et al., 2005; Lee et 
al., 2005; Hong et al., 2006; Seo et al., 2006; Wu 
et al., 2014; Montalbano and Humphreys, 2018; 

Borko et al., 2018; Stovner and Johansen, 2019). 
However, all these methods increase the 
complexity in the computation, but it is obvious 
that the more accurately the lever arm is 
determined, the better the navigation solution is 
obtained. The paper considers the accurate 
determination of the aiding sensor lever arm 
vector via 3D triangulation. To the best of the 
author’s knowledge, there exists no direct and 
rigorous publication about the topic that may help 
the non-geodesists working in the inertial 
navigation field. This study provides a 
comprehensive guide especially to novice 
researchers with a basic set of equations and 
terms for the implementation. 
 
 The 3D triangulation technique has been 
applied for many years particularly before the 
advent of satellite positioning to compute the 
precise coordinates of the geodetic network or 
control points (Torge, 2001; Awange and 
Grafarend, 2005). It is still in use in some local 
land surveying applications. The principal of the 
3D triangulation is based on measuring slant 
distances, horizontal directions, and the vertical 
(zenith) angles to some reference points whose 
coordinates are known in an arbitrary cartesian 
coordinate frame (see Figure 3). The unknown 
coordinates of the standing and the other survey 
points are determined using the trigonometric 
relations between the observations and the point 
coordinates as described in Section 2. This paper 
is organized as follows: In Section 2 the 
methodology is explained and the problem is 
formulated mathematically. Section 3 describes 
the experimental setup and the measurements 
performed. The last part presents the results and 
conclusion. A MATLAB function is provided in the 
appendix. 
 
2. METHODOLOGY 
 
 The method of least squares adjustment of 
indirect observations is employed to obtain the 
best estimate of the aiding sensor coordinates in 
the inertial sensor coordinate frame. This 
technique requires the formation of a set of 
observation equations and their solution (Alsadik, 
2019; Ogundare, 2019). Because the equations 
are non-linear functions of the reference (known) 
and unknown point coordinates, linearization is 
employed using the approximate values. The 
process is iterative that the corrections for the 
unknowns are computed and approximate values 
are updated until the corrections become 
negligible.
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Figure 3. Illustration of 3D triangulation. 
 
 The observation equation for the slant distance 
(𝑑𝑖𝑗), horizontal direction (𝛼𝑖𝑗), and zenith angles 

(𝑧𝑖𝑗) between point 𝑖 (e.g. the standing point or 

total station position) and points 𝑗 (e.g. the 
reference markers on the IMU chasing and the 
reflector or aiding sensor) can be written as 
follows: 
 

𝑑𝑖𝑗 + 𝑟𝑖𝑗
𝑑 = √(Δ𝑋𝑖𝑗)

2
+ (Δ𝑌𝑖𝑗)

2
+ (Δ𝑍𝑖𝑗)

2
 (1) 

 

𝛼𝑖𝑗 + 𝑟𝑖𝑗
𝛼 = 𝑎𝑡𝑎𝑛 (

Δ𝑌𝑖𝑗

Δ𝑋𝑖𝑗
) + 𝛾 (2) 

 

𝑧𝑖𝑗 + 𝑟𝑖𝑗
𝑧 = 𝑎𝑡𝑎𝑛 (

√(Δ𝑋𝑖𝑗)
2

+(Δ𝑌𝑖𝑗)
2

Δ𝑍𝑖𝑗
) (3) 

 

where 𝑟𝑖𝑗
𝑑, 𝑟𝑖𝑗

𝛼 and 𝑟𝑖𝑗
𝑧  are the residuals associated 

with observed quantities, Δ𝑋𝑖𝑗 =  𝑋𝑗 − 𝑋𝑖, Δ𝑌𝑖𝑗 =

𝑌𝑗 − 𝑌𝑖, Δ𝑍𝑖𝑗 = 𝑍𝑗 − 𝑍𝑖 are the differences between 

point coordinates, and 𝛾 is the orientation of the 
zero direction of the instrument with respect to the 
X-axis direction of IMU. Linearization of the above 
non-linear functions can be done using Taylor’s 
series expansion expressed in Eq.(4) where 

𝑋𝑖
0, 𝑌𝑖

0, 𝑍𝑖
0, 𝑋𝑗

0, 𝑌𝑗
0, 𝑍𝑗

0 and 𝛿𝑋𝑖 , 𝛿𝑌𝑖 , 𝛿𝑍𝑖, 𝛿𝑋𝑗 , 𝛿𝑌𝑗 , 𝛿𝑍𝑗 

are the approximate values and the correction 
terms of the unknown coordinates of points 𝑖 and 

𝑗, respectively. It should be noted that one more 

term [
𝜕𝐹

𝜕𝛾
]

0

𝛿𝛾 is added to the above equation when 

the horizontal directions are being linearized. 
 

𝐹(𝑋𝑖, 𝑌𝑖 , 𝑍𝑖 , 𝑋𝑗 , 𝑌𝑗, 𝑍𝑗) =

𝐹(𝑋𝑖
0, 𝑌𝑖

0, 𝑍𝑖
0, 𝑋𝑗

0, 𝑌𝑗
0, 𝑍𝑗

0) + [
𝜕𝐹

𝜕𝑋𝑖
]

0
𝛿𝑋𝑖 +

[
𝜕𝐹

𝜕𝑌𝑖
]

0
𝛿𝑌𝑖 + [

𝜕𝐹

𝜕𝑍𝑖
]

0
𝛿𝑍𝑖 + [

𝜕𝐹

𝜕𝑋𝑗
]

0

𝛿𝑋𝑗 +

[
𝜕𝐹

𝜕𝑌𝑗
]

0

𝛿𝑌𝑗 + [
𝜕𝐹

𝜕𝑍𝑗
]

0

𝛿𝑍𝑗 (4) 

 

 The corresponding linearized forms of the slant 
distance, horizontal direction, and zenith angle are 
given as below by taking the partial derivatives: 
 

∆𝑑𝑖𝑗 + 𝑟𝑖𝑗
𝑑 =

∆𝑋𝑖𝑗
0

𝑑𝑖𝑗
0 𝛿𝑋𝑗 +

∆𝑌𝑖𝑗
0

𝑑𝑖𝑗
0 𝛿𝑌𝑗 +

∆𝑍𝑖𝑗
0

𝑑𝑖𝑗
0 𝛿𝑍𝑗 −

∆𝑋𝑖𝑗
0

𝑑𝑖𝑗
0 𝛿𝑋𝑖 −

∆𝑌𝑖𝑗
0

𝑑𝑖𝑗
0 𝛿𝑌𝑖 −

∆𝑍𝑖𝑗
0

𝑑𝑖𝑗
0 𝛿𝑍𝑖 (5) 

 

∆𝛼𝑖𝑗 + 𝑟𝑖𝑗
𝛼 = 𝛿𝛾 −

∆𝑌𝑖𝑗
0

(𝑠𝑖𝑗
0 )

2 𝛿𝑋𝑗 +
∆𝑋𝑖𝑗

0

(𝑠𝑖𝑗
0 )

2 𝛿𝑌𝑗 +
∆𝑌𝑖𝑗

0

(𝑠𝑖𝑗
0 )

2 𝛿𝑋𝑖 −

∆𝑋𝑖𝑗
0

(𝑠𝑖𝑗
0 )

2 𝛿𝑌𝑖 (6) 
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∆𝑧𝑖𝑗 + 𝑟𝑖𝑗
𝑧 =

∆𝑋𝑖𝑗
0

𝑡𝑖𝑗
0 𝛿𝑋𝑗 +

∆𝑌𝑖𝑗
0

𝑡𝑖𝑗
0 𝛿𝑌𝑗 −

(𝑠𝑖𝑗
0 )

2

𝑘𝑖𝑗
0 𝛿𝑍𝑗 −

∆𝑋𝑖𝑗
0

𝑡𝑖𝑗
0 𝛿𝑋𝑖 −

∆𝑌𝑖𝑗
0

𝑡𝑖𝑗
0 𝛿𝑌𝑖 +

(𝑠𝑖𝑗
0 )

2

𝑘𝑖𝑗
0 𝛿𝑍𝑖 (7) 

 
where 
 

∆𝑋𝑖𝑗
0 = 𝑋𝑗

0 − 𝑋𝑖
0 

∆𝑌𝑖𝑗
0 = 𝑌𝑗

0 − 𝑌𝑖
0 

∆𝑍𝑖𝑗
0 = 𝑍𝑗

0 − 𝑍𝑖
0 

𝑑𝑖𝑗
0 = √(∆𝑋𝑖𝑗

0 )
2

+ (∆𝑌𝑖𝑗
0)

2
+ (∆𝑍𝑖𝑗

0 )
2
 

𝑠𝑖𝑗
0 = √(∆𝑋𝑖𝑗

0 )
2

+ (∆𝑌𝑖𝑗
0)

2
 (8) 

𝑡𝑖𝑗
0 = (

(𝑠𝑖𝑗
0 )

2
+ (∆𝑍𝑖𝑗

0 )
2

∆𝑍𝑖𝑗
0 ) 𝑠𝑖𝑗

0  

𝑘𝑖𝑗
0 = (𝑠𝑖𝑗

0 )
2

+ (∆𝑍𝑖𝑗
0 )

2
 

∆𝑑𝑖𝑗 = 𝑑𝑖𝑗 − 𝑑𝑖𝑗
0  

∆𝛼𝑖𝑗 = 𝛼𝑖𝑗 − 𝛼𝑖𝑗
0 = 𝛼𝑖𝑗 − 𝑎𝑡𝑎𝑛 (

∆𝑌𝑖𝑗
0

∆𝑋𝑖𝑗
0 ) + 𝛾0 

∆𝑧𝑖𝑗 = 𝑧𝑖𝑗 − 𝑧𝑖𝑗
0 = 𝑧𝑖𝑗 − 𝑎𝑡𝑎𝑛 (

𝑠𝑖𝑗
0

∆𝑍𝑖𝑗
0 ) 

 
 The matrix form for linearized observation 
equations in Eqs. (5-7) can be written as follows: 
 
𝑨𝛿𝒙 = ∆𝒄 + 𝒓 (9) 
 
where 𝑨 is the design matrix constituted of partial 

derivatives, 𝛿𝒙 = [𝛿𝑋𝑖 , 𝛿𝑌𝑖 , 𝛿𝑍𝑖 , 𝛿𝑋𝑗 , 𝛿𝑌𝑗 , 𝛿𝑍𝑗 , 𝛿𝛾]
T
 is 

the vector of corrections applied to the unknowns, 

∆𝒄 = [∆𝑑𝑖𝑗 , ∆𝛼𝑖𝑗 , ∆𝑧𝑖𝑗]
T
 is the vector of closures, 

and 𝒓=[𝑟𝑖𝑗
𝑑 , 𝑟𝑖𝑗

𝛼 , 𝑟𝑖𝑗
𝑧 ]

T
 is the vector of residuals. The 

least squares solution of Eq. (9) is given by: 
 

𝛿𝒙 = (𝑨T𝑨)−1𝑨T∆𝒄 (10) 
 
 If the measurements are uncorrelated but have 
different uncertainties, then the weight matrix 

becomes 𝑾 = 𝑑𝑖𝑎𝑔 (1/ [𝝈𝑑𝑖𝑗

2 , 𝝈𝛼𝑖𝑗
2 , 𝝈𝑧𝑖𝑗

2 ]), and the 

weighted least squares solution can be written as: 
 

𝛿𝒙 = (𝑨T𝑾𝑨)−1𝑨T𝑾∆𝒄 (11) 
 
 The estimated corrections are added to the 
approximate values to compute the updated 
values of the approximations after each iteration. 

The best estimates are obtained when the 
corrections for the kth iteration reach some desired 
value, say less than 0.5 mm. 

 

𝒙 = 𝒙0 + 𝛿𝒙 = [ 𝑋𝑖
0, 𝑌𝑖

0, 𝑍𝑖
0, 𝑋𝑗

0, 𝑌𝑗
0, 𝑍𝑗

0, 𝛾0]
T

+

[𝛿𝑋𝑖 , 𝛿𝑌𝑖 , 𝛿𝑍𝑖 , 𝛿𝑋𝑗 , 𝛿𝑌𝑗 , 𝛿𝑍𝑗 , 𝛿𝛾]
T
  (12) 

 
 At the end of the iterative process, the 
residuals are computed from Eq. (9) and the 
quality of the observations is assessed. Large 
residuals may indicate poor observations and 
should be removed or remeasured.  
 
3. DESIGN AND IMPLEMENTATION 
 
 An experimental setup has been designed in 
laboratory conditions using an IMU and total 
station reflector shown in Figure 4 to allow direct 
measurement of the true or exact aiding sensor 
lever arm vector for accuracy assessment. The 
IMU is the navigation-grade iNAT-RQH of iMAR 
Navigation GmbH (https://www.imar-
navigation.de/). It has some reference markers on 
its casing (see Figure 5) that can easily be 
measured with a caliper or a ruler. The company 
provides the mechanical drawings of the system 
which depict the locations of the sensor 
intersection point (the origin of the inertial sensor 
coordinate frame) and the reference markers. The 
sensor intersection point is the point somewhere 
inside the IMU not visible from outside. The 
provided drawings display the precise offset 
values between the sensor intersection point and 
the front left corner of the IMU which enables us to 
make the appropriate transformation after the 
successful determination of the aiding sensor 
lever arm with respect to the front left corner. For 
our case, the offset values between these two 
points are [0.1210, -0.1275, 0.1160] meters in X, 
Y, and Z directions, respectively. 
 
 The reflector on the top of the IMU represents 
the aiding sensor. The verticality of the reflector 
has been ensured by the total station. The 3D 
position of the reflector with respect to the front left 
corner of the IMU has been precisely measured by 
cross-checking with different instrumentations 
such as a ruler, caliper, laser meter, and tape 
measure. The obtained values [-0.125, 0.066, -
1.554] meters in X, Y, and Z directions are 
acknowledged as the true coordinates of the 
aiding sensor. 
 
 Topcon OS-103 total station, having angle 
measurement accuracy of 3" and distance 
measurement accuracy of about (3 + 2ppm x D) 
mm where D is the measuring distance in mm, is 
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setup approximately 10 meters away from the 
reflector with the best visibility to all reference 
points. It should be noted that the total station 
should be placed as close as possible to the IMU 
chasing in practical application, but great care 
should be exercised in order not to obstruct the 
visibility to the reference markers and the aiding 
sensor. 
 

 
Figure 4. Experimental setup with IMU, reflector, 

and total station. 

 

 
 

Figure 5. The iCORUS reference points (markers) 

given in Table 1 and coordinate axis directions on 

the top of the IMU. 

More information about the specifications of 
Topcon OS-103 can be found in the product sheet 
at 
https://www.topcon.co.jp/en/positioning/products/
pdf/OS_E.pdf. The instrument is carefully levelled 
and the zero direction is oriented approximately 
towards the X-axis direction of the IMU to initialize 

the approximate value of 𝛾 with zero. Slant 

distances, horizontal directions, and the zenith 
angles to the reference points and the reflector are 
measured subsequently. The exact coordinates of 
the reference points on the IMU chasing and the 
initial coordinates of the standing point and the 
reflector are presented in Table 1, the 
observations are listed in Table 2, and the 
measurement uncertainties and their 
corresponding weights are given in Table 3. 
 
Table 1: The list of the exact and approximate 
coordinates of the reference (from L-F to T-2) and 
unknown points (reflector and standing) in the 
inertial sensor coordinate frame. 

Point 
Name 

X  
[cm] 

Y 
[cm] 

Z 
[cm] 

L-F 0.00 0.00 0.00 

L-1 -2.73 0.25 -1.30 

L-2 -2.73 0.25 -9.30 

L-3 -2.73 0.25 -17.30 

L-4 -4.73 0.25 -0.50 

L-5 -4.73 0.25 -18.20 

L-6 -14.23 0.25 -0.50 

L-7 -14.23 0.25 -18.20 

L-8 -23.73 0.25 -0.50 

L-9 -23.73 0.25 -18.20 

L-10 -33.23 0.25 -0.50 

L-11 -33.23 0.25 -1.30 

L-12 -35.23 0.25 -1.30 

L-13 -35.23 0.25 -9.30 

L-14 -35.23 0.25 -17.30 

L-B -38.00 0.00 0.00 

T-1 -9.55 4.85 -20.20 

T-2 -18.55 4.85 -20.20 

Reflector  
(GNSS Antenna) 

-12.40 3.86 -140.00 

Standing  
(Total Station) 

-36.50 -1085.00 -120.50 

 
4. RESULTS AND CONCLUSION 
 
 A MATLAB function attached in the appendix 
has been written to perform 3D triangulation 
described in section 2. In our case with a single 
GNSS antenna, there are 7 unknowns (e.g. 𝑢=7), 
57 observations (e.g. 𝑛=57), and 18 reference 
points that possess fixed coordinates to solve the 
problem. The unknows are the 3D coordinates of 
the reflector (𝑋𝐺 , 𝑌𝐺 , 𝑍𝐺) and the standing point 



Harita Dergisi, Temmuz 2022; 168: 38-44   
 Mehmet SİMAV, Yunus Aytaç AKDOĞAN 

43 

(𝑋𝑇 , 𝑌𝑇 , 𝑍𝑇), and also the 1D orientation of the zero 

direction of the total station (𝛾) with respect to the 
X-axis direction of IMU. “lscov.m” function of 
MATLAB for weighted least squares solution to 
the linear system is used to evaluate Eq. (11). A 
while loop is employed for the iterative solution. 
The design matrix 𝑨 and the closure vector ∆𝒄 are 
rebuilt with the most recent values of the 
unknowns. The iteration is terminated when all the 
corrections 𝛿𝒙 applied to the unknown coordinates 
are less than 0.5 mm. The best estimate of the 
reflector coordinates in the inertial sensor 
coordinate frame after two iterations are 
presented in Table 4. It is evident that the 
deviations of the estimates from the true values 
are less than 0.5 cm. 
 
Table 2: The slant distance, horizontal direction, 
and zenith angle measurements from standing 
(Total Station) to all visible points.  

Point 
Name 

Slant 
Distance 

[m] 

Horizontal 
Direction 
[degree] 

Zenith 
Angle 

[degree] 

L-F 10.851 89.336667 96.310000 

L-1 10.853 89.483611 96.238056 

L-2 10.847 89.479167 95.818333 

L-3 10.844 89.474444 95.396667 

L-4 10.852 89.588889 96.282222 

L-5 10.845 89.582222 95.352222 

L-6 10.853 90.095000 96.278333 

L-7 10.839 90.086389 95.351389 

L-8 10.851 90.597222 96.275833 

L-9 10.838 90.588611 95.347222 

L-10 10.843 91.103889 96.271111 

L-11 10.838 91.096111 95.343611 

L-12 10.843 91.208333 96.227500 

L-13 10.842 91.206667 95.806667 

L-14 10.838 91.201945 95.384167 

L-B 10.841 91.362778 96.299722 

T-1 10.873 89.869722 95.248889 

T-2 10.872 90.346111 95.242500 

Reflector 10.866 90.023056 87.895000 

 

Table 3: Measurement uncertainties and 
corresponding weights. 

Measurement Uncertainty Weight 

Slant distance 3 mm 0.3333 mm-1 

Angular meas. 3" 9.26E-5 rad-1 

 

Table 4: True and best estimate values of the 
reflector coordinates. 

 X 

[m] 

Y 

[m] 

Z 

[m] 

True value -0.125 0.066 -1.554 

Best estimate -0.127 0.070 -1.551 

Today’s kinematic GNSS accuracies for the 

horizontal and vertical coordinate components are 

about few centimeters or even worse in some 

cases. The experimental results reveal that the 

GNSS antenna lever arm can accurately be 

determined via 3D triangulation technique using a 

medium quality total station. It is hoped that the 

study and the MATLAB function attached will help 

the non-geodesists working in the inertial 

navigation field, particularly the novice 

researchers wondering about the accurate 

determination of the lever arm vector by 

triangulation. It should be noted that the 

methodology can also be applied for the lever arm 

determination of the different aiding sensors used 

in inertial navigation. 

 

APPENDIX 
 

The MATLAB function named 
“LeverArm3DTri.m” that can perform 3D 
triangulation and the paper itself are combined 
into a single zipped folder downloadable from the 
journal’s web site at 
https://www.harita.gov.tr/makaleler. It can also be 
attained from the ResearchGate page of the first 
author. 
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